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Topics in Machine Learning Theory 

Avrim Blum 
09/03/14 

Lecture 3: Shifting/Sleeping Experts, the 
Winnow Algorithm, and 𝐿1 Margin Bounds 
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𝑝𝑖 = 𝑤𝑖/𝑊 

Our expected 

cost: 𝑝 ⋅ 𝑐  

At each step, 𝑊 ← 𝑊 −  𝜖𝑐𝑖𝑤𝑖 = 𝑊(1 − 𝜖𝑐 ⋅ 𝑝 )𝑖  

So, ln 𝑊𝑓𝑖𝑛𝑎𝑙 ≤ ln 𝑛 − 𝜖 ⋅  𝑐 𝑡 ⋅ 𝑝 𝑡𝑡  

Which then implies… 

So, E our cost ≤
1

𝜖
ln 𝑛 −

1

𝜖
ln 𝑊𝑓𝑖𝑛𝑎𝑙  
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RWM (multiplicative weights alg) 

𝑝𝑖 = 𝑤𝑖/𝑊 

We pay 𝑝 ⋅ 𝑐  

 𝐸 𝑐𝑜𝑠𝑡  ≤  𝑂𝑃𝑇 1 + 𝜖 +
1

𝜖
log 𝑛  ≤  𝑂𝑃𝑇 + log𝑛 + 𝑂 𝑇 ⋅ log 𝑛  

 Which implies doing nearly as well (or better) 
than minimax optimal 

A natural generalization 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

A natural generalization 
 This generalization is esp natural in machine learning for 

combining multiple if-then rules. 

 E.g., document classification.  Rule: “if <word-X> appears 
then predict <Y>”.  E.g., if has football then classify as 
sports. 

 So, if 90% of documents with football are about sports, 
we should have error · 11% on them. 

“Specialists” or “sleeping experts” problem. 

 Assume we have N rules. 

 For all i, want E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 
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A simple algorithm and analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, 

select one with probability pi / wi. 
 When we get our results, update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+e) – cost(i) 
 wi Ã  wi(1+e)ri 

 So, if rule i does exactly as well as weighted average, 
its weight drops a little.  Weight increases if does 
better than weighted average by more than a (1+e) 
factor.  This ensures sum of weights doesn’t increase. 

 Final wi = (1+e)E[costi(alg)]/(1+e)-costi(i). So, exponent · e-1log N.  
 So, E[costi(alg)] · (1+e)costi(i) + O(e-1log N). 

(with a *little* handwaving) 
Application: adapting to change 

 What if we want to adapt to change - do nearly as well 
as best recent expert? 

 For each expert, instantiate copy who wakes up on day t 
for each 0 ≤ t ≤ T-1. 

 Our cost in previous t days is at most (1+𝜖)(best expert 
in last t days) + O(𝜖−1 log(NT)). 

 (not best possible bound since extra log(T) but not bad). 

Next topic: Winnow algorithm 

Recap: disjunctions 

• Suppose features are boolean: X = {0,1}n. 

• Target is an OR function, like x3 v x9 v x12.  
• Can we find an on-line strategy that makes 

at most n mistakes? 
• Sure. 

– Start with h(x) = x1 v x2 v ... v xn 

– Invariant: {vars in h} ⊇ {vars in f } 
– Mistake on negative: throw out vars in h set to 1 

in x.  Maintains invariant and decreases |h| by 1. 
– No mistakes on positives.  So at most n mistakes 

total. 
– We saw this is optimal. 

Recap: disjunctions 

• But what if most features are irrelevant? 
• Target is an OR of r out of n.  
• In principle, what kind of mistake bound 

could we hope to get? 
• Ans: log 𝑛𝑟 = 𝑂 𝑟 log 𝑛 , using halving. 

 
Can we get this efficiently? 

 
Yes – using Winnow algorithm. 

Winnow Algorithm 

Winnow algorithm for learning a disjunction 
of r out of n variables. eg f(x)= x3 v x9 v x12 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Theorem: Winnow makes at most 
1 + 2𝑟 1 + lg 𝑛 = 𝑂 𝑟 log 𝑛  mistakes. 
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Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: how many mistakes on positive exs?  

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Ans:  
- each such mistake doubles at least one relevant weight. 

- Any such weight can be doubled at most ⌈lg 𝑛⌉ times. 

- So, at most 𝑟 lg 𝑛 ≤ 𝑟 1 + lg 𝑛  such mistakes. 

Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Proof, step 2: how many mistakes on negatives?  
- Total sum of weights is initially 𝑛. 

- Each mistake on positives adds at most 𝑛 to the total. 

- Each mistake on negatives removes at least 𝑛 from total. 

- So, #(mistakes on negs) ≤ 1 + #(mistakes on positives). 

Proof 
Thm: Winnow makes ≤ 1 + 2𝑟 1 + lg 𝑛  mistakes. 

