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ABSTRACT

Problems of clustering data from pairwise similarity infation
are ubiquitous in Computer Science. Theoretical treatsni-
cally view the similarity information as ground-truth arfteh de-
sign algorithms to (approximately) optimize various grdgaised
objective functions. However, in most applications, thisikrity
information is merely based on some heuristic; the grouuith tis
really the unknown correct clustering of the data pointstaedeal
goal is to achieve low error on the data. In this work, we dayel
theoretical approach to clustering from this perspectiaepartic-
ular, motivated by recent work in learning theory that askbét
natural properties of a similarity (or kernel) function agficient
to be able to learn well?” we ask “what natural properties of a
similarity function are sufficient to be able ttusterwell?”

To study this question we develop a theoretical framewosk th
can be viewed as an analog of the PAC learning model for cluste
ing, where the object of study, rather than being a concesscl
is a class of (concept, similarity function) pairs, or eglgntly, a
property the similarity function should satisfy with respect to the
ground truth clustering. We then analyze both algorithnnid an-
formation theoretic issues in our model. While quite strpngp-
erties are needed if the goal is to produce a single appragiyra
correct clustering, we find that a number of reasonable ptiese
are sufficient under two natural relaxations: (a) list auisig: anal-
ogous to the notion of list-decoding, the algorithm can pozda
small list of clusterings (which a user can select from) andh{-
erarchical clustering: the algorithm’s goal is to produdeesarchy
such that desired clustering is some pruning of this tredctwh
user could navigate). We develop a notion of thestering com-
plexity of a given property (analogous to notions apacity in
learning theory), that characterizes its informationetie¢ic use-
fulness for clustering. We analyze this quantity for seveadural
game-theoretic and learning-theoretic properties, abageadlesign
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new efficient algorithms that are able to take advantage erhth
Our algorithms for hierarchical clustering combine redeatning-

theoretic approaches with linkage-style methods. We disovs
how our algorithms can be extended to the inductive casebie
using just a constant-sized sample, as in property testing anal-

ysis here uses regularity-type results of [20] and [3].

Categories and Subject Descriptors: F.2.0 [Analysis of Algo-
rithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Keywords: Clustering, Similarity Functions, Learning.

1. INTRODUCTION

Clustering is an important problem in the analysis and explo
ration of data. It has a wide range of applications in dataimgin
computer vision and graphics, and gene analysis. It has raiy
ants and formulations and it has been extensively studieakbimy
different communities.

In the Algorithms literature, clustering is typically stad by
posing some objective function, such Rsnedian, min-sum or
k-means, and then developing algorithms for approximately o
timizing this objective given a data set represented as ghtesil
graph [12, 24, 22]. That is, the graph is viewed as “grounthtru
and then the goal is to design algorithms to optimize varahjsc-
tives over this graph. However, for most clustering protdesach
as clustering documents by topic or clustering web-seagshlts
by category, ground truth is really the unknown true topidrae
category of each object. The construction of the weighteglyiis
just done using some heuristic: e.g., cosine-similarityclaster-
ing documents or a Smith-Waterman score in computatiordl bi
ogy. In all these settings, the goal is really to produce atehling
that gets the data correct. Alternatively, methods dewsldmwth in
the algorithms and in the machine learning literature farrég
mixtures of distributions [1, 5, 23, 36, 17, 15] explicitlave a no-
tion of ground-truth clusters which they aim to recover. ldoer,
such methods are based on very strong assumptions: theyerequ
an embedding of the objects inf¢* such that the clusters can be
viewed as distributions with very specific properties (e@aus-
sian or log-concave). In many real-world situations (ectuster-
ing web-search results by topic, where different users trtighe
different notions of what a “topic” is) we can only expect arthn
expert to provide a notion of similarity between objects fkae-
lated in some reasonable ways to the desired clustering godl
not necessarily an embedding with such strong properties.

In this work, we develop a theoretical study of the clusigrin
problem from this perspective. In particular, motivatedvigrk
on learning with kernel functions that asks “what naturalarties



of a given kernel (or similarity) functioC are sufficient to allow
one tolearn well?” [6, 7, 31, 29, 21] we ask the question “what
natural properties of a pairwise similarity function ardfisient to
allow one toclusterwell?” To study this question we develop a
theoretical framework which can be thought of as a discrative
(PAC style) model for clustering, though the basic objecstafly,
rather than a concept class, ip@pertyof the similarity function
K in relation to the target concept, or equivalently a set oh¢ept,
similarity function) pairs.

The main difficulty that appears when phrasing the problem in

this general way is that if one defines success as outputtinggle

clusteringthat closely approximates the correct clustering, then one

needs to assume very strong conditions on the similaritgtian.
For example, if the function provided by our expert is extegm
good, sayK(z,y) > 1/2 for all pairsz andy that should be in
the same cluster, ankl(z,y) < 1/2 for all pairsz andy that
should be in different clusters, then we could just use ietmver
the clusters in a trivial way. However, if we just slightly weaken
this condition to simply require that all poinisare more similar
to all pointsy from their own cluster than to any poingfrom any
other clusters, then this is no longer sufficient to uniqueéntify
even a good approximation to the correct answer. For ingtanc
the example in Figure 1, there are multiple clusterings isteist
with this property. Even if one is told the correct clustgrimas
3 clusters, there is no way for an algorithm to tell which of the
two (very different) possible solutions is correct. In faetsults of
Kleinberg [25] can be viewed as effectively ruling out a litatass
of scale-invariant properties such as this one as beingmuftifor
producing the correct answer.

In our work we overcome this problem by considering two re-

laxations of the clustering objective that are natural fangnclus-
tering applications. The first is as in list-decoding to allihe al-
gorithm to produce a smdikt of clusterings such that at least one
of them has low error. The second is instead to allow the etirsy
algorithm to produce &ree (a hierarchical clustering) such that the
correct answer is approximately some pruning of this tree.if~
stance, the example in Figure 1 has a natural hierarchicahago-
sition of this form. Both relaxed objectives make sense éttirsys

in which we imagine the output being fed to a user who will then

decide what she likes best. For example, with the tree riataxa
we allow the clustering algorithm to effectively say: “I weissure

how specific you wanted to be, so if any of these clusters are to

broad, just click and I will split it for you.” We then show tha
with these relaxations, a number of interesting, naturatniemg-
theoretic and game-theoretic properties can be definedetiwt
are sufficient to allow an algorithm to cluster well.

At the high level, our framework has two goals. The first is to
provide advice about what type afgorithmsto use given certain
beliefs about the relation of the similarity function to ttlastering
task. Thatis, if a domain expert handed us a similarity fiomcthat
they believed satisfied a certain natural property withees the
true clustering, what algorithm would be most appropriatage?
The second goal is providing advice to tthesignerof a similarity
function for a given clustering task (such as clustering \wabes
by topic). That is, if a domain expert is trying up to come uphwi
a similarity measure, what properties should they aim for?

