15-859(B) Machine Learning
Theory

Bandit Problems and sleeping
experts

"No-regret” algorithms for repeated decisions

General framework:
+ Algorithm has N options. World chooses cost vector.
Can view as matrix like this (maybe infinite # cols)

World - life - fate

£
<

¢ At each time step, algorithm picks row, life picks column.
= Alg pays cost for action chosen.
= Alg gets column as feedback (or just its own cost in
the "bandit" model).
= Need to assume some bound on max cost. Let's say all
costs between O and 1.

History and development (abridged)

¢ [Hannan'57, Blackwell'56]: Alg. with regret O((N/T)¥2),
= Re-phrasing, need only T = O(N/¢2) steps to get time-
average regret down to ¢. (will call this quantity T,)
= Optimal dependence on T (or ¢). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.

Start with recap

"No-regret” algorithms for repeated decisions

¢ At each time step, algorithm picks row, life picks column.
Defing,average regref i J timessteps as:
T e
ndif" m B n !
We wanT Qﬁls to go 0 O or better as T gets Iar‘g
[cdll%”% A9 g@@p@p Qﬂ_mﬁ‘hﬂ%‘]j on max cost. Let's say all

costs betwéen 0 and 1

History and development (abridged)

¢ [Hannan'57, Blackwell’56]: Alg. with regret O((N/T)2),
= Re-phrasing, need only T = O(N/¢2?) steps to get time-
average regret down to ¢. (will call this quantity T,)
= Optimal dependence on T (or ¢). Game-theorists
viewed #rows N as constant, not so important as T, so
pretty much done.
¢ Learning-theory 80s-90s: "combining expert advice".
Imagine large class C of N prediction rules.
= Perform (nearly) as well as best f<C.
= [LittlestoneWarmuth'891]: Weighted-majority algorithm
o E[cost] < OPT(1+¢) + (log N)/e.
o Regret O((log N)/T)2. T, = O((log N)/¢2).
= Optimal as fn of N too, plus lots of work on exact
constants, 2" order terms, etc. [CFHHSW93]...
* Extensions to bandit model (adds extra factor of N).

Efficient implicit implementation for large N...

+ Bounds have only log dependence on # choices N.

* So, conceivably can do well when N is exponential
in natural problem size, if only could implement
efficiently.

+ E.g., case of paths..

S

-

¢ This is what we discussed last time.

Plan for today

+ Bandit algorithms

* Sleeping experts

¢ But first, a quick discussion of [0,1] vs {0,1} costs for
RWM algorithm

Experts — Bandit setting

¢ In the bandit setting, only get feedback for the action
we choose. Still want to compete with best action in
hindsight.

* [ACFS02] give algorithm with cumulative regret
O((TN log N)/2). [average regret O((N log N)/T)/2).]

* Will do a somewhat weaker version of their analysis
(same algorithm but not as tight a bound).

* Talk about it in the context of online pricing...

« Protocol #1: for t=1,2,.T

[Kalai-Vempala'03] and [Zinkevich'03] settings

[KV] setting:
* Implicit set S of feasible points in R™. (E.g., m=#edges,
S={indicator vectors 011010010 for possible paths})

* Assume have oracle for offline problem: given vector c,
find x € S to minimize c-x. (E.g., shortest path algorithm)

¢ Use to solve online problem: on day #, must pick x;€ S
before c; is given.

¢ (CyxprotCrx)/ T — ming gx-(c+..+cr)/T.

[Z] setting:
+ Assume S is convex.
* Allow c(x) to be a convex function over S.

¢ Assume given any y not in S, can algorithmically find
nearest x € S.

[0,1] costs vs {0,1} costs.

We analyzed Randomized Wtd Majority for case that all
costs in {0,1} (correct or mistake).

Here is a simple way to extend to [0,1].

+ Given cost vector c, view ¢; as bias of coin. Flip to create
boolean vector . E[c']=c;. Feedc'toalg A.