Proof, step 1: at most 𝑟(1 + lg 𝑛) mistakes on positives 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã 2wi for all xi=1. 

– Mistake on neg: wi Ã 0 for all xi=1. 

Proof, step 2: at most 1 + 𝑟(1 + lg 𝑛) mistakes on negs 

Done. 

Open question: efficient alg with mistake bound 
poly(r, log(n)) for length-r decision lists? 

Extensions 

Winnow algorithm for learning a k-of-r 
function: e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/(2k). 

Thm: Winnow makes O(rk log n) mistakes. 

Idea: think of alg as adding/removing chips. 

Extensions 

• Winnow algorithm for learning a k-of-r function: 
e.g.,  x3 + x9 + x10 + x12 ¸ 2. 

• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/(2k). 

Analysis: 
• Each m.o.p. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

Extensions 
• h(x): predict pos iff w1x1 + … + wnxn ¸ n. 

• Initialize wi = 1 for all i. 
– Mistake on pos: wi Ã wi(1+²) for all xi=1. 

– Mistake on neg: wi Ã wi/(1+²) for all xi=1. 

– Use ² = 1/(2k). 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

• Each m.o.n. removes almost as much total weight as 
each m.o.p. adds.  At most 𝜖𝑛 added in m.o.p., at 
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative. 
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Extensions 

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛. 

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0. 

• I.e., 
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔. 

• Plug in to first equation and solve. 

Analysis: 
• Each m.op. adds at least k relevant chips, and each 

m.o.n removes at most k-1 relevant chips.  At most 
r(1/²)log n relevant chips total. 

• Each m.o.n. removes almost as much total weight as 
each m.o.p. adds.  At most 𝜖𝑛 added in m.o.p., at 
least 𝜖𝑛/(1 + 𝜖) removed in m.o.n. Can’t be negative. 

Extensions 

• 𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 ⋅ 𝑀𝑛𝑒𝑔 ≤
𝑟

𝜖
log 𝑛. 

• 𝑛 + 𝑀𝑝𝑜𝑠 ⋅ 𝜖𝑛 − 𝑀𝑛𝑒𝑔 ⋅
𝜖𝑛

1+𝜖
≥ 0. 

• I.e., 
1+𝜖

𝜖
+ 1 + 𝜖 𝑀𝑝𝑜𝑠 ≥ 𝑀𝑛𝑒𝑔. 

• Plug in to first equation and solve. 

𝑘 ⋅ 𝑀𝑝𝑜𝑠 − 𝑘 − 1 1 + 𝜖 𝑀𝑝𝑜𝑠  ≤  
𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
. 

We set 𝜖 =
1

2𝑘
 so 𝑘 − 1 1 + 𝜖 ≤ 𝑘 −

1

2
. 

Get: 
1

2
𝑀𝑝𝑜𝑠 ≤ 

𝑟

𝜖
log 𝑛 + 𝑘 − 1

1+𝜖

𝜖
= 𝑂(𝑟𝑘 log𝑛). 

So, 𝑀𝑝𝑜𝑠, 𝑀𝑛𝑒𝑔 are both 𝑂(𝑟𝑘 log𝑛). 

 If don’t know k,r, can guess-&-double: get 𝑂(𝑟2 log 𝑛) . 

How about learning general LTFs? 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

Will look at two algorithms (one today, one 
next time) each with different types of 
guarantees: 

• Winnow (same as before) 

• Perceptron 

Winnow for general LTFs 

E.g.,  4x3 - 2x9 + 5x10 + x12 ¸ 3. 

• First, add variable x’i = 1 – xi so can assume 
all weights positive. 

E.g.,  4x3 + 2x’9 + 5x10 + x12 ¸ 5. 

• Also conceptually scale so that all weights 
wi* of target are integers (not needed but 
easier to think about) 

Winnow for general LTFs 

• Idea: suppose we made 𝑊 copies of each 
variable, where 𝑊 = w1

∗ + …+ wn
∗ . 

E.g.,  4x3 + 2x’9 + 5x10 + x12 ¸ 5. 

• Then this is just a “w0
∗ out of 𝑊” function!  

• So, Winnow makes O(W2 log(Wn)) mistakes. 

• And here is a cool thing: this is equivalent 
to just initializing each wi to W and using 
threshold of nW.  But that is same as 
original Winnow! 

Winnow for general LTFs 

More generally, can show the following (it’s 
an easy extension):  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ c on positive x, 

• w* ¢ x · c - ° on negative x. 

Then mistake bound is 

• O((L1(w*)/°)2 log n) 

Multiply by L1(X) if 
examples not in 0,1 n 
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Perceptron algorithm 

An even older and simpler algorithm, with a 
bound of a different form.  

Suppose 9 w* s.t.: 

• w* ¢ x ¸ ° on positive x, 

• w* ¢ x · -° on negative x. 

Then mistake bound is 

• O((L2(w*)L2(x)/°)2) 

L2 margin of examples 