Correlation Clustering can be viewed as a relaxation tthawvalsomepairs

to fail to satisfy this condition, and the algorithms of [1(8, 33, 2] show
this is sufficient to cluster well if the number of pairs thatl fis small.
Planted partitionmodels [4, 28, 16] allow for many failures so long as they
occur atrandom We will be interested in much more drastic relaxations,
however.

Figure 1: Dataliesin four regions A, B, C, D (eg., think of as docu-
ments on baseball, football, TCS, and Al). Supposethat K(z,y) = 1 if
z and y belong to the sameregion, K(z,y) = 1/2ifx € Aandy € B
orifz € Candy € D, and K(z,y) = 0 otherwise. Even assuming
that all pointsare moresimilar to other pointsin their own cluster than
toany point in any other cluster, there are still multiple consistent clus-
terings, including two consistent 3-clusterings (A U B, C, D) or (A,
B, C'U D)). However, thereisasingle hierarchical decomposition such
that any consistent clustering isa pruning of thistree.

1.1 Pergspective

The standard approach in theoretical computer scienceuss cl
tering is to choose some objective function (e/gmedian) and
then to develop algorithms that approximately optimize tigec-
tive [12, 24, 22, 18]. If the true goal is to achieve low errdthw
respect to an underlying correct clustering (e.g., a usiSred
clustering of search results by topic), however, then omeviaw
this as implicitly making the strong assumption that notyafdes
the correct clustering have a good objective value, butthiaball
clusterings that approximately optimize the objective ninesclose
to the correct clustering as well. In this work, we insteapliexly
consider the goal of producing a clustering of low error ameht
ask what natural properties of the similarity function itaten to
the target clustering are sufficient to allow an algorithndaowvell.

In this respect we are closer to work done in the area of ainste
or learning with mixture models [1, 5, 23, 36, 17]. That wdike
ours, has an explicit notion of a correct ground-truth @risgy of
the data points and to some extent can be viewed as addréissing
question of what properties of @mbedding of data int&™ would
be sufficient for an algorithm to cluster well. However, Ugliour
focus, the types of assumptions made are distributionalratitht
sense are much more stringent than the types of propertieglive
be considering. This is similarly the case with work on péaht
partitions in graphs [4, 28, 16]. Abstractly speaking, timsw of
clustering parallels thgenerativeclassification setting [19], while
the framework we propose parallels thiscriminativeclassifica-
tion setting (i.e. the PAC model of Valiant [34] and the Statial
Learning Theory framework of Vapnik [35]).

In the PAC model for learning [34], the basic object of stusly i
the concept classand one asks what natural classes are efficiently
learnable and by what algorithms. In our setting, the bakjea
of study isproperty, which can be viewed as a set of (concept,
similarity function) pairs, i.e., the pairs for which thedat concept
and similarity function satisfy the desired relation. Asttwthe
PAC model for learning, we then ask what natural properties a
sufficient to efficiently cluster well (in either the tree @mtimodels)
and by what algorithms.

1.2 Our Results

We provide a PAC-style framework for analyzing what proper-
ties of a similarity function are sufficient to allow one taster



well under the above two relaxations (list and tree) of thestr-
ing objective. We analyze both algorithmic and informatibao-
retic questions in our model and provide results for sevearal
game-theoretic and learning-theoretic properties. Sipatly:

e We consider a family of stability-based properties, shgwin
that a natural generalization of the “stable marriage” prop
erty is sufficient to produce a hierarchical clustering. €Th
property is that no two subsets c C, A’ c C’ of clusters
C # C'in the correct clustering are both more similar on

average to each other than to the rest of their own clusters.)

Moreover, a significantly weaker notion of stability is also
sufficient to produce a hierarchical clustering, but reemia
more involved algorithm.

e \We show that a weaker “average-attraction” property (which
is provably not enough to produce a single correct hierarchi
cal clustering) is sufficient to produce a small list of carst
ings, and give generalizations to even weaker conditiogis th
generalize the notion of large-margin kernel functions.

e We define theclustering complexitpf a given property (the
minimum possible list length that can be guaranteed by any
algorithm) and provide both upper and lower bounds for the
properties we consider. This notion is analogous to notions
of capacity in classification [11, 19, 35] and it provides & fo
mal measure of the inherent usefulness of a given property.

e \We also show that properties implicitly assumed by approx-
imation algorithms for standard graph-based objectivefun

from distances in the original metric. This would be a ndtsirai-
larity function to use, for instance, if data lies in two wséparated
pancakes.

In the inductive setting, where we imagine our given datalg o
a small random sample of the entire data set, our framewatkse
in spirit to recent work done on sample-based clusterirg,(¢9])
in the context of clustering algorithms designed to opterazcer-
tain objective. Based on such a sample, these algorithnes tioav
output a clustering of the full domain set, that is evaluateth
respect to the underlying distribution.

2. DEFINITIONSAND PRELIMINARIES

We consider a clustering problefi$, ¢) specified as follows.
Assume we have a data sg&tof n objects, where each object is
an element of an abstract instance spate Eachxz € S has
some (unknown) “ground-truth” labél(z) in Y = {1,...,k},
where we will think of & as much smaller than. The goal is
to produce a hypothesis : X — Y of low error up to isomor-
phism of label names. Formally, we define the errohaio be
err(h) = minges, [Praes [o(h(z)) # £(x)]]. We will assume
that a target error rate, as well ask, are given as input to the
algorithm.

We will be considering clustering algorithms whose onlyessc
to their data is via a pairwise similarity functid@(z, =) that given
two examples outputs a number in the range, 1).> We will say
that  is a symmetric similarity function ifC(x, =) = K(z',x)
forall z, z’.

Our focus is to analyze natural properties that sufficientafo
similarity function K to be good for a clustering problentsS, ¢)

tions can be viewed as special cases of some of the properties,hich (ideally) are intuitive, broad, and imply that suchimitar-

considered above.

e We show how our methods can be extended tdribective
case, i.e., by using just@nstant-sized samplas in prop-
erty testing. While most of our algorithms extend in a nat-
ural way, for certain properties their analysis requiresano
involved arguments using regularity-type results of [20, 3

More generally, our framework provides a formal way to amaly
what properties of a similarity function would be sufficiéatpro-
duce low-error clusterings, as well as what algorithms aited for

a given property. For some of our properties we are able tesho
that known algorithms succeed (e.g. variations of bottqnirier-
archical linkage based algorithms), but for the most gérmras
we need new algorithms that are able to take advantage of them

1.3 Connectionsto other Related Work

Some of the questions we address can be viewed as a general-

ization of questions studied in machine learning of whapprtes
of similarity functions (especially kernel functions) asefficient
to allow one toearnwell [6, 7, 21, 31, 29]. E.g., the usual state-
ment is that if a kernel function satisfies the property thettarget
function is separable by a large margin in the implicit késpace,
then learning can be done from few labeled examples. Theeclus
ing problem is more difficult because there is no labeled, date
even in the relaxations we consider, the forms of feedbdolvat
are much weaker.