For any sequence of vectors c', we have: -
» E [cost'(A)] < min, cost'(i) + [regret term]
So, Eg[E4[cost'(A)]] < Eg[min; cost'(i)] + [regret term]
LHS is E4[cost(A)]. (since A picks weights before seeing costs)
RHS < min; Eg[cost'(i)] + [r.t.] = min[cost(i)] + [r.t.]
In other words, costs between O and 1 just make the
problem easier...

Online pricing

+ Say you are selling lemonade (or a cool new software tool, or

bottles of water at the world expo). Can solve by setting

one expert per
price level and using

- Seller sets price p' e

Buyer arrives with valuation v*
If vt > pt, buyer purchases and pays p', else doesn't.
vf revealed to algorithm.

Repeat.

+ What can we do now?

+ Protocol #2: same as protoco
without v’ revealed.

+ Assume all valuations in [1,h E

+ Goal: do nearly as well as best fi%

price in hindsight.

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp3)
[Auer Cesa-Bianchi,Freund,Schapire]

Distrib p*

|RWM

n=
#experts

1. RWM believes gain is: p* - §* = p'(g'/qi") = g'awm

2.3, g'rwm = OPT /(1+€) - O(et nh/~ log n)

3. Actual gain is: g;* = g'rwm (47/p") > 9 awm(1-7)

4. E[O?f] > OPT. Because E[§j']= (1- q;")0 + q;*(g;"/q;") = g;" .
so E[max;[%, §;']] > max;[E[X, §']] = OPT.

natural generalization

(Going back to full-info setting)

¢ A natural generalization of our regret goal is: what if we
also want that on rainy days, we do nearly as well as the
best route for rainy days.
And on Mondays, do nearly as well as best route for
Mondays.

More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

For all i, want E[cost(alg)] < (1+&)cost;(i) + O(ellog N).

(costi(X) = cost of X on time steps where rule i fires.)

Can we get this?

A simple algorithm and analysis (i on one siide)

+ Start with all rules at weight 1.

* At each time step, of the rules i that fire,
select one with probability p; o wi.
¢ Update weights:
= If didn't fire, leave weight alone.
« If did fire, raise or lower depending on performance
compared o weighted average:
o ;= [Z; p; cost(j)]/(1+€) - cost(i)
o Wi+ willse)i
= So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+¢)

factor. This ensures sum of weights doesn't increase.

¢ Final w; = (1+g)Elcostild)l/(tee)-costil) S0, exponent < ¢llog N.
* So, E[costi(alg)] < (1+&)cost(i) + O(etlog N).

Multi-armed bandit problem

Exponential Weights for Exploration and Exploitation (exp3)

[Auer Cesa-Bianchi,Freund,Schapire]
Distrib p*

|RWM

q' = (1-9)p* + 7 n=
—~ #experts
§'=(0...0, gi'/q',

Can even reduce €2 to
¢! withmore care in
Conclusion (y = e): analysis.

E[Exp3] > OPT/(1+€)? - O(e2 nh log(n))

A natural generalization

¢ This generalization is esp natural in machine learning for
combining multiple if-then rules.
E.g., document classification. Rule: “if <word-X> appears
then predict <¥>". E.g., if has football then classify as
sports.
So, if 90% of documents with football are about sports,
we should have error < 11% on them.

"Specialists” or “sleeping experts” problem.

Assume we have N rules, explicitly given.
For all i, want E[cost;(alg)] < (1+€)cost;(i) + O(elog N).

(costi(X) = cost of X on time steps where rule i fires.)

Can combine with [KV],[Z] too:

* Back to driving, say we are given N “conditions” to pay
attention to (is it raining?, is it a Monday?, ...).

¢ Each day satisfies some and not others. Want
simultaneously for each condition (incl default) to do
nearly as well as best path for those days.
To solve, create N rules: “if day satisfies condition i,
then use output of KV,", where KV, is an instantiation of
KV algorithm you run on just the days satisfying that
condition.

Other uses

¢ What if we want to adapt to change - do nearly as well
as best recent expert?

* Say we know # time steps T in advance (or guess and
double). Make T copies of each expert, one who wakes
up onday i foreach O <i < T-1.

¢ Our cost in previous t days is at most (1+¢)(best expert
in last t days) + O(e! log(NT)).

¢ (not best possible bound since extra log(T) but not bad).

