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ABSTRACT
Problems of clustering data from pairwise similarity information
are ubiquitous in Computer Science. Theoretical treatments typi-
cally view the similarity information as ground-truth and then de-
sign algorithms to (approximately) optimize various graph-based
objective functions. However, in most applications, this similarity
information is merely based on some heuristic; the ground truth is
really the unknown correct clustering of the data points andthe real
goal is to achieve low error on the data. In this work, we develop a
theoretical approach to clustering from this perspective.In partic-
ular, motivated by recent work in learning theory that asks “what
natural properties of a similarity (or kernel) function aresufficient
to be able to learn well?” we ask “what natural properties of a
similarity function are sufficient to be able toclusterwell?”

To study this question we develop a theoretical framework that
can be viewed as an analog of the PAC learning model for cluster-
ing, where the object of study, rather than being a concept class,
is a class of (concept, similarity function) pairs, or equivalently, a
property the similarity function should satisfy with respect to the
ground truth clustering. We then analyze both algorithmic and in-
formation theoretic issues in our model. While quite strongprop-
erties are needed if the goal is to produce a single approximately-
correct clustering, we find that a number of reasonable properties
are sufficient under two natural relaxations: (a) list clustering: anal-
ogous to the notion of list-decoding, the algorithm can produce a
small list of clusterings (which a user can select from) and (b) hi-
erarchical clustering: the algorithm’s goal is to produce ahierarchy
such that desired clustering is some pruning of this tree (which a
user could navigate). We develop a notion of theclustering com-
plexity of a given property (analogous to notions ofcapacity in
learning theory), that characterizes its information-theoretic use-
fulness for clustering. We analyze this quantity for several natural
game-theoretic and learning-theoretic properties, as well as design
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new efficient algorithms that are able to take advantage of them.
Our algorithms for hierarchical clustering combine recentlearning-
theoretic approaches with linkage-style methods. We also show
how our algorithms can be extended to the inductive case, i.e., by
using just a constant-sized sample, as in property testing.The anal-
ysis here uses regularity-type results of [20] and [3].

Categories and Subject Descriptors: F.2.0 [Analysis of Algo-
rithms and Problem Complexity]: General

General Terms: Algorithms, Theory

Keywords: Clustering, Similarity Functions, Learning.

1. INTRODUCTION
Clustering is an important problem in the analysis and explo-

ration of data. It has a wide range of applications in data mining,
computer vision and graphics, and gene analysis. It has manyvari-
ants and formulations and it has been extensively studied inmany
different communities.

In the Algorithms literature, clustering is typically studied by
posing some objective function, such ask-median, min-sum or
k-means, and then developing algorithms for approximately op-
timizing this objective given a data set represented as a weighted
graph [12, 24, 22]. That is, the graph is viewed as “ground truth”
and then the goal is to design algorithms to optimize variousobjec-
tives over this graph. However, for most clustering problems such
as clustering documents by topic or clustering web-search results
by category, ground truth is really the unknown true topic ortrue
category of each object. The construction of the weighted graph is
just done using some heuristic: e.g., cosine-similarity for cluster-
ing documents or a Smith-Waterman score in computational biol-
ogy. In all these settings, the goal is really to produce a clustering
that gets the data correct. Alternatively, methods developed both in
the algorithms and in the machine learning literature for learning
mixtures of distributions [1, 5, 23, 36, 17, 15] explicitly have a no-
tion of ground-truth clusters which they aim to recover. However,
such methods are based on very strong assumptions: they require
an embedding of the objects intoRn such that the clusters can be
viewed as distributions with very specific properties (e.g., Gaus-
sian or log-concave). In many real-world situations (e.g.,cluster-
ing web-search results by topic, where different users might have
different notions of what a “topic” is) we can only expect a domain
expert to provide a notion of similarity between objects that is re-
lated in some reasonable ways to the desired clustering goal, and
not necessarily an embedding with such strong properties.

In this work, we develop a theoretical study of the clustering
problem from this perspective. In particular, motivated bywork
on learning with kernel functions that asks “what natural properties



of a given kernel (or similarity) functionK are sufficient to allow
one tolearn well?” [6, 7, 31, 29, 21] we ask the question “what
natural properties of a pairwise similarity function are sufficient to
allow one toclusterwell?” To study this question we develop a
theoretical framework which can be thought of as a discriminative
(PAC style) model for clustering, though the basic object ofstudy,
rather than a concept class, is apropertyof the similarity function
K in relation to the target concept, or equivalently a set of (concept,
similarity function) pairs.

