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Topics in Machine Learning 
Theory 

The Adversarial Multi-armed Bandit 
Problem, Internal Regret, and 

Correlated Equilibria 
 

Avrim Blum 
10/8/14 

Plan for today 

Online game playing / combining expert advice but: 
 What if we only get feedback for the action we chose?  

(called the “multi-armed bandit” setting) 

 

 

 

 

 What about stronger forms of regret-minimization 
(internal regret)? 

 Connection to notion of “correlated equilibria” 

 But first, a quick discussion of [0,1] vs {0,1} costs for 
RWM algorithm 

Robots 
R Us 

32 min 

[0,1] costs vs {0,1} costs. 

We analyzed Randomized Wtd Majority for case that all 
costs in {0,1} (and slightly hand-waved extension to [0,1]) 

Here is an alternative simple way to extend to [0,1]. 

 Given cost vector c, view ci as bias of coin.  Flip to create 
vector c’ ∈ 0,1 𝑛, s.t. E[c’i] = ci.  Feed c’ to alg A. 

 

 

 For any sequence of vectors c’ ∈ 0,1 𝑛, we have: 

 EA[cost’(A)] · mini cost’(i) + [regret term] 

 So, E$[EA[cost’(A)]] · E$[mini cost’(i)] + [regret term] 

 LHS is EA[cost(A)]. (since E$ E𝐴 𝑐𝑜𝑠𝑡′ 𝐴 = 𝐸$ 𝑐′ ⋅ 𝑝 = 𝑐 ⋅ 𝑝 ) 

 RHS · mini E$[cost’(i)] + [r.t.] = mini[cost(i)] + [r.t.] 

In other words, costs between 0 and 1 just make the 
problem easier… 

c 
$ 

c’ 
world A 

Cost’ = cost on 
c’ vectors 

Experts ! Bandit setting 

 In the bandit setting, only get feedback for the action 
we choose.  Still want to compete with best action in 
hindsight. 

 [ACFS02] give algorithm with cumulative regret            
O( (TN log N)1/2 ).  [average regret O( ((N log N)/T)1/2 ).] 

 

 Will do a somewhat weaker version of their analysis 
(same algorithm but not as tight a bound). 

 

 Talk about it in the context of online pricing… 

Online pricing 
• Say you are selling lemonade (or a cool new software tool, or 

bottles of water at the world cup). 

• For t=1,2,…T 

– Seller sets price pt 

– Buyer arrives with valuation vt 

– If vt ¸ pt, buyer purchases and pays pt, else doesn’t. 

– Repeat. 

• Assume all valuations · h. 

$2 

• Goal: do nearly as well as best fixed 
price in hindsight. 

View each possible 
price as a different 

row/expert 

• If vt revealed, run RWM. E[gain] ¸ OPT(1-²) - O(²-1 h log n). 

Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

1. RWM believes gain is: pt ¢ ĝt  =  pi
t(gi

t/qi
t)  ´ gt

RWM 

3. Actual gain is: gi
t  = gt

RWM (qi
t/pi

t) ¸ gt
RWM(1-°) 

2. t gt
RWM ¸        (1-²) - O(²-1 nh/° log n) OPT  

4. E[      ] ¸ OPT.  OPT                           Because E[ĝj
t] = (1- qj

t)0 + qj
t(gj

t/qj
t) = gj

t , 
so E[maxj[t ĝj

t]] ¸ maxj [ E[t ĝj
t] ]  = OPT. 

· nh/° 

[Auer,Cesa-Bianchi,Freund,Schapire] 
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Multi-armed bandit problem 
Exponential Weights for Exploration and Exploitation (exp3) 

 
 

RWM 
 
 

n = 
#experts 

 

  

Exp3 

Distrib pt 

Expert i ~ qt 

Gain gi
t 

Gain vector ĝt 

qt 

qt = (1-°)pt + ° unif 

ĝt = (0,…,0, gi
t/qi

t,0,…,0) 

OPT 

OPT 

Conclusion (° = ²):   
  E[Exp3] ¸ OPT(1-²)2 - O(²-2 nh log(n))  

[Auer,Cesa-Bianchi,Freund,Schapire] 

· nh/° 

Balancing would give O((OPT nh log n)2/3) in bound because of ²-2.  
But can reduce to ²-1 and O((OPT nh log n)1/2) with better analysis.  

General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “what side of sidewalk to walk on?”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right person 
walking 

towards you 

you 

Nash Equilibrium 
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized). 
• Stable means that neither player has 

incentive to deviate on their own. 
• E.g., “what side of sidewalk to walk on”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right 

NE are: both left, both right, or both 50/50. 