We note that as in learning, given an embedding of data into
some metric space, the similarity functiéi{z, ') neednot be a
direct translation of distance Iike*d(z’z’), but rather may be a
derived function based on the entire dataset. For examplihei
diffusion kernebf [27], the similarity/C(x, 2') is related to the ef-
fective resistance betweenandz’ in a weighted graph defined

ity function results in the ability t@luster well As mentioned in
the introduction, however, requiring an algorithm to ottpsingle
low-error clustering rules out even quite strong propertiastead
we will consider two objectives that are natural if one asssitie
ability to get some limited additional feedback from a uSpecif-
ically, we consider the following two models:

1. List model: In this model, the goal of the algorithm is to
propose a small number of clusterings such that at least one
has error at most. As in work on property testing, the list
length should depend onand k only, and be independent
of n. This list would then go to a domain expert or some
hypothesis-testing portion of the system which would then
pick out the best clustering.

. Tree modd: In this model, the goal of the algorithm is to
produce a hierarchical clustering: that is, a tree on ssbset
such that the root is the s&t and the children of any node
S’ in the tree form a partition a§’. The requirement is that
there must exist pruning i of the tree (not necessarily using
nodes all at the same level) that has error at mobt many
applications (e.g. document clustering) this is a signifilga
more user-friendly output than the list model. Note that any
given tree has at mogf* prunings of sizek [26], so this
model is at least as strict as the list model.

Transductivevsinductive. Clustering is typically posed as a “trans-
ductive” [35] problem in that we are asked to clustajiwenset of
points .S. We can also consider anductive model in whichS

2That is, the input to the clustering algorithm is just a weésghgraph.
However, we still want to conceptually vielt as afunctionover abstract
objects.



is merely a small random subset of points from a much largerab 3. SIMPLE PROPERTIES

stract instance spac¥, and our goal is to produce a hypothesis
h : X — Y of low error onX. For a given property of our simi-
larity function (with respect to{) we can then ask how large a set
S we need to see in order for our list or tree produced with retspe
to S to induce a good solution with respect 3. For clarity of
exposition, for most of this paper we will focus on the tramsore
setting. In Section 6 we show how our algorithms can be adapte
to the inductive setting.

Notation. We will denote the underlying ground-truth clusters as
Ci,...,Ck (some of which may be empty). Farec X, we use
C(x) to denote the clustef’,,) to which pointz belongs. For
AC X,B C X, let K:(A,B) = EweA,w/EB[IC(m,:c')]. We
call this theaverage attractiorof A to B. Let Kaz(A, B) =
maxX.eca,.rep K(x,z"); we call thismaximum attractiorof A to
B. Given two clusteringg andh we define the distancé(g, h) =
minses,, [Przes [o(h(x)) # g(x)]], i.e., the fraction of points in
the symmetric difference under the optimal renumberinghef t
clusters.

We are interested in naturatopertiesthat we might ask a simi-
larity function to satisfy with respect to the ground truthstering.
For example, one (strong) property would be that all paintge
more similar to all points’ € C(z) than to anyz’ ¢ C(z) —we
call this thestrict separationproperty. A weaker property would
be to just require that pointsareon averagemore similar to their
own cluster than to any other cluster, thatigx, C(z) — {z}) >
K(z,C) for all C; # C(z). We will also consider intermediate
“stability” conditions. For properties such as these wd ba in-
terested in the size of the smallest list any algorithm cdwlge to
output that would guarantee that at least one clusterinparist
has error at most. Specifically, we define thelustering complex-
ity of a property as:

DEFINITION 1. Given a propertyP and similarity functionC,
define thde, k)-clustering complexity of the pair(P, K) to be the
length of the shortest list of clusterings, . . ., h: such that any
consistentk-clustering ise-close to some clustering in the Ift.
That is, at least onéi; must have error at most. The (e, k)-
clustering complexity of P is the maximum of this quantity over
all similarity functionskC.

The clustering complexity notion is analogous to notionsaf
pacity in classification [11, 19, 35] and it provides a formmedasure
of the inherent usefulness of a given property.

In the following sections we analyze the clustering complex
ity of several natural properties and provide efficient &thans
to take advantage of such functions. We start by analyzieg th
strict separation property as well as a natural relaxatioSeéc-
tion 3. We also give formal relationships between these qrop
ties and those considered implicitly by approximation &lhmns
for standard clustering objectives. We then analyze a muezker
average-attraction property in Section 4 that has closeaxiions
to large margin properties studied in Learning Theory [627,
31, 29]. This property is not sufficient to produce a hieraah
clustering, however, so we then turn to the question of hoakwe
a property can be and still be sufficient for hierarchicaktdung,
which leads us to analyze properties motivated by gamerd¢tieo
notions of stability in Section 5.

Our framework allows one to study computational hardness re
sults as well. While our focus is on getting positive aldamiic
results, we discuss a simple few hardness examples in theeful
sion of the paper [8].

A clusteringC is consistent ifiC has propertyP with respect ta.

We begin with the simple strict separation property mergtbn
above.

PROPERTY 1. The similarity functioriC satisfies thetrict sep-
aration property for the clustering probleniS, ¢) if all = are
strictly more similar to any point’ € C(x) than to everyr’ ¢
C(x).

Given a similarity function satisfying the strict sepaoatiprop-
erty, we can efficiently construct a tree such that the gretunth
clustering is a pruning of this tree (Theorem 2). As mentibne
above, a consequence of this fact 84" upper bound on the
clustering complexity of this property. We begin by showiag
matching2®*) lower bound.

THEOREM 1. For e < % the strict separation property has

(e, k)-clustering complexity at leagt/?.

PrROOF The similarity function is a generalization of the pic-
ture in Figure 1. Specifically, partition the points intok subsets
{R1,..., Ry} of n/k points each. Group the subsets into pairs
{(R1, R2), (R3, R4),...}, and letK(z,z’) = 1 if z andz’ be-
long to the samer;, K(z,z') = 1/2 if z andz’ belong to two
subsets in the same pair, akidz, z') = 0 otherwise. Notice that

in this setting there args clusterings (corresponding to whether or
not to split each paiR; U R;+1) that are consistent with Property 1
and differ from each other on at leastk points. Since: < %
any given hypothesis clustering can telose to at most one of

these and so the clustering complexity is at |€4é¢. [

We now present the upper bound.

THEOREM 2. LetK be a similarity function satisfying the strict
separation property. Then we can efficiently construct a sech
that the ground-truth clustering is a pruning of this tree.

