
1 

15-859(B) Machine Learning 
Theory 

Bandit Problems and sleeping 
experts 

 

Avrim Blum 

Start with recap 

“No-regret” algorithms for repeated decisions 

General framework: 

 Algorithm has N options.  World chooses cost vector.  
Can view as matrix like this (maybe infinite # cols) 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 

A
lg

o
ri

th
m

 

World – life - fate 

“No-regret” algorithms for repeated decisions 

  
 

 

 

 

 

 At each time step, algorithm picks row, life picks column. 

 Alg pays cost for action chosen. 

 Alg gets column as feedback (or just its own cost in 
the “bandit” model). 

 Need to assume some bound on max cost.  Let’s say all 
costs between 0 and 1. 

Define average regret in T time steps as: 
     (avg per-day cost of alg) – (avg per-day cost of best  
     fixed row in hindsight).  
We want this to go to 0 or better as T gets large.          
[called a “no-regret” algorithm] 

History and development (abridged) 
 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 

 Re-phrasing, need only T = O(N/2) steps to get time-
average regret down to .  (will call this quantity T) 

 Optimal dependence on T (or ).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done. 

History and development (abridged) 
 [Hannan’57, Blackwell’56]:  Alg. with regret O((N/T)1/2). 

 Re-phrasing, need only T = O(N/2) steps to get time-
average regret down to .  (will call this quantity T) 

 Optimal dependence on T (or ).  Game-theorists 
viewed #rows N as constant, not so important as T, so 
pretty much done. 

 Learning-theory 80s-90s: “combining expert advice”.  
Imagine large class C of N prediction rules. 
 Perform (nearly) as well as best f2C. 
 [LittlestoneWarmuth’89]: Weighted-majority algorithm 

 E[cost] · OPT(1+) + (log N)/. 
 Regret O((log N)/T)1/2.  T = O((log N)/2). 

 Optimal as fn of N too, plus lots of work on exact 
constants, 2nd order terms, etc. [CFHHSW93]… 

 Extensions to bandit model (adds extra factor of N). 



2 

 Bounds have only log dependence on # choices N. 

 So, conceivably can do well when N is exponential 
in natural problem size, if only could implement 
efficiently. 

 E.g., case of paths… 

 

 
 

 This is what we discussed last time. 

Efficient implicit implementation for large N… 

dest 

[Kalai-Vempala’03] and [Zinkevich’03] settings 

[Z] setting: 

 Assume S is convex.   

 Allow c(x) to be a convex function over S. 

 Assume given any y not in S, can algorithmically find 
nearest x 2 S. 

[KV] setting: 

 Implicit set S of feasible points in Rm. (E.g., m=#edges, 
S={indicator vectors 011010010 for possible paths}) 

 Assume have oracle for offline problem: given vector c, 
find x 2 S to minimize c¢x. (E.g., shortest path algorithm) 

 Use to solve online problem: on day t, must pick xt2 S 
before ct is given. 

 (c1¢x1+…+cT¢xT)/T ! minx2Sx¢(c1+…+cT)/T. 

x 

Plan for today 

 Bandit algorithms 

 Sleeping experts 

 But first, a quick discussion of [0,1] vs {0,1} costs for 
RWM algorithm 

[0,1] costs vs {0,1} costs. 

We analyzed Randomized Wtd Majority for case that all 
costs in {0,1} (correct or mistake). 

Here is a simple way to extend to [0,1]. 

 Given cost vector c, view ci as bias of coin.  Flip to create 
boolean vector c’, s.t. E[c’i] = ci.  Feed c’ to alg A. 

 

 

 For any sequence of vectors c’, we have: 

 EA[cost’(A)] · mini cost’(i) + [regret term] 

 So, E$[EA[cost’(A)]] · E$[mini cost’(i)] + [regret term] 

 LHS is EA[cost(A)].  (since A picks weights before seeing costs) 

 RHS · mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.] 

In other words, costs between 0 and 1 just make the 
problem easier… 

c 
$ 

c’ 
world A 

Cost’ = cost on 
c’ vectors 

Experts ! Bandit setting 

 In the bandit setting, only get feedback for the action 
we choose.  Still want to compete with best action in 
hindsight. 

 [ACFS02] give algorithm with cumulative regret            
O( (TN log N)1/2 ).  [average regret O( ((N log N)/T)1/2 ).] 

 

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound). 

 

 Talk about it in the context of online pricing… 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world expo). 

• Protocol #1: for t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ¸ pt, buyer purchases and pays pt, else doesn’t. 

– vt revealed to algorithm.  

– Repeat. 
• Protocol #2: same as protocol #1 but 

without vt revealed. 
• What can we do now? 

• Assume all valuations in [1,h] 

$2 

• Goal: do nearly as well as best fixed 
price in hindsight. 

Can solve by setting 
one expert per 

price level and using 
RWM! 



3 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

1. RWM believes gain is: pt ¢ ĝt  =  pi
t(gi

t/qi
t)  ´ gt

RWM 

3. Actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ¸ gt
RWM(1-°) 

2. t gt
RWM ¸        /(1+²) - O(²-1 nh/° log n) OPT  

4. E[      ] ¸ OPT.  OPT                           Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t , 
so E[maxj[t ĝj

t]] ¸ maxj [ E[t ĝj
t] ]  = OPT. 

· nh/° 

[Auer,Cesa-Bianchi,Freund,Schapire] 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

Conclusion (° = ²):   
  E[Exp3] ¸ OPT/(1+²)2 - O(²-2 nh log(n))  

[Auer,Cesa-Bianchi,Freund,Schapire] 

· nh/° 

Can even reduce ²-2 to 
²-1  with more care in 

analysis.  

A natural generalization 
(Going back to full-info setting) 

 A natural generalization of our regret goal is: what if we 
also want that on rainy days, we do nearly as well as the 
best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] · (1+)costi(i) + O(-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

A natural generalization 
 This generalization is esp natural in machine learning for 

combining multiple if-then rules. 

 E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports. 

 So, if 90% of documents with football are about sports, 
we should have error · 11% on them. 

“Specialists” or “sleeping experts” problem. 

 Assume we have N rules, explicitly given. 

 For all i, want E[costi(alg)] · (1+)costi(i) + O(-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

A simple algorithm and analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, 

select one with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+) – cost(i) 
 wi Ã wi(1+)ri 

 So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+) 
factor.  This ensures sum of weights doesn’t increase. 

 Final wi = (1+)E[costi(alg)]/(1+)-costi(i). So, exponent · -1log N.  
 So, E[costi(alg)] · (1+)costi(i) + O(-1log N). 

Can combine with [KV],[Z] too: 

 Back to driving, say we are given N “conditions” to pay 
attention to (is it raining?, is it a Monday?, …).   

 Each day satisfies some and not others.  Want 
simultaneously for each condition (incl default) to do 
nearly as well as best path for those days. 

 To solve, create N rules: “if day satisfies condition i, 
then use output of KVi”, where KVi is an instantiation of 
KV algorithm you run on just the days satisfying that 
condition. 



4 

Other uses 

 What if we want to adapt to change - do nearly as well 
as best recent expert? 

 Say we know # time steps T in advance (or guess and 
double).  Make T copies of each expert, one who wakes 
up on day i for each 0 · i · T-1. 

 Our cost in previous t days is at most (1+²)(best expert 
in last t days) + O(²-1 log(NT)). 

 (not best possible bound since extra log(T) but not bad). 