The main difficulty that appears when phrasing the problem in
this general way is that if one defines success as outputtinga single
clusteringthat closely approximates the correct clustering, then one
needs to assume very strong conditions on the similarity function.
For example, if the function provided by our expert is extremely
good, sayK(x, y) > 1/2 for all pairsx andy that should be in
the same cluster, andK(x, y) < 1/2 for all pairs x and y that
should be in different clusters, then we could just use it to recover
the clusters in a trivial way.1 However, if we just slightly weaken
this condition to simply require that all pointsx are more similar
to all pointsy from their own cluster than to any pointsy from any
other clusters, then this is no longer sufficient to uniquelyidentify
even a good approximation to the correct answer. For instance, in
the example in Figure 1, there are multiple clusterings consistent
with this property. Even if one is told the correct clustering has
3 clusters, there is no way for an algorithm to tell which of the
two (very different) possible solutions is correct. In fact, results of
Kleinberg [25] can be viewed as effectively ruling out a broad class
of scale-invariant properties such as this one as being sufficient for
producing the correct answer.

In our work we overcome this problem by considering two re-
laxations of the clustering objective that are natural for many clus-
tering applications. The first is as in list-decoding to allow the al-
gorithm to produce a smalllist of clusterings such that at least one
of them has low error. The second is instead to allow the clustering
algorithm to produce atree(a hierarchical clustering) such that the
correct answer is approximately some pruning of this tree. For in-
stance, the example in Figure 1 has a natural hierarchical decompo-
sition of this form. Both relaxed objectives make sense for settings
in which we imagine the output being fed to a user who will then
decide what she likes best. For example, with the tree relaxation,
we allow the clustering algorithm to effectively say: “I wasn’t sure
how specific you wanted to be, so if any of these clusters are too
broad, just click and I will split it for you.” We then show that
with these relaxations, a number of interesting, natural learning-
theoretic and game-theoretic properties can be defined thateach
are sufficient to allow an algorithm to cluster well.

At the high level, our framework has two goals. The first is to
provide advice about what type ofalgorithmsto use given certain
beliefs about the relation of the similarity function to theclustering
task. That is, if a domain expert handed us a similarity function that
they believed satisfied a certain natural property with respect to the
true clustering, what algorithm would be most appropriate to use?
The second goal is providing advice to thedesignerof a similarity
function for a given clustering task (such as clustering web-pages
by topic). That is, if a domain expert is trying up to come up with
a similarity measure, what properties should they aim for?

1Correlation Clustering can be viewed as a relaxation that allowssomepairs
to fail to satisfy this condition, and the algorithms of [10,13, 33, 2] show
this is sufficient to cluster well if the number of pairs that fail is small.
Planted partitionmodels [4, 28, 16] allow for many failures so long as they
occur atrandom. We will be interested in much more drastic relaxations,
however.
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Figure 1: Data lies in four regions A, B, C, D (e.g., think of as docu-
ments on baseball, football, TCS, and AI). Suppose that K(x, y) = 1 if
x and y belong to the same region, K(x, y) = 1/2 if x ∈ A and y ∈ B

or if x ∈ C and y ∈ D, and K(x, y) = 0 otherwise. Even assuming
that all points are more similar to other points in their own cluster than
to any point in any other cluster, there are still multiple consistent clus-
terings, including two consistent 3-clusterings ((A ∪ B, C, D) or (A,
B, C ∪D)). However, there is a single hierarchical decomposition such
that any consistent clustering is a pruning of this tree.

1.1 Perspective
The standard approach in theoretical computer science to clus-

tering is to choose some objective function (e.g.,k-median) and
then to develop algorithms that approximately optimize that objec-
tive [12, 24, 22, 18]. If the true goal is to achieve low error with
respect to an underlying correct clustering (e.g., a user’sdesired
clustering of search results by topic), however, then one can view
this as implicitly making the strong assumption that not only does
the correct clustering have a good objective value, but alsothat all
clusterings that approximately optimize the objective must be close
to the correct clustering as well. In this work, we instead explicitly
consider the goal of producing a clustering of low error and then
ask what natural properties of the similarity function in relation to
the target clustering are sufficient to allow an algorithm todo well.