PROOF If K is symmetric, then to produce a tree we can simply
use bottom up “single linkage” (i.e., Kruskal’s algorithmYhat
is, we begin withn clusters of size 1 and at each step we merge
the two cluster?, C" maximizing K.,q. (C, C’). This maintains
the invariant that at each step the current clustering ignanwith
respect to the ground-truth: if the algorithm merges twateisC'
andC’, andC is strictly contained in some clustét. of the ground
truth, then by the strict separation property we must hatec
C. as well. If K is not symmetric, then single linkage may fail.
However, in this case, the following “Boruvka-inspiredgatithm
can be used. Starting withclusters of size 1, draw a directed edge
from each clustet” to the clusterC’ maximizing Kaz (C, C').
Then pick some cycle produced (there must be at least one)cycl
and collapse itinto a single cluster, and repeat. Note thatluster
C' in the cycle is strictly contained in some ground-truth tdus
C., then by the strict separation property its out-neighbostnie
as well, and so on around the cycle. So this collapsing masta
laminarity as desired. [

One can also consider the property tRasatisfies strict separation
for mostof the data.

PROPERTY 2. The similarity functionC satisfiesv-strict sep-
aration for the clustering probleniS, ¢) if for someS’ C S of size
(1 — v)n, K satisfies strict separation fdqiS’, ¢).

4Consider 3 pointse, y, z whose correct clustering iz}, {y, z}). If
K(z,y) = 1, K(y,2) = K(z,y) = 1/2, andK(y,z) = K(z,2) =
0, then this is consistent with strict separation and yet tgerahm will
incorrectly merger andy in its first step.



THEOREM 3. If K satisfiesv-strict separation, then so long than to those in its own, it is hard to expect an algorithm beelat

as the smallest correct cluster has size greater than, we can correctly. The following is a simple clustering algorithhat given
produce a tree such that the ground-truth clustering-slose to a a similarity function/C satisfying the average attraction property
pruning of this tree. produces a list of clusterings of size that depends only, @ and

~. Specifically,

PROOF See appendix. (I

Approximation Assumptions: When developing a-approximation ~ Algorithm 1 Sampling Based Algorithm, List Model

algorithm for some clustering objective functidn if the goal is to Input: Data sefS, similarity function/C, parameters, e > 0, k €

actually get the points correct, then one is implicitly nrakthe as- Z7 N(e, v, k), s(e, v, k).

sumption (or hope) that anyapproximation taF’ must bee-close

in symmetric difference to the target clustering. We shove hvee o Setl ={.

show how assumptions of this kind can be viewed as speciascas .

of thev-strict separation property. o RepeaiN (e, v, k) times

Fork’ =1,...,kdo:

PROPERTY 3. Given objective functio®’, we say that a metric - Picka seth/ of s(e, 7, k) random points frons.

d over point setS satisfies thgc, €)-F property with respect to

targetC if all clusteringsC’ that are within a factor: of optimal in - Let h be the average-nearest neighbor hypothesis in-
terms of objective” are e-close toC. duced by the setBj, 1 < @ < k’. Thatis, for any point
z € S, defineh(z) = argmax;c(; 4 [K(z, Rs)].
We now consider in particular tfemedian and:-center objective Addhto L.
functions.

e Output the listC.
THEOREM 4. If metric d satisfies theq, ¢)-k-median property

for datasetS, then the similarity function-d satisfies thes-strict
separation property for = 3e.

. . ) THEOREM 6. LetK be a similarity function satisfying tHe, v)-
PROOF. Suppose the data does not satisfy strict separation. Thenayerage attraction property for the clustering probléist ¢). Us-

there must exist points;, b1, ¢c1 with a1 andb; in one cluster and ing Algorithm 1 with the parameters(e, v, k) = = In (%) and
c1 in another such that(ai, b1) > d(a1, c1). Remove these three v ‘

Ak 8k
points and repeat withs, b2, c2. Suppose for contradiction, this  N(e, v, k) = (%) e (65) ln(%) we can produce a list of at
process continues pasty, ben, cen. Then, moving alk, into the
clusters of the corresponding will increase thet-median objec-

mostko(v% tn () () clusterings such that with probability

tive by at mosty_, [d(a:, c;) + cost (c;)], where cosr) is the con- 1 — ¢ at least one of them ig’ + ¢)-close to the ground-truth.

tribution of z to the k-median objective function. By definition PROOF We say that a ground-truth cluster is big if it has prob-

of thea; and by triangle inequality, this is at most, [cost(a;) + ability mass at leasy;; otherwise, we say that the cluster is small.

cost (b;) +cost(c;)], which inturnis at mos} ¢ cost(z). Thus, Let ¥’ be the number of “big” ground-truth clusters. Clearly the

thek-median objective at most doubles, contradicting ourahés- probability mass in all the small clusters is at meAl.

sumption. [ Let us arbitrarily number the big cluste€s, ..., Cy,. Notice
that in each round there is at Ieas(gg)s(s’%k) probability that

THEOREM 5. If metric d satisfies thed, ¢)-k-center property, ; C\ks(eor b . ;
then the similarity function-d satisfies the-strict separation prop- ~ Rs' € Ci, and so at least fs7,) probability thatRs* C

- ap 1 (s
ery fory = 3e. C; foralli < k'. Thus the number of roundt)>* ' () In(%)

is large enough so that with probability at ledst 6/2, in at least
one of theN (¢, v, k) rounds we hav&s® C C; foralli < k. Let
us fix now one such good round. We argue next that the clugterin
induced by the sets picked in this round has error at mast with
probability at least — 4.

Let Good be the set of: in the big clusters satisfying

(proof omitted). In fact, th€2, €)-k-median property is quite a
bit more restrictive tham-strict separation. It implies, for instance,
that except for ai®(¢) fraction of “bad” points, there existssuch
that all points in the same cluster have distance much lessdh
and all points in different clusters have distance muchtgrehan
d. In contrasty-strict separation would allow for different distance

scales at different parts of the graph. K(z,C(z)) > K(z,Cj)+~ forallj € Y,j # £(z).

By assumption and from the previous observatidps,.s[x €
4. WEAKER PROPERTIES S S Good] > 1 — v — ¢/2. Now, fixz € Good. SinceK(z,z’) €
A much weaker property to ask of a similarity function is just  [—1, 1), by Hoeffding bounds we have that over the random draw

that most points are noticeably more simitar averageto points of Rs’, conditioned onRs? C Cj,

in their own cluster than to points in any other cluster. $jdly, ia

we define: Pr (‘Ew,szj[;C(%m/)] — K(z,Cy)| > 7/2) < 9¢2Bs 1N /4
Rgi

PROPERTY 4. A similarity functionC satisfies thév, v)-average
attraction property for the clustering problei®, ¢) ifa 1 —v frac-
tion of examples: satisfy:

forallj € {1,...,k’}. By our choice ofRs’, each of these prob-
abilities is at mostd/4k. So, for any givenr € Good, there is
at most aed /4 probability of error over the draw of the selss”’.

K(z,C(z)) > K(z,C;) +~ for alli € Y,i # {(x). Since this is true for ang € Good, it implies that theexpected
error of this procedure, over € Good, is at mostd /4, which by
This is a fairly natural property to ask of a similarity fuimet: if Markov’s inequality implies that there is at most A2 probabil-

a pointz is more similar on average to points in a different cluster ity that the error rate oveBood is more thare/2. Adding in the



v + ¢/2 probability mass of points not iGood yields the theo-
rem. [

Note that Theorem 6 immediately implies a correspondingeupp
bound on thée, k)-clustering complexity of thée /2, v)-average at-
traction property. We can also give a lower bound showing tha
the exponential dependence ois necessary, and furthermore this
property is not sufficient to cluster in the tree model:

THEOREM 7. For e < /2, the (e, k)-clustering complexity of
the (0, v)-average attraction property is at Iea;sltgzz K> /K'!, and
moreover this property is not sufficient to cluster in thetreodel.

