15-859(B) Machine Learning Theory

Lecture 15: Learning from noisy data, intro to SQ model

Avrim Blum 03/19/12

Learning when there is no perfect hypothesis

- Hoeffding/Chernoff bounds: minimizing training error will approximately minimize true error: just need $O(1/\epsilon^2)$ samples versus $O(1/\epsilon)$.
- What about polynomial-time algorithms? Seems harder
 - Given data set S, finding apx best conjunction is NP-hard.
 - Can do other things, like minimize hinge-loss, maxent type loss, but not directly connected to error rate.
- One way to make progress: make assumptions on the "noise" in the data. E.g., Random Classification Noise model.

Learning from Random Classification Noise

- PAC model, target $f \in C$, but assume labels from noisy channel.
- "noisy" Oracle $EX^{\eta}(f,D)$. η is the noise rate.
 - Example x is drawn from D.
 - With probability 1- η see label $\ell(x) = f(x)$.
 - With probability n see label $\ell(x) = 1 f(x)$.
- E.g., if h has non-noisy error p, what is the noisy error rate?

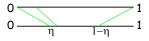
$$-p(1-\eta) + (1-p)\eta = \eta + p(1-2\eta).$$
0
0
1

Learning from Random Classification Noise

Algorithm A PAC-learns C from random classification noise if for any $f \in C$, any distrib D, any $\eta < 1/2$, any $\epsilon, \delta > 0$, given access to $EX^{\eta}(f,D)$, A finds a hyp h that is ϵ -close to f, with probability $\geq 1-\delta$.

Allowed time poly($1/\epsilon$, $1/\delta$, $1/(1-2\eta)$, n, size(f))

- Q: is this a plausible goal? We are asking the learner to get closer to f than the data is.
- A: OK because noisy error rate is linear in true error rate (squashed by $1-2\eta$)



Notation

- Use "Pr[...]" for probability with respect to non-noisy distribution.
- Use " $\text{Pr}_{\eta}[...]$ " for probability with respect to noisy distribution.

<u>Learning OR-functions</u> (assume monotone)

- Let's assume noise rate n is known. Any ideas?
- Say $p_i = Pr[f(x)=0 \land x_i=1]$
- Any h that includes all x_i such that p_i =0 and no x_i such that $p_i > \varepsilon/n$ is good.
- So, just need to estimate p_i to $\pm \epsilon/2n$.
 - Rewrite as $p_i = Pr[f(x)=0|x_i=1] \times Pr[x_i=1]$.
 - 2nd part unaffected by noise (and if tiny, can ignore x_i). Define q_i as 1st part.
 - Then $Pr_n[\ell(x)=0|x_i=1]=q_i(1-\eta)+(1-q_i)\eta=\eta+q_i(1-2\eta)$.
 - So, enough to approx LHS to $\pm O((\epsilon/n)(1-2\eta))$.

Learning OR-functions (assume monotone)

• If noise rate not known, can estimate with smallest value of $Pr_n[\ell(x)=0|x_i=1]$.

Generalizing the algorithm

Basic idea of algorithm was:

- See how can learn in non-noisy model by asking about probabilities of certain events with some "slop".
- Try to learn in noisy model by breaking events into:
 - Parts predictably affected by noise.
 - Parts unaffected by noise.

Let's formalize this in notion of "statistical query" (SQ) algorithm. Will see how to convert any SQ alg to work with noise.

The Statistical Query Model

- No noise.
- Algorithm asks: "what is the probability a labeled example will have property χ ? Please tell me up to additive error τ ."
 - Formally, χ :X × {0,1} \rightarrow {0,1}. Must be poly-time computable. $\tau \geq 1/\text{poly}(...)$.
 - Let $P_{\gamma} = Pr[\chi(x,f(x))=1]$.
 - World responds with $P'_{\chi} \in [P_{\chi} \tau, P_{\chi} + \tau]$. [can extend to [0,1]-valued or vector-valued χ]
- May repeat poly(...) times. Can also ask for unlabeled data. Must output h of error $\leq \epsilon$. No δ in this model.

