
1

Topics in Machine Learning Theory

Avrim Blum
09/03/14

Lecture 3: Shifting/Sleeping Experts, the
Winnow Algorithm, and 𝐿1 Margin Bounds

Recap from end of last time

World – life - opponent

RWM (multiplicative weights alg)

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c1 c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

𝑝𝑖 = 𝑤𝑖/𝑊

Our expected

cost: 𝑝 ⋅ 𝑐

At each step, 𝑊 ← 𝑊 − 𝜖𝑐𝑖𝑤𝑖 = 𝑊(1 − 𝜖𝑐 ⋅ 𝑝)𝑖

So, ln 𝑊𝑓𝑖𝑛𝑎𝑙 ≤ ln 𝑛 − 𝜖 ⋅ 𝑐 𝑡 ⋅ 𝑝 𝑡𝑡

Which then implies…

So, E our cost ≤
1

𝜖
ln 𝑛 −

1

𝜖
ln 𝑊𝑓𝑖𝑛𝑎𝑙

World – life - opponent

1
1
1
1
1
1

(1-ec1
1)

(1-ec2
1)

(1-ec3
1)

.

.
(1-ecn

1)

scaling
so costs
in [0,1]

c2

(1-ec1
2)

(1-ec2
2)

(1-ec3
2)

.

.
(1-ecn

2)

RWM (multiplicative weights alg)

𝑝𝑖 = 𝑤𝑖/𝑊

We pay 𝑝 ⋅ 𝑐

 𝐸 𝑐𝑜𝑠𝑡 ≤ 𝑂𝑃𝑇 1 + 𝜖 +
1

𝜖
log 𝑛 ≤ 𝑂𝑃𝑇 + log𝑛 + 𝑂 𝑇 ⋅ log 𝑛

 Which implies doing nearly as well (or better)
than minimax optimal

A natural generalization
 A natural generalization of our regret goal (thinking of

driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

 And on Mondays, do nearly as well as best route for
Mondays.

 More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

 Can we get this?

A natural generalization
 This generalization is esp natural in machine learning for

combining multiple if-then rules.

 E.g., document classification. Rule: “if <word-X> appears
then predict <Y>”. E.g., if has football then classify as
sports.

 So, if 90% of documents with football are about sports,
we should have error · 11% on them.

“Specialists” or “sleeping experts” problem.

 Assume we have N rules.

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N).
(costi(X) = cost of X on time steps where rule i fires.)

2

A simple algorithm and analysis (all on one slide)

 Start with all rules at weight 1.
 At each time step, of the rules i that fire,

select one with probability pi / wi.
 When we get our results, update weights:

 If didn’t fire, leave weight alone.
 If did fire, raise or lower depending on performance

compared to weighted average:
 ri = [j pj cost(j)]/(1+e) – cost(i)
 wi Ã wi(1+e)ri

 So, if rule i does exactly as well as weighted average,
its weight drops a little. Weight increases if does
better than weighted average by more than a (1+e)
factor. This ensures sum of weights doesn’t increase.

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N).

(with a *little* handwaving)
Application: adapting to change

 What if we want to adapt to change - do nearly as well
as best recent expert?

 For each expert, instantiate copy who wakes up on day t
for each 0 ≤ t ≤ T-1.

 Our cost in previous t days is at most (1+𝜖)(best expert
in last t days) + O(𝜖−1 log(NT)).

 (not best possible bound since extra log(T) but not bad).

Next topic: Winnow algorithm

Recap: disjunctions

• Suppose features are boolean: X = {0,1}n.

• Target is an OR function, like x3 v x9 v x12.
• Can we find an on-line strategy that makes

at most n mistakes?
• Sure.

– Start with h(x) = x1 v x2 v ... v xn

– Invariant: {vars in h} ⊇ {vars in f }
– Mistake on negative: throw out vars in h set to 1

in x. Maintains invariant and decreases |h| by 1.
– No mistakes on positives. So at most n mistakes

total.
– We saw this is optimal.

Recap: disjunctions

• But what if most features are irrelevant?
• Target is an OR of r out of n.
• In principle, what kind of mistake bound

could we hope to get?
• Ans: log 𝑛𝑟 = 𝑂 𝑟 log 𝑛 , using halving.

Can we get this efficiently?

Yes – using Winnow algorithm.

Winnow Algorithm

Winnow algorithm for learning a disjunction
of r out of n variables. eg f(x)= x3 v x9 v x12

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Theorem: Winnow makes at most
1 + 2𝑟 1 + lg 𝑛 = 𝑂 𝑟 log 𝑛 mistakes.