PrROOF Omitted. See the full version of the paper [8]]

Note: In fact, the clustering complexity bound immediately ineli

one cannot cluster in the tree model since o 2 the bound is
greater than 1.

One can even weaken the above property to ask only that there

existsan (unknown) weighting function over data points (thought
of as a “reasonableness score”), such that most points as&-on
erage more similar to theeasonablepoints of their own cluster
than to thereasonablepoints of any other cluster. This is a gener-
alization of the notion ofC being a kernel function with the large
margin property [6, 32, 35, 30]. For details see the full i@rof
the paper [8].

5. STABILITY-BASED PROPERTIES

The properties in Section 4 are fairly general and allow tros
tion of a list whose length depends only oncandk (for constant
), but are not sufficient to produce a single tree. In thisisact
we show that several natural stability-based propertiaslif be-
tween those considered in Sections 3 and 4 are in fact sufficie
hierarchical clustering.

For simplicity, we focus on symmetric similarity functiong/e
consider the following relaxations of Property 1 which ds&ttthe
ground truth be “stable” in the stable-marriage sense:

PROPERTY 5. A similarity function/C satisfies thestrong sta-
bility property for the clustering problertsS, ¢) if for all clusters
Cr, Cy, v # 7' in the ground-truth, for allA c C,, A’ C C,. we
have

K(A,Cr\ A) > K(A, A).

PROPERTY 6. A similarity function/C satisfies theveak sta-
bility property for the clustering problerts, ¢) if for all C,, C,,
r#r' forall Ac C., A’ C C,., we have:

o If A” C C, then eitherK(A,C, \ A) > K(A,A") or
K(A,C \ A) > KC(A', A).

o If A/ = C, thenk(A,C, \ A) > K(A, A').

We can interpret weak stability as saying that for any twe<lu
ters in the ground truth, there does not exist a sudset one and
subsetA’ of the other that are more attracted to each other than to
the remainder of their true clusters (with technical caod# at the
boundary cases) much as in the classic notion of stablelagarr
Strong stability asks thatoth be more attracted to their true clus-
ters. To further motivate these properties, note that if ake tthe
example from Figure 1 and set a small random fraction of tigesd
inside each dark-shaded region to 0, then with high proitatiilis

would still satisfy strong stability with respect to all tmatural
clusters even though it no longer satisfies strict separdtioeven
v-strict separation for any < 1 if we included at least one edge
incident to each vertex). Nonetheless, we can show that thtes
bility notions are sufficient to produce a hierarchical tdusg. We
prove this for strong stability here; the proof for weak #itgbap-
pear in the full version of the paper [8].

Algorithm 2 Average Linkage, Tree Model

Input: Data sefS, similarity function/C. Output: A tree on
subsets.

e Begin withn singleton clusters.

e Repeat till only one cluster remains: Find clustérsC’ in
the current list which maximizél (C, C’) and merge them
into a single cluster.

e Output the tree with single elements as leaves and internal
nodes corresponding to all the merges performed.

THEOREM 8. LetK be a symmetric similarity function satisfy-
ing Property 5. Then we can efficiently construct a binarg gach
that the ground-truth clustering is a pruning of this tree.

Proof Sketch: We will show that Algorithm 2 (Average Link-
age) will produce the desired result. Note that the algoritises
K(C, C") rather thank,,.. (C, C") as in single linkage.

We prove correctness by induction. In particular, assura¢ th
our current clustering is laminar with respect to the grotnuth
clustering (which is true at the start). That is, for eactstduC
in our current clustering and each. in the ground truth, we have
eitherC C C,,orC. C CorCnNC,. = 0. Now, consider a
merge of two cluster€’ and C’. The only way that laminarity
could fail to be satisfied after the merge is if one of the twasel
ters, say(’, is strictly contained inside some ground-truth cluster
C, (so0,C, — C" # () and yetC is disjoint fromC,.. Now, note
that by Property 5K(C’,Cr — C') > K(C’,z) forallz & C»,
and so in particular we havé(C’,C, — C") > K(C',C). Fur-
thermore C(C', C — C") is a weighted average of tH&(C’, C"")
over the set€”’ C C,.— C" in our current clustering and so at least
one suchC” must satisfykC(C’, C"') > K(C', C)). However, this
contradicts the specification of the algorithm, since byrdedin it
merges the pai€, C’ such thatC(C’, C) is greatest. [J

While natural, Properties 5 and 6 are still somewhat britite
the example of Figure 1, for instance, if one adds a small murob
edges with similarity betweerthe natural clusters, then the prop-
erties are no longer satisfied for them (because pairs ofeglsm
connected by these edges will want to defect). We can make the
properties more robust by requiring that stability holdydiok large
sets. This will break the average-linkage algorithm usexvejbut
we can show that a more involved algorithm building on the ap-
proach used in Section 4 will nonetheless find an approxisnate
correct tree. For simplicity, we focus on broadening therwrsta-
bility property, as follows (one should viewas small compared to
€¢/k in this definition):

PROPERTY 7. The similarity functioriC satisfies thés, ~v)-strong
stability of large subsetsproperty for the clustering probleiit, ¢)
if for all clusters C,, C,,, r # r’ in the ground-truth, for all
AcC,, A" CC.with|A| +|A’| > snwe have

K(A,Cp\ A) > K(A, A') + 7.



The idea of how we can use this property is we will first run yoal
rithm for the list model much like Algorithm 1, viewing its taut
as simply a long list of candidate clusters (rather thantefings).

In particular, we will get a listC of ko(v% tos 102 4 ) clusters
such that with probability at least— § any cluster in the ground-
truth of size at least; is close to one of the clusters in the list.
We then run a second “tester” algorithm that is able to thramaya
candidates that are sufficiently non-laminar with respethé¢ cor-
rect clustering and assembles the ones that remain int@ a\tve
present and analyze the tester algorithm, Algorithm 3,veelo

Algorithm 3 Testing Based Algorithm, Tree Model.

Input: Data setS, similarity function/C, parametersy > 0,
ke Z", f,g,5 a> 0. Alistof clustersC with the property
that any clustelC' in the ground-truth is at leagt-close to
one of them.

Output: A tree on subsets.

1. Throw out all clusters of size at mast. For every pair of
clustersC, C’ in our list £ of clusters that are sufficiently
“non-laminar” with respect to each other in thét\ C’| >
gn, |C'\ C| > gnand|CNC'| > gn, computek(C N
C’',C\ C")yandK(C nC’,C"\ C). Throw out whichever
one does worse: i.e., throw oat if the first similarity is
smaller, else throw ouf”. Let £’ be the remaining list of
clusters at the end of the process.