Uses 
• Economists use games and equilibria as 

models of interaction. 
• E.g., pollution / prisoner’s dilemma: 

–  (imagine pollution controls cost $4 but improve 
everyone’s environment by $3) 

  (2,2)  (-1,3) 
 

(3,-1)  (0,0) 

 don’t pollute 
 

pollute 

don’t pollute   pollute 

Need to add extra incentives to get good overall behavior. 

Existence of NE 
• Nash (1950) proved: any general-sum game 

must have at least one such equilibrium. 
– Might require mixed strategies. 
– Proof is non-constructive. 
– Finding Nash equilibria in general appears to be 

hard (is PPAD-hard). 

What if all players minimize regret? 
 In zero-sum games, empirical frequencies quickly 

approach minimax optimality. 

 In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?   

 After all, a Nash Eq is exactly a set of 
distributions that are no-regret wrt each 
other.  So if the distributions stabilize, they 
must converge to a Nash equil. 

 Well, unfortunately, they might not stabilize.   
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A bad example for general-sum games 

• Augmented Shapley game from [Zinkevich04]: 
– First 3 rows/cols are Shapley game (rock / paper / 

scissors but if both do same action then both lose). 
– 4th action “play foosball” has slight negative if other 

player is still doing r/p/s but positive if other player 
does 4th action too. 

RWM will cycle among first 3 and have no regret, but do 
worse than only Nash Equilibrium of both playing 
foosball. 

 
• We didn’t really expect this to work given how 

hard NE can be to find… 

Another interesting bad example 

• [Balcan-Constantin-Mehta12]: 
– Failure to converge even in Rank-1 games (games 

where R+C has rank 1). 
– Interesting because one can find equilibria efficiently 

in such games. 

 
 

Internal/Swap Regret  
and 

 Correlated Equilibria   

What can we say? 
If algorithms minimize “internal” or “swap” regret, 
then empirical distribution of play approaches 
correlated equilibrium. 

– Foster & Vohra, Hart & Mas-Colell,… 

– Though doesn’t imply play is stabilizing. 

What are internal/swap regret 
and correlated equilibria? 

More general forms of regret 
1. “best expert” or “external” regret: 

– Given n strategies.  Compete with best of them in 
hindsight. 

2. “sleeping expert” or “regret with time-intervals”: 
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si. 

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i. 

Internal/swap-regret 
• E.g., each day we pick one stock to buy 

shares in. 
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”. 

• Formally, swap regret is wrt optimal 
function f:{1,…,n}!{1,…,n} such that every 
time you played action j, it plays f(j). 
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Correlated equilibrium 

• Distribution over entries in matrix, such that if a 
trusted party chooses one at random and tells 
you your part, you have no incentive to deviate. 

• E.g., Shapley game. 

 -1,-1  -1,1   1,-1 
 

  1,-1 -1,-1  -1,1 
 

 -1,1   1,-1   -1,-1 

R 
 

P 
 

S 

R       P       S 

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx 
correlated equilibrium.  

-1,-1 

-1,-1 

-1,-1 

Connection 
• If all parties run a low swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium. 

– Correlator chooses random time t 2 {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t). 

– Expected incentive to deviate:jPr(j)(Regret|j) 
= swap-regret of algorithm 

– So, this suggests correlated equilibria may be 
natural things to see in multi-agent systems 
where individuals are optimizing for themselves 

Correlated vs Coarse-correlated Eq 

“Correlated equilibrium” 
• You have no incentive to deviate, even after 

seeing what the advice is. 

“Coarse-Correlated equilibrium” 
• If only choice is to see and follow, or not to see 

at all, would prefer the former. 

In both cases: a distribution over entries in the 
matrix.  Think of a third party choosing from this 
distr and telling you your part as “advice”. 

Low external-regret ) apx coarse correlated equilib. 

Internal/swap-regret, contd 
Algorithms for achieving low regret of this 

form: 
– Foster & Vohra, Hart & Mas-Colell, Fudenberg 

& Levine. 

– Will present method of [BM05] showing how to 
convert any “best expert” algorithm into one 
achieving low swap regret. 

– Unfortunately, #steps to achieve low swap 
regret is O(n log n) rather than O(log n). 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Allows us to view pj as prob we play 
action j, or as prob we play alg Aj. 

p2c 

– Give Aj feedback of pjc. 

– Aj guarantees t (pj
tct)¢qj

t · mini t pj
tci

t + [regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 
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Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

– Get swap-regret at most n times orig external regret. 