In this respect we are closer to work done in the area of clustering
or learning with mixture models [1, 5, 23, 36, 17]. That work,like
ours, has an explicit notion of a correct ground-truth clustering of
the data points and to some extent can be viewed as addressingthe
question of what properties of anembedding of data intoRn would
be sufficient for an algorithm to cluster well. However, unlike our
focus, the types of assumptions made are distributional andin that
sense are much more stringent than the types of properties wewill
be considering. This is similarly the case with work on planted
partitions in graphs [4, 28, 16]. Abstractly speaking, thisview of
clustering parallels thegenerativeclassification setting [19], while
the framework we propose parallels thediscriminativeclassifica-
tion setting (i.e. the PAC model of Valiant [34] and the Statistical
Learning Theory framework of Vapnik [35]).

In the PAC model for learning [34], the basic object of study is
theconcept class, and one asks what natural classes are efficiently
learnable and by what algorithms. In our setting, the basic object
of study isproperty, which can be viewed as a set of (concept,
similarity function) pairs, i.e., the pairs for which the target concept
and similarity function satisfy the desired relation. As with the
PAC model for learning, we then ask what natural properties are
sufficient to efficiently cluster well (in either the tree or list models)
and by what algorithms.

1.2 Our Results
We provide a PAC-style framework for analyzing what proper-

ties of a similarity function are sufficient to allow one to cluster



well under the above two relaxations (list and tree) of the cluster-
ing objective. We analyze both algorithmic and informationtheo-
retic questions in our model and provide results for severalnatural
game-theoretic and learning-theoretic properties. Specifically:

• We consider a family of stability-based properties, showing
that a natural generalization of the “stable marriage” prop-
erty is sufficient to produce a hierarchical clustering. (The
property is that no two subsetsA ⊂ C, A′ ⊂ C′ of clusters
C 6= C′ in the correct clustering are both more similar on
average to each other than to the rest of their own clusters.)
Moreover, a significantly weaker notion of stability is also
sufficient to produce a hierarchical clustering, but requires a
more involved algorithm.

• We show that a weaker “average-attraction” property (which
is provably not enough to produce a single correct hierarchi-
cal clustering) is sufficient to produce a small list of cluster-
ings, and give generalizations to even weaker conditions that
generalize the notion of large-margin kernel functions.

• We define theclustering complexityof a given property (the
minimum possible list length that can be guaranteed by any
algorithm) and provide both upper and lower bounds for the
properties we consider. This notion is analogous to notions
of capacity in classification [11, 19, 35] and it provides a for-
mal measure of the inherent usefulness of a given property.

• We also show that properties implicitly assumed by approx-
imation algorithms for standard graph-based objective func-
tions can be viewed as special cases of some of the properties
considered above.

• We show how our methods can be extended to theinductive
case, i.e., by using just aconstant-sized sample, as in prop-
erty testing. While most of our algorithms extend in a nat-
ural way, for certain properties their analysis requires more
involved arguments using regularity-type results of [20, 3].

More generally, our framework provides a formal way to analyze
what properties of a similarity function would be sufficientto pro-
duce low-error clusterings, as well as what algorithms are suited for
a given property. For some of our properties we are able to show
that known algorithms succeed (e.g. variations of bottom-up hier-
archical linkage based algorithms), but for the most general ones
we need new algorithms that are able to take advantage of them.

1.3 Connections to other Related Work
Some of the questions we address can be viewed as a general-

ization of questions studied in machine learning of what properties
of similarity functions (especially kernel functions) aresufficient
to allow one tolearn well [6, 7, 21, 31, 29]. E.g., the usual state-
ment is that if a kernel function satisfies the property that the target
function is separable by a large margin in the implicit kernel space,
then learning can be done from few labeled examples. The cluster-
ing problem is more difficult because there is no labeled data, and
even in the relaxations we consider, the forms of feedback allowed
are much weaker.