2. Greedily sparsify the list’ so that no two clusters are ap-
proximately equal (that is, choose a cluster, throw out all
that are approximately equal to it, and repeat). We say two
clustersC, C' are approximately equal iiC' \ C’| < gn,
|C"\ C| < gnand|C’'NC| > gn. Let L be the list re-
maining.

3. Construct a forest on the remaining 1i8f. C' becomes a
child of C” in this forest ifC’ approximately contain€, i.e.
|C\C'| <gn,|C'\C|>gnand|C'NC| > gn.

4. Complete the forest arbitrarily into a tree.

THEOREM 9. Let K be a similarity function satisfyings, v)-
strong stability of large subsets for the clustering problés, ¢).
Let £ be a list of clusters such that any cluster in the groundkrut
of size at leastvn is f-close to one of the clusters in the list. Then
Algorithm 3 with parameters satisfying+ f < g, f < g7/10
anda > 6kg yields a tree such that the ground-truth clustering is
2ak-close to a pruning of this tree.

Proof Sketch: Let &’ be the number of “big” ground-truth clus-
ters: the clusters of size at least; without loss of generality as-
sume that’, ..., Cy are the big clusters.

Let C1, ...C}, be clusters inC such thadd(C;, C}) is at mostf
for all i. By Property 7 and Lemma 10 (stated below), we know that
after Stepl (the “testing of clusters" step) all the clustérs, ....C,./
survive; furthermore, we have three types of relations betwthe
remaining clusters. Specifically, either:

(@) C andC’ are approximately equal; that megds\ C’|
gn, |C'\ C| < gnand|C'NC| > gn.

IN

(b) C andC’ are approximately disjoint; that meajs \ C’|
gn, |C'\ C| > gnand|C'NC| < gn.

Y

(c) orC’ approximately contain§’; that meansC' \ C’| < gn,
|C"\ C| > gnand|C’'NC| > gn.

Let £” be the remaining list of clusters after sparsification. It's
easy to show that there exi€ty, ..., C}, in £ such that/(C;, C;')
is at most( f + 2g), for all i. Moreover, all the elements i are
either in the relation “subset" or “disjoint". Also, sinckkthe clus-
tersCi, ...,Cy have size at leasin, we also have that’)’, C} are
in the relation “disjoint”, for alk, j, < # j. Thatis, in the forest we
constructC?’ are not descendants of one another.

We showC7, ..., Cy, are part of a pruning of small error rate
of the final tree. We do so by exhibiting a small extension to a
list of clustersZ’” that are all approximately disjoint and nothing
else inL” is approximately disjoint from any of the clustersgf’
(thus £ will be the desired pruning). Specifically greedily pick a
clusterC; in £ that is approximately disjoint fron®?, ..., Cy,
and in general in step > 1 greedily pick a clusteC; in £”
that is approximately disjoint fror@y , ..., C},, C1, ..., Ci_1. Let
CY,....Cyr, Ch, ..., Cy, be the list2”. By design,£” will be a
pruning of the final tree and we now claim its total error is aism
2akn. In particular, note that the total number of points missing
from CY, ..., Cy, is at mostk(f + 2g)n + kan < 3kan. Also,
by construction, eack’; must contain at leasin — (k + i)gn
new points, which together with the above implies thak 2k.
Thus, the total error of”’ overall is at mosl%ock:n + 2kk’gn <
20kn. O

LEMMA 10. LetK be a similarity function satisfying the, ~)-
strong stability of large subsets property for the clusigrproblem
(S,£). LetC, C’ be such thatC N C'| > gn, |C \ C'| > gnand
|G\ C| > gn. LetC* be a cluster in the underlying ground-truth
suchthafC* \ C| < frnand|C\ C*| < fn. LetI =CNC". If
s+ f<gandf <gvy/10,thenk(I,C\I) > K(I,C"\ I).

PrROOF Omitted. See the full version of the paper [8]]

THEOREM 11. Letk be a similarity function satisfying the, +)-
strong stability of large subsets property for the clusigrproblem
(S, ). Assume that = O(e*y/k?). Then using Algorithm 3 with
parametersae = O(e/k), g = O(2/k?), f = O(*v/k?), to-
gether with Algorithm 1 we can with probability — § produce a
tree with the property that the ground-truthdsclose to a pruning
of this tree. Moreover, the size of this treel$k /¢).

Proof Sketch: First, we run Algorithm 1 get a list of clusters
such that with probability at leadt— ¢ any cluster in the ground-
truth of size at leasts. is f-close to one of the clusters in the list.

Wi i i O( 5 108 105 47)

e can ensure that our ligt has size at mogt ™ *~ L
We then run Procedure 3 with parameters= O(e/k), g =
O(3/k?), f = O(e*y/k*). We thus obtain a tree with the guar-
antee that the ground-truth désclose to a pruning of this tree (see
Theorem 9). To complete the proof we only need to show that thi
tree hagD(k/¢) leaves. This follows from the fact that all leaves of
our tree have at leastn points and the overlap between any two of
them is at mosgn. [

6. INDUCTIVE SETTING

In this section we consider anductive model in whichS is
merely a small random subset of points from a much largeradist
instance spac&’, and clustering is representedplicitly through
a hypothesig : X — Y. In the list model our goal is to produce
a list of hypotheses{h, ..., h:} such that at least one of them
has error at most. In the tree model we assume that each node



in the tree induces a cluster which is implicitly represdnés a
function f : X — {0,1}. For a fixed treel’ and a pointz, we

defineT’(x) as the subset of nodes Tnthat containz (the subset
of nodesf € T with f(x) = 1). We say that a tre& has error at
moste if T'(X) has a pruningf, ..., f+ of error at most.

We analyze in the following, for each of our properties, how
large a setS we need to see in order for our list or tree produced

with respect taS to induce a good solution with respectxa

The average attraction property. Our algorithms for the aver-
age attraction property (Property 4) and the average wasigat-
traction property are already inherently inductive.

The strict separation property. We can adapt the algorithm in
Theorem 2 to the inductive setting as follows. We first draveta s

Sofn=0(%1In (%)) unlabeled examples. We run the algorithm

described in Theorem 2 on this set and obtain aTrem the sub-

points. The variant of our property that is suited to the tithe
setting is the following:

PROPERTY 8. The similarity functionC satisfies they-strong
stability property for the clustering problerfiX, ¢) if for all clus-
tersCy, C,s, r # r’ in the ground-truth, for allA ¢ C,, for all
A’ C C,, we have

K(A,Cr \ A) > K(A,A') + 7.

For this property, we could always run the algorithm for Theo
rem 12, though running time would be exponentiakiand1/-.
We show here how we can get polynomial dependence on these pa-
rameters by adapting Algorithm 2 to the inductive settingnahie
case of the strict order property. Specifically, we first denset
S of n unlabeled examples. We run the average linkage algorithm

sets ofS. LetQ be the set of leaves of this tree. We associate each on this set and obtain a tr@eon the subsets &§. We then attach

nodew in T a boolean functiory,, specified as follows. Consider
x € X, and letg(z) € Q be the leaf given byrgmax, .o K(z, q);

if u appears on the path frog{x) to the root, then sef,.(z) = 1,
otherwise sef.,(x) = 0.