3

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: how many mistakes on positive exs?

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Ans:
- each such mistake doubles at least one relevant weight.

- Any such weight can be doubled at most ⌈lg 𝑛⌉ times.

- So, at most 𝑟 lg 𝑛 ≤ 𝑟 1 + lg 𝑛 such mistakes.

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Proof, step 2: how many mistakes on negatives?
- Total sum of weights is initially 𝑛.

- Each mistake on positives adds at most 𝑛 to the total.

- Each mistake on negatives removes at least 𝑛 from total.

- So, #(mistakes on negs) ≤ 1 + #(mistakes on positives).

Proof
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛 mistakes.

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã 2wi for all xi=1.

– Mistake on neg: wi Ã 0 for all xi=1.

Proof, step 2: at most 1 + 𝑟(1 + lg 𝑛) mistakes on negs

Done.

Open question: efficient alg with mistake bound
poly(r, log(n)) for length-r decision lists?

Extensions

Winnow algorithm for learning a k-of-r
function: e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/(2k).

Thm: Winnow makes O(rk log n) mistakes.

Idea: think of alg as adding/removing chips.

Extensions

• Winnow algorithm for learning a k-of-r function:
e.g., x3 + x9 + x10 + x12 ¸ 2.

• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/(2k).

Analysis:
• Each m.o.p. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

Extensions
• h(x): predict pos iff w1x1 + … + wnxn ¸ n.

• Initialize wi = 1 for all i.
– Mistake on pos: wi Ã wi(1+²) for all xi=1.

– Mistake on neg: wi Ã wi/(1+²) for all xi=1.

– Use ² = 1/(2k).

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

• Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most 𝜖𝑛 added in m.o.p., at
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative.

4

Extensions

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛.

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0.

• I.e.,
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔.

• Plug in to first equation and solve.

Analysis:
• Each m.op. adds at least k relevant chips, and each

m.o.n removes at most k-1 relevant chips. At most
r(1/²)log n relevant chips total.

• Each m.o.n. removes almost as much total weight as
each m.o.p. adds. At most 𝜖𝑛 added in m.o.p., at
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative.

Extensions

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛.

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0.

• I.e.,
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔.

• Plug in to first equation and solve.

𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 1 + 𝜖 𝑀𝑝𝑜𝑠 ≤
𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
.

We set 𝜖 =
1

2𝑘
 so 𝑘 − 1 1 + 𝜖 ≤ 𝑘 −

1

2
.

Get:
1

2
𝑀𝑝𝑜𝑠 ≤

𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
= 𝑂(𝑟𝑘 log𝑛).

So, 𝑀𝑝𝑜𝑠, 𝑀𝑛𝑒𝑔 are both 𝑂(𝑟𝑘 log𝑛).

 If don’t know k,r, can guess-&-double: get 𝑂(𝑟2 log 𝑛) .

How about learning general LTFs?

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

Will look at two algorithms (one today, one
next time) each with different types of
guarantees:

• Winnow (same as before)

• Perceptron

Winnow for general LTFs

E.g., 4x3 - 2x9 + 5x10 + x12 ¸ 3.

• First, add variable x’i = 1 – xi so can assume
all weights positive.

E.g., 4x3 + 2x’9 + 5x10 + x12 ¸ 5.

• Also conceptually scale so that all weights
wi* of target are integers (not needed but
easier to think about)

Winnow for general LTFs

• Idea: suppose we made 𝑊 copies of each
variable, where 𝑊 = w1

∗ + …+ wn
∗ .

E.g., 4x3 + 2x’9 + 5x10 + x12 ¸ 5.

• Then this is just a “w0
∗ out of 𝑊” function!

• So, Winnow makes O(W2 log(Wn)) mistakes.

• And here is a cool thing: this is equivalent
to just initializing each wi to W and using
threshold of nW. But that is same as
original Winnow!

Winnow for general LTFs

More generally, can show the following (it’s
an easy extension):

Suppose 9 w* s.t.:

• w* ¢ x ¸ c on positive x,

• w* ¢ x · c - ° on negative x.

Then mistake bound is

• O((L1(w*)/°)2 log n)

Multiply by L1(X) if
examples not in 0,1 n

5

Perceptron algorithm

An even older and simpler algorithm, with a
bound of a different form.

Suppose 9 w* s.t.:

• w* ¢ x ¸ ° on positive x,

• w* ¢ x · -° on negative x.

Then mistake bound is

• O((L2(w*)L2(x)/°)2)

L2 margin of examples

