
15-859(B) Machine Learning Theory

Homework # 2 Due: February 12, 2014

Groundrules: Same as before. You should work on the exercises by yourself but may work
with a partner on the problems (just write down who you worked with). Also if you use
material from outside sources, say where you got it.

Exercises:

1. Balanced Winnow. Here is a variation on the Winnow algorithm, called Balanced
Winnow. First of all, we introduce a fake variable x0 which is set to 1 in every example.
For each variable xi (0 ≤ i ≤ n), and each output value y (as usual, y ∈ {−, +}, but
you can also use this algorithm for multi-valued outputs) we have a weight wiy. All
weights are initialized to 1. In addition, we are given parameters α > 1 and β < 1.
The algorithm proceeds as follows:

(a) Given example x, predict the label y such that
∑

i xiwiy is largest.

(b) If the algorithm makes a mistake, predicting y′ when then correct answer is y,
then for each xi = 1, multiply the weight wiy by α, and multiply wiy′ by β.

Using α = 3/2 and β = 1/2, prove that as with the standard Winnow algorithm, this
algorithm makes at most O(r log n) mistakes on any disjunction (OR-function) of r
variables.

2. About δ. Suppose we changed the definition of PAC-learning to only require an al-
gorithm succeed in finding a low-error hypothesis with probability at least 1/2 (rather
than with probability 1−δ). Show that this does not change what is learnable. Specif-
ically, show that if we had an algorithm A with at least a 1

2
chance of producing a

hypothesis of error at most ε/2, we could convert it into an algorithm B that has at
least a 1− δ probability of producing a hypothesis of error at most ε. The reduction is
that we first run A for N = lg 2

δ
times (so with probability at least 1−δ/2, at least one

of the N hypotheses produced has error at most ε/2), and we then test the N hypothe-
ses produced on a new test set, choosing the one that performs best. Use Chernoff
bounds to analyze this second step and finish the argument. That is, assuming that
at least one of N hypotheses has error at most ε/2, give an explicit bound (without O
notation) on a size for the test set that is sufficient so that with probability at least
1− δ/2, the hypothesis that performs best on the test set has error at most ε.

Problems:

3. Winnow and L1 margins. Show that Winnow (the version discussed in class) with
learning rate ε = γ/2 makes at most O((1/γ2) log n) mistakes on any sequence of
examples in {0, 1}n consistent with a linear separator of L1-margin γ. In particular,
we assume for some target vector (w∗

1, . . . , w
∗
n) and threshold c, the positive examples
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satisfy
∑

i w
∗
i xi ≥ c and the negative examples satisfy

∑
i w

∗
i xi ≤ c− γ, where we have

normalized the target vector so that
∑

i |w∗
i | = 1. As mentioned in class, we can assume

w∗
i ≥ 0 for all i (otherwise we just define additional variables yi = 1− xi).

To do this, follow the analysis from class, where the quantity
∑

i w
∗
i log1+ε wi now plays

the role of the “number of chips on relevant features” (and log1+ε wi is the number
of chips on feature i). At some point in your analysis you will use the fact that
γ − ε(c − γ) ≥ γ/2, which follows from the definition of ε and the fact that c ≤ 1
(because we have normalized the target to have L1 norm of 1).

4. Tracking a moving target. Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).

(b) We predict the result of a weighted-majority vote of the experts (as before).

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only
if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th
example), the number of mistakes made by the algorithm is at most O(m + log n),
where m is the number of mistakes made by the best expert in that block, and n is the
total number of experts.

5. Kernels. Recall that K : X × X → R is a legal kernel if there exists an implicit
function φ such that K(x, y) = φ(x) · φ(y). (Here, X is our space of examples, such as
{0, 1}n.)

Often the easiest way to prove that some function is a legal kernel is to build it out
of other legal kernels. In particular, suppose K(x, y) = φ(x) · φ(y) and K ′(x, y) =
φ′(x) · φ′(y), where φ : X → RN and φ′ : X → RN ′

for some N, N ′. (Let’s not worry
about infinite-dimensional implicit feature spaces.)

(a) Show that for any constant c ≥ 0, cK is a legal kernel.

(b) Show that the sum, K + K ′, is a legal kernel.

(c) Show that the product, KK ′, is a legal kernel.

For instance, this implies that (1 + x · y)d is a legal kernel. (Using the fact that “1” is
itself a legal kernel).
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