Note thatn is large enough to ensure that with probability at

each new point: to its most similar leaf in this tree as well as to
the set of nodes on the path from that leaf to the root. Forradbr
description see Algorithm 4. While this algorithm looks unat,
proving its correctness requires more involved arguments.

leastl — ¢, S includes at least a point in each cluster of size at least Algorithm 4 Inductive Average Linkage, Tree Model

+. Remember that = {C1,...,Cx} is the correct clustering of
the entire domain. Lefs be the (induced) correct clustering on
our sampleS of sizen. Since our property is hereditary, Theo-
rem 2 implies thaCs is a pruning ofT". It then follows from the
specification of our algorithm and from the definition of thecs
separation property that with probability at least ¢ the partition
induced over the whole space by this pruning-tdose toC.

The strong stability of large subsets property. We can also nat-
urally extend the algorithm for Property 7 to the inductiedtisg.
The main difference in the inductive setting is that we hawvesti-
mate(rather tharcomputg the |C;- \ C,/|, |C,s \ Cr|, |Cr N Cyr|,
K(CrNC,Cr\ Cpr) andK(Cr N Cyr, Cri \ Cy) for any two
clustersC.., C,. in the list L. We can easily do that with only
poly(k,1/e, 1/~,1/d)log(]£])) additional points, wherg is the
input list in Algorithm 3 (whose size depends bye, 1/v andk
only). Specifically, using a modification of the proof in Them 11
and standard concentration inequalities (e.g. the McDOaim
equality [19]) we can show that:

THEOREM 12. Assume thaiC is a similarity function satisfy-
ing the (s, ~y)-strong stability of large subsets property foK, £).
Assume thas = O(e*y/k?). Then using Algorithm 3 with pa-
rametersa = O(¢/k), g = O(?/k?), f = O(e*v/k?), together
with Algorithm 1 we can produce a tree with the property the t

ground-truth ise-close to a pruning of this tree. Moreover, the size

2k 1n

Ak k.
of this tree isO (k /). We use) (25 In (&) - (%) >” (%) In(1))
points in the first phase ar(d(%2 g% % log £ log % log k) points
in the second phase.

Note that each cluster is represented as a nearest neigibor h

pothesis over at mogt sets.

The strong stability property. We first note that we need to con-
sider a variant of our property that hasyagap. To see why this
is necessary consider the following example. Supposéall =’)
values are equal tb/2, except for a special single center paint
in each clusteC; with K(z;,z) = 1 for all z in C;. This satisfies
strong-stability since for everyt C C; we haveC(A,C; \ A) is
strictly larger thanl /2. Yet it is impossible to cluster in the in-
ductive model because our sample is unlikely to contain émer

Input: Similarity functionkC, parameters, e > 0, k € ZT;
n= n(67r}/7 k7 6),

e PickasetS = {z1,...,z,} of n random examples fromx

e Run the average linkage algorithm (Algorithm 2) on the set
S and obtain a tre@ on the subsets of. Let Q be the set
of leaves of this tree.

e Associate each nodein 7" a function f,, (which induces a
cluster) specified as follows.

Considerz € X, and letq(z) € Q be the leaf given by
argmax, K (z,q); if u appears on the path frog(z) to
the root, then sef,, (z) = 1, otherwise sef, (z) = 0.

e Output the tred’.

We show in the following that for. = poly(k,1/¢,1/v,1/0)
we obtain a tred” which has a pruning, ..., f,, of error at most
e. Specifically:

THEOREM 13. LetC be a similarity function satisfying the strong
stability property for the clustering proble(d, ¢). Then using Al-
gorithm 4 with parameterss = poly(k, 1/¢,1/~v,1/6), we can
produce a tree with the property that the ground-truth-islose to
a pruning of this tree.

Proof Sketch: Remember tha€ = {C1, ..., C}} is the ground-
truth clustering of the entire domain. L€t = {C1,...,C}} be
the (induced) correct clustering on our sampleof sizen. As
in the previous arguments we assume that a cluster is bidnést
probability mass at leasf; .

First, Theorem 14 below implies that with high probabilibet
clustersC; corresponding to the large ground-truth clusters satisfy
our property with a gap/2. (Just perform a union bound overe
S\ C;}.) It may be thatC; corresponding to the small ground-truth
clusters do not satisfy the property. However, a carefulyaisof
the argument in Theorem 8 shows that that with high prokgbili
Cs is a pruning of the tre&. Furthermore since is large enough
we also have that with high probabilitg(x, C(x)) is within v/2



of K(z,C’'(z)) for al — ¢ fraction of pointsz. This ensures that
with high probability, for any such goad the leafg(z) belongs to

C(=). This finally implies that the partition induced over the Weho
space by the prunings of the treeT is e-close toC. [

Note that each clusteris implicitly represented by the function
fu defined in the description of Algorithm 4.

We prove in the following that for a sufficiently large valuero
sampling preserves stability. Specifically:

THEOREM 14. Let C1,Ca, ..., C} be a partition of a setX
such that for anyd C C; and anyz ¢ C;,

K(A,Ci\A) > K(A,x)+ .

Letz ¢ C; and letC; be a random subset of elements of”;.
Then,n’ = poly(1/7,log(1/6)) is sufficient so that with probabil-
ity 1 — ¢, forany A c C/,

K(A,CI\ A) > K(A,z) + %

Proof Sketch: First of all, the claim holds for singleton subsets
A with high probability using a Chernoff bound. This implidet
condition is also satisfied for every subgebf size at mostyn'/2.
Thus, it remains to prove the claim for large subsets. We o th
using the cut-decomposition of [20] and the random samalimay-
ysis of [3].

Let N = |C;|. By [20], we can decompose the similarity matrix
for C; into a sum of cut-matriceB; + B2 +. . .+ B plus a low cut-
norm matrixW with the following properties. First, ead8; is a
cut-matrix, meaning that for some subs$gt of the rows and subset
S,2 of the columns and some valdg, we have:B;[zy] = d; for
x € Sj1,y € Sj2 and all Bj[zy] = 0 otherwise. Second, each
d; = O(1). Finally, s = 1/¢* cut-matrices are sufficient so that
matrix W has cut-norm at most N: that is, for any partition of the
verticesA, A’, we have| Yveayea Wizyll < eN?; moreover,
IWlleo < 1/2 and||W||r < N.