The Statistical Query Model

- Examples of queries:
 - What is the probability that x_i=1 and label is negative?
 - What is the error rate of my current hypothesis h? $\lceil \chi(x,\ell)=1 \text{ iff } h(x) \neq \ell \rceil$
- Get back answer to $\pm \tau$. Can simulate from $\approx 1/\tau^2$ examples. [That's why need $\tau \geq 1/\text{poly}(...)$.]
- To learn OR-functions, ask for $\Pr[x_i=1 \land f(x)=0]$ with τ = $\epsilon/(2n)$. Produce OR of all x_i such that $P_\chi' \leq \epsilon/(2n)$.

The Statistical Query Model

- Many algorithms can be simulated with statistical queries:
 - Perceptron: ask for $E[f(x)x:h(x)\neq f(x)]$ (formally define vector-valued χ = f(x)x if $h(x)\neq f(x)$, and 0 otherwise. Then divide by $Pr[h(x)\neq f(x)]$.)
 - Hill-climbing type algorithms: what is error rate of h? What would it be if I made this tweak?
- Properties of SQ model:
 - Can automatically convert to work in presence of classification noise.
 - Can give a nice characterization of what can and cannot be learned in it.

SQ-learnable \Rightarrow (PAC+Noise)-learnable

- Given query χ , need to estimate from noisy data. Idea:
 - Break into part predictably affected by noise, and part unaffected.
 - Estimate these parts separately.
 - Can draw fresh examples for each query or estimate many queries from same sample if VCDim of query space is small.
- Running example: $\chi(x,\ell)=1$ iff $x_i=1 \land \ell=0$.

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for $\chi(x,\ell)=1$ iff $x_i=1 \land \ell=0$?
- Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \land x \in CLEAN] + Pr[\chi(x,f(x))=1 \land x \in NOISY].$
- Step 1: first part is easy to estimate from noisy data (easy to tell if $x \in CLEAN$).
- What about the 2nd part?

How to estimate $Pr[\chi(x,f(x))=1]$?

- Let CLEAN = $\{x : \chi(x,0) = \chi(x,1)\}$
- Let NOISY = $\{x : \chi(x,0) \neq \chi(x,1)\}$
 - What are these for $\chi(x,\ell)=1$ iff $x_i=1 \land \ell=0$?
- · Now we can write:
 - $Pr[\chi(x,f(x))=1] = Pr[\chi(x,f(x))=1 \land x \in CLEAN] + Pr[\chi(x,f(x))=1 \land x \in NOISY].$
- Can estimate Pr[x∈NOISY].
- Also estimate $P_{\eta} \equiv Pr_{\eta}[\chi(x,\ell)=1 \mid x \in NOISY]$.
- Want $P \equiv Pr[\chi(x,f(x))=1 \mid x \in NOISY]$.
- Write $P_n = P(1-\eta) + (1-P)\eta = \eta + P(1-2\eta)$.
- So, P = $(P_{\eta} \eta)/(1-2\eta)$.
- Just need to estimate P_n to additive error $\tau(1-2\eta)$.
- If don't know η , can have "guess and check" wrapper around entire algorithm.

<u>Characterizing what's learnable</u> <u>using SQ algorithms</u>

- Key tool: Fourier analysis of boolean functions.
- · Sounds scary but it's a cool ideal
- Let's think of functions from $\{0,1\}^n \rightarrow \{-1,1\}$.
- View function f as a vector of 2ⁿ entries:
 (D[000]^{1/2}f(000),D[001]^{1/2}f(001),...,D[x]^{1/2}f(x),...)
- What is $\langle f, f \rangle$? What is $\langle f, g \rangle$?
- What is an orthonormal basis? Will see connection to SQ algs next time...