15-859(B) Machine Learning Theory

Bandit Problems and sleeping experts

Avrim Blum

Start with recap

No-regret" algorithms for repeated decisions

General framework:

Algorithm has N options. World chooses cost vector. Can view as matrix like this (maybe infinite # cols)

- At each time step, algorithm picks row, life picks column.
 - Alg pays cost for action chosen.
 - Alg gets column as feedback (or just its own cost in the "bandit" model).
 - Need to assume some bound on max cost. Let's say all costs between 0 and 1.

No-regret" algorithms for repeated decisions

At each time step, algorithm picks row, life picks column. Define average regret in Time steps as:

And gets column as feed backfor a series.

the "bandit" model)
We want this to go to 0 or better as T gets large.

[called a to - respectively single framps on max cost. Let's say all costs between 0 and 1.

History and development (abridged)

- [Hannan'57, Blackwell'56]: Alg. with regret $O((N/T)^{1/2})$.
 - Re-phrasing, need only T = $O(N/\epsilon^2)$ steps to get time-average regret down to ϵ . (will call this quantity T_ϵ)
 - Optimal dependence on T (or ε). Game-theorists viewed #rows N as constant, not so important as T, so pretty much done.

History and development (abridged)

- [Hannan'57, Blackwell'56]: Alg. with regret $O((N/T)^{1/2})$.
 - Re-phrasing, need only T = O(N/ε²) steps to get time-average regret down to ε. (will call this quantity T_ε)
 - Optimal dependence on T (or ε). Game-theorists viewed #rows N as constant, not so important as T, so pretty much done.
- Learning-theory 80s-90s: "combining expert advice". Imagine large class C of N prediction rules.
 Perform (nearly) as well as best f∈C.

 - [LittlestoneWarmuth'89]: Weighted-majority algorithm
 - [[Litriestone Warmland 75]. Weighted major 7] and
 E[cost] ≤ OPT(1+E) + (log N)/E.
 Regret O((log N)/T)^{1/2}. T_e = O((log N)/E²).
 Optimal as fn of N too, plus lots of work on exact constants, 2nd order terms, etc. [CFHHSW93]...
- Extensions to bandit model (adds extra factor of N).

Efficient implicit implementation for large N...

- Bounds have only log dependence on # choices N.
- So, conceivably can do well when N is exponential in natural problem size, if only could implement efficiently.
- E.g., case of paths...

This is what we discussed last time.

[Kalai-Vempala'03] and [Zinkevich'03] settings

[KV] setting:

- Implicit set S of feasible points in Rm. (E.g., m=#edges, S={indicator vectors 011010010 for possible paths})
- Assume have oracle for offline problem: given vector c, find $\mathbf{x} \in S$ to minimize c·x. (E.g., shortest path algorithm)
- Use to solve online problem: on day t, must pick $x_t \in S$ before c_t is given.
- $(c_1 \cdot x_1 + ... + c_T \cdot x_T)/T \rightarrow \min_{x \in S} x \cdot (c_1 + ... + c_T)/T$.

[Z] setting:

- Assume 5 is convex.
- Allow c(x) to be a convex function over S.
- Assume given any y not in S, can algorithmically find nearest $x \in S$.

Plan for today

- Bandit algorithms
- Sleeping experts
- But first, a quick discussion of [0,1] vs {0,1} costs for RWM algorithm

[0,1] costs vs $\{0,1\}$ costs.

We analyzed Randomized Wtd Majority for case that all costs in {0,1} (correct or mistake)

Here is a simple way to extend to [0,1].

• Given cost vector c, view c, as bias of coin. Flip to create boolean vector c', s.t. $E[c'_i] = c_i$. Feed c' to alg A.