We now closely follow arguments in [3]. First, let us imagine
that we have exact equality; = By + ... + Bs, and we will
add in the matriX¥ later. We are given that for al, K(A, C; \

A) > K(A,z) +~. In particular, this trivially means that for each
“profile” of sizes{t;}, there is no setl satisfying

|[ANS;.| €
A >

[tir — a,tjr + a]N
(v/4N

that violates our given condition. The reason for considgdut-
matrices is that the valugsi N S;.| completely determine the
quantity K (A, C; \ A). We now seta so that the above con-
straints determiné (A, C; \ A) up to+~/4. In particular, choos-
ing @ = o(y?/s) suffices. This means that fixing a profile of
values{t;-}, we can replace “violates our given condition” with
K(A,z) > co for some valuecy depending on the profile, los-
ing only an amounty/4. We now apply Theorem 9 (random sub-
programs of LPs) of [3]. This theorem states that with prdliigb
1— 46, in the subgraplt’;, there is no setl’ satisfying the above in-
equalities where the right-hand-sides and objectivare reduced
by O(+/1og(1/8)/+/n). Choosingn > log(1/8)/a® we get that
with high probability the induced cut-matricé&s have the property
that there is noA’ satisfying

|A,ﬂS;T| € [tjr —04/2,25]‘7-4-04/2]]\]
AT > (v/2)n’
with the objective value, reduced by at most/4. We now sim-

ply do a union-bound over all possible profilfs. } consisting of
multiples ofa to complete the argument.

Finally, we incorporate the additional matri¥ using the fol-
lowing result from [3].

LEmMmA 15. [3][Random submatrix] Fore, § > 0, and anyiV’
an N x N real matrix with cut-norm|W||c < eN?, [|[W||o <
1/e and||W||r < N, let S’ be a random subset of the rows1df
with n’ = |S’| and letW’ be then’ x n’ submatrix ofi¥ corre-
sponding toW. Forn’ > (c1/£*6%) log(2/¢), with probability at
leastl — ¢,

IW']le < ca—=n'"?

Ve

wherecy, ¢ are absolute constants.

We want the addition ofV’” to influence the value& (A, C; — A)

by o(v). We now use the fact that we only care about the case that
|A| > yn'/2 and|C; — A| > yn'/2, so that it suffices to affect the
SUMY_ e 4 yecr—a K (2,y) by o(y*n’?). In particular, this means

it suffices to have = (~?), or equivalentlys = O(1/~*). This
in turn implies that it suffices to have = 6(+°), which implies
thatn’ = O(1/+"?) suffices for the theorem. O

7. CONCLUSIONSAND OPEN QUESTIONS

In this paper we provide a generic framework for analyzingitvh
properties of a similarity function are sufficient to allowtéd be
useful for clustering, under two natural relaxations of thester-
ing objective. We propose a measure of thestering complexity
of a given property that characterizes its informatiomstieéic use-
fulness for clustering, and analyze this complexity for @ class
of properties, as well as develop efficient algorithms thmatable
to take advantage of them.

Our work can be viewed both in terms of providing formal ad-
vice to thedesignerof a similarity function for a given clustering
task (such as clustering query search results) and in tefrad-o
vice about whatlgorithmsto use given certain beliefs about the
relation of the similarity function to the clustering tashur model
also provides a better understanding of when (in terms ofelze
tion between the similarity measure and the ground-trutister-
ing) different hierarchical linkage-based algorithms| fiate better
than others. Abstractly speaking, our notion qfrapertyparallels
that of adata-dependent concept cld85] (such as large-margin
separators) in the context of classification.

Open questions: Broadly, one would like to analyze other natural
properties of similarity functions, as well as to furtheptre and
formalize other models of interactive feedback. In termspafcific
open questions, for the average attraction property (Prpgewe
have an algorithm that fot = 2 produces a list of size approxi-

mately2°(1/7* 101/ and a lower bound on clustering complexity
of 2%(1/7) " One natural open question is whether one can close
that gap. A second open question is that for the strong &tabfl
large subsets property (Property 7), our algorithm proslinerar-
chy but has larger running time substantially larger tha ftbr the
simpler stability properties. Can an algorithm with rurqitime
polynomial ink and 1/~ be developed? Can one prove stability
properties for clustering based on spectral methods,teeghierar-
chical clustering algorithm given in [14]? More generaityyould

be interesting to determine whether these stability ptogmecan be
further weakened and still admit a hierarchical clusterifigpally,

in this work we have focused on formalizing clustering wittna
interactive feedback. It would be interesting to formalihestering
with other natural forms of feedback.
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APPENDI X

Theorem 3 If K satisfiesv-strict separation, then so long as the
smallest correct cluster has size greater tiiam, we can produce
a tree such that the ground-truth clusteringisclose to a pruning
of this tree.

PROOF Let S’ C S be the set of1 — v)n points such that
K satisfies strict separation with respectso Call the points in
S’ “good”, and those not irt’ “bad” (of course, goodness is not
known to the algorithm). We first generate a lisbf n? clusters
such that, ignoring bad points, any cluster in the grounthtis in
the list. We can do this by for each pointe S creating a cluster
of thet nearest points to it for eachn <t < n.

We next run a procedure that removes points from clustets tha
are non-laminar with respect to each other without hurtimg af
the correct clusters, until the remaining set is fully laarirSpecif-
ically, while there exist two clustex§ andC”’ that are non-laminar
with respect to each other, we do the following:

1. If eitherC or C’ has size< 4vn, delete it from the list. (By
assumption, it cannot be one of the ground-truth clusters).

2. If C andC’ are “somewhat disjoint” in thgdC' \ C’| > 2vn
and|C’ \ C| > 2vn, each pointt € C N C’ chooses one
of C or C’ to belong to based on whichever 6f\ C’ or
C’ \ C respectively has largenediansimilarity to z. We
then remover from the cluster not chosen. Because each of
C'\ C"andC" \ C has a majority of good points, if one 6f
or C' is a ground-truth cluster (with respect $9), all good
pointsz in the intersection will make the correct choic€.
andC’ are now fully disjoint.

3. If C, C" are “somewhat equal” in thaC \ C’| < 2vn and
|C"\ C] < 2vn, we make them exactly equal based on the
following related procedure. Each pointin the symmetric
difference ofC' and C’ decidesin or out based on whether
its similarity to the(vn + 1)st most-similar point irC N C’
is larger or smaller (respectively) than its similarity toet
(vn 4 1)st most similar point inS \ (C U C’). If z is a
good point inC'\ C" andC is a ground-truth cluster (with re-
spect taS’), thenz will correctly choosen, whereas itC” is
a ground-truth cluster thenwill correctly chooseout. Thus,
we can replac€’ and C’ with a single cluster consisting of
their intersection plus all points that chosan, without af-
fecting the correct clusters.

4. If none of the other cases apply, it may still be there exist
C, C’ such thatC “somewhat containsC’ in that|C' \ C’| >
2vn and0 < [C'\ C| < 2vn. In this case, choose the largest
suchC and apply the same procedure as in Step 3, but only
over the pointsc € C’ \ C. At the end of the procedure, we
haveC D C’ and the correct clusters have not been affected
with respect to the good points.

Since all clusters remaining are laminar, we can now arréamga
into a forest, which we then arbitrarily complete into a treg]



