Topics in Machine Learning Theory

The Adversarial Multi-armed Bandit Problem, Internal Regret, and Correlated Equilibria

> Avrim Blum 10/8/14

Plan for today

Online game playing / combining expert advice but:

 What if we only get feedback for the action we chose? (called the "multi-armed bandit" setting)

- What about stronger forms of regret-minimization (internal regret)?
- Connection to notion of "correlated equilibria"
- But first, a quick discussion of [0,1] vs {0,1} costs for RWM algorithm

[0,1] costs vs $\{0,1\}$ costs.

We analyzed Randomized Wtd Majority for case that all costs in {0,1} (and slightly hand-waved extension to [0,1])
Here is an alternative simple way to extend to [0,1].

 Given cost vector c, view c_i as bias of coin. Flip to create vector c' ∈ {0,1}ⁿ, s.t. E[c'_i] = c_i. Feed c' to alg A.

- For any sequence of vectors c' ∈ {0,1}ⁿ, we have:
 E_A[cost'(A)] ≤ min_i cost'(i) + [regret term]
- So, E_{\$}[E_A[cost'(A)]] ≤ E_{\$}[min_i cost'(i)] + [regret term]
- LHS is $E_A[cost(A)]$. (since $E_S[E_A[cost'(A)]] = E_S[c' \cdot \vec{p}] = c \cdot \vec{p}$)
- RHS $\leq \min_i E_{\$}[cost'(i)] + [r.t.] = \min_i[cost(i)] + [r.t.]$

In other words, costs between 0 and 1 just make the problem easier...

Experts → Bandit setting

- In the bandit setting, only get feedback for the action we choose. Still want to compete with best action in hindsight.
- [ACFS02] give algorithm with cumulative regret
 O((TN log N)^{1/2}). [average regret O(((N log N)/T)^{1/2}).]
- Will do a somewhat weaker version of their analysis (same algorithm but not as tight a bound).
- Talk about it in the context of online pricing...

Say you are selling lemonade (or a cool new software tool, or bottles of water at the world cup). For t=1,2,...T Seller sets price p[†] Buyer arrives with valuation v[†] If v[†] ≥ p[†], buyer purchases and pays p[†], else doesn't. Repeat. Assume all valuations ≤ h. Goal: do nearly as well as be price in hindsight.

If v^{\dagger} revealed, run RWM. $E[gain] \geq OPT(1-\epsilon) - O(\epsilon^{-1} h \log n)$.

Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- E.g., "what side of sidewalk to walk on":

	Left	Right
Left	(1,1)	(-1,-1)
Right	(-1,-1)	(1,1)

Uses

- Economists use games and equilibria as models of interaction.
- E.g., pollution / prisoner's dilemma:
- (imagine pollution controls cost \$4 but improve everyone's environment by \$3)

don't pollute pollute
don't pollute (2,2) (-1,3)
pollute (3,-1) (0,0)

Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require mixed strategies.
 - Proof is non-constructive.
 - Finding Nash equilibria in general appears to be hard (is PPAD-hard).

What if all players minimize regret?

- In zero-sum games, empirical frequencies quickly approach minimax optimality.
- In general-sum games, does behavior quickly (or at all) approach a Nash equilibrium?
 - After all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other. So if the distributions stabilize, they must converge to a Nash equil.
- Well, unfortunately, they might not stabilize.

A bad example for general-sum games

- Augmented Shapley game from [Zinkevich04]:
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action "play foosball" has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.

RWM will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.

 We didn't really expect this to work given how hard NE can be to find...

Another interesting bad example

- [Balcan-Constantin-Mehta12]:
 - Failure to converge even in Rank-1 games (games where R+C has rank 1).
 - Interesting because one can find equilibria efficiently in such games.

Internal/Swap Regret and Correlated Equilibria

What can we say?

If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches <u>correlated</u> equilibrium.

- Foster & Vohra, Hart & Mas-Colell,...
- Though doesn't imply play is stabilizing.

What are internal/swap regret and correlated equilibria?

More general forms of regret

- 1. "best expert" or "external" regret:
 - Given n strategies. Compete with best of them in hindsight.
- "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let S, be set of days satisfying property i (might overlap). Want to simultaneously achieve low regret over each S_i.
- "internal" or "swap" regret: like (2), except that S_i = set of days in which we chose strategy i.

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don't want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead".
- Formally, swap regret is wrt optimal function f:{1,...,n}→{1,...,n} such that every time you played action j, it plays f(j).

Correlated equilibrium

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
- E.g., Shapley game.

In general-sum games, if all players have low swapregret, then empirical distribution of play is apx correlated equilibrium.

Connection

- If all parties run a low swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.
 - Correlator chooses random time t ∈ {1,2,...,T}.
 Tells each player to play the action j they played in time t (but does not reveal value of t).
 - Expected incentive to deviate:∑_jPr(j)(Regret|j)
 = swap-regret of algorithm
 - So, this suggests correlated equilibria may be natural things to see in multi-agent systems where individuals are optimizing for themselves

Correlated vs Coarse-correlated Eq

In both cases: a distribution over entries in the matrix. Think of a third party choosing from this distr and telling you your part as "advice".

"Correlated equilibrium"

 You have no incentive to deviate, even after seeing what the advice is.

"Coarse-Correlated equilibrium"

 If only choice is to see and follow, or not to see at all, would prefer the former.

Low external-regret \Rightarrow apx coarse correlated equilib.

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Will present method of [BM05] showing how to convert any "best expert" algorithm into one achieving low swap regret.
- Unfortunately, #steps to achieve low swap regret is O(n log n) rather than O(log n).

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea: - Instantiate one copy A; responsible for expected regret over times we play j. Play p = pQ Alg Cost vector c Allows us to view p; as prob we play action j, or as prob we play alg A;

- Give A; feedback of pic.
- A_j guarantees $\sum_t (p_j^{\dagger}c^t) \cdot q_j^{\dagger} \le \min_i \sum_t p_j^{\dagger}c_i^{\dagger} + [regret term]$
- Write as: $\sum_t p_j^{\ t}(q_j^{\ t}\cdot c^t) \leq \min_i \sum_t p_j^{\ t}c_i^{\ t} + [\text{regret term}]$

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea: - Instantiate one copy A; responsible for expected regret over times we play j.

 $\sum_{t} p^{t} Q^{t} c^{t} \leq \sum_{j} \min_{i} \sum_{t} p_{j}^{t} c_{i}^{t} + n[regret \ term]$

Write as: $\sum_{t} p_{j}^{t}(q_{j}^{t} \cdot c^{t}) \leq \min_{i} \sum_{t} p_{j}^{t} c_{i}^{t} + [regret term]$