- For any sequence of vectors c', we have:
 - $E_A[cost'(A)] \le min_i cost'(i) + [regret term]$
- So, $E_{\$}[E_A[cost'(A)]] \le E_{\$}[min_i cost'(i)] + [regret term]$
- LHS is $E_A[cost(A)]$. (since A picks weights before seeing costs)
- RHS < min, E_{\$}[cost'(i)] + [r.t.] = min,[cost(i)] + [r.t.]

In other words, costs between 0 and 1 just make the problem easier.

Experts o Bandit setting

- In the bandit setting, only get feedback for the action we choose. Still want to compete with best action in hindsight.
- [ACFS02] give algorithm with cumulative regret $O((TN \log N)^{1/2})$. [average regret $O(((N \log N)/T)^{1/2})$.]
- Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- Talk about it in the context of online pricing...

Online pricing

- Say you are selling lemonade (or a cool new software tool, or bottles of water at the world expo). Can solve by setting
- Protocol #1: for t=1,2,...T
 - Seller sets price p
 - Buyer arrives with valuation v^t
 - If $v^t \ge p^t$, buyer purchases and pays p^t , else doesn't.

\$2

- v[†] revealed to algorithm.
- Repeat.
 Protocol #2: same as protocol without vt revealed.
- What can we do now?
- Assume all valuations in [1,h]
- Goal: do nearly as well as best fixa price in hindsight.

one expert per price level and using

RWM!

A natural generalization

(Going back to full-info setting)

- A natural generalization of our regret goal is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for Mondays.
- More generally, have N "rules" (on Monday, use path P).
 Goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the time steps in which it fires.
- For all i, want E[cost_i(alg)] ≤ (1+ε)cost_i(i) + O(ε⁻¹log N). (cost_i(X) = cost of X on time steps where rule i fires.)
- · Can we get this?

A natural generalization

- This generalization is esp natural in machine learning for combining multiple if-then rules.
- E.g., document classification. Rule: "if <word-X> appears then predict <Y>". E.g., if has football then classify as sports.
- + So, if 90% of documents with football $\it are$ about sports, we should have error $\leq 11\%$ on them.
 - "Specialists" or "sleeping experts" problem.
- · Assume we have N rules, explicitly given.
- For all i, want E[cost_i(alg)] ≤ (1+ɛ)cost_i(i) + O(e⁻¹log N).
 (cost_i(X) = cost of X on time steps where rule i fires.)

A simple algorithm and analysis (all on one slide)

- Start with all rules at weight 1.
- At each time step, of the rules i that fire, select one with probability $p_i \propto w_i.$
- Update weights:
 - If didn't fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:
 - $\mathbf{r}_i = [\Sigma_j \ \mathbf{p}_j \ \text{cost}(j)]/(1+\epsilon) \text{cost}(i)$ • $\mathbf{w}_i \leftarrow \mathbf{w}_i (1+\epsilon)^{r_i}$
 - So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a (1+6) factor. This ensures sum of weights doesn't increase.
- Final $w_i = (1+\epsilon)^{E[cost_i(alg)]/(1+\epsilon)-cost_i(i)}$. So, exponent $\leq \epsilon^{-1}log \ N$.
- So, E[cost_i(alg)] ≤ (1+ε)cost_i(i) + O(ε⁻¹log N).

Can combine with [KV],[Z] too:

- Back to driving, say we are given N "conditions" to pay attention to (is it raining?, is it a Monday?, ...).
- Each day satisfies some and not others. Want simultaneously for each condition (incl default) to do nearly as well as best path for those days.
- To solve, create N rules: "if day satisfies condition i, then use output of KV_i", where KV_i is an instantiation of KV algorithm you run on just the days satisfying that condition.

Other uses

- What if we want to adapt to change do nearly as well as best recent expert?
- Say we know # time steps T in advance (or guess and double). Make T copies of each expert, one who wakes up on day i for each 0 ≤ i ≤ T-1.
- Our cost in previous t days is at most (1+ε)(best expert in last t days) + O(ε⁻¹ log(NT)).
- (not best possible bound since extra log(T) but not bad).