We note that as in learning, given an embedding of data into
some metric space, the similarity functionK(x, x′) neednot be a
direct translation of distance likee−d(x,x′), but rather may be a
derived function based on the entire dataset. For example, in the
diffusion kernelof [27], the similarityK(x, x′) is related to the ef-
fective resistance betweenx and x′ in a weighted graph defined

from distances in the original metric. This would be a natural simi-
larity function to use, for instance, if data lies in two well-separated
pancakes.

In the inductive setting, where we imagine our given data is only
a small random sample of the entire data set, our framework isclose
in spirit to recent work done on sample-based clustering (e.g., [9])
in the context of clustering algorithms designed to optimize a cer-
tain objective. Based on such a sample, these algorithms have to
output a clustering of the full domain set, that is evaluatedwith
respect to the underlying distribution.

2. DEFINITIONS AND PRELIMINARIES
We consider a clustering problem(S, `) specified as follows.

Assume we have a data setS of n objects, where each object is
an element of an abstract instance spaceX. Eachx ∈ S has
some (unknown) “ground-truth” label̀(x) in Y = {1, . . . , k},
where we will think ofk as much smaller thann. The goal is
to produce a hypothesish : X → Y of low error up to isomor-
phism of label names. Formally, we define the error ofh to be
err(h) = minσ∈Sk

[Prx∈S [σ(h(x)) 6= `(x)]]. We will assume
that a target error rateε, as well ask, are given as input to the
algorithm.

We will be considering clustering algorithms whose only access
to their data is via a pairwise similarity functionK(x, x′) that given
two examples outputs a number in the range[−1, 1].2 We will say
thatK is a symmetric similarity function ifK(x, x′) = K(x′, x)
for all x, x′.

Our focus is to analyze natural properties that sufficient for a
similarity functionK to be good for a clustering problem(S, `)
which (ideally) are intuitive, broad, and imply that such a similar-
ity function results in the ability tocluster well. As mentioned in
the introduction, however, requiring an algorithm to output a single
low-error clustering rules out even quite strong properties. Instead
we will consider two objectives that are natural if one assumes the
ability to get some limited additional feedback from a user.Specif-
ically, we consider the following two models:

1. List model: In this model, the goal of the algorithm is to
propose a small number of clusterings such that at least one
has error at mostε. As in work on property testing, the list
length should depend onε andk only, and be independent
of n. This list would then go to a domain expert or some
hypothesis-testing portion of the system which would then
pick out the best clustering.

2. Tree model: In this model, the goal of the algorithm is to
produce a hierarchical clustering: that is, a tree on subsets
such that the root is the setS, and the children of any node
S′ in the tree form a partition ofS′. The requirement is that
there must exist apruningh of the tree (not necessarily using
nodes all at the same level) that has error at mostε. In many
applications (e.g. document clustering) this is a significantly
more user-friendly output than the list model. Note that any
given tree has at most22k prunings of sizek [26], so this
model is at least as strict as the list model.

Transductive vs Inductive. Clustering is typically posed as a “trans-
ductive” [35] problem in that we are asked to cluster agivenset of
points S. We can also consider aninductivemodel in whichS

2That is, the input to the clustering algorithm is just a weighted graph.
However, we still want to conceptually viewK as afunctionover abstract
objects.



is merely a small random subset of points from a much larger ab-
stract instance spaceX, and our goal is to produce a hypothesis
h : X → Y of low error onX. For a given property of our simi-
larity function (with respect toX) we can then ask how large a set
S we need to see in order for our list or tree produced with respect
to S to induce a good solution with respect toX. For clarity of
exposition, for most of this paper we will focus on the transductive
setting. In Section 6 we show how our algorithms can be adapted
to the inductive setting.

Notation. We will denote the underlying ground-truth clusters as
C1, . . . , Ck (some of which may be empty). Forx ∈ X, we use
C(x) to denote the clusterC`(x) to which pointx belongs. For
A ⊆ X, B ⊆ X, let K(A, B) = Ex∈A,x′∈B[K(x, x′)]. We
call this theaverage attractionof A to B. Let Kmax(A, B) =
maxx∈A,x′∈B K(x, x′); we call thismaximum attractionof A to
B. Given two clusteringsg andh we define the distanced(g, h) =
minσ∈Sk

[Prx∈S [σ(h(x)) 6= g(x)]], i.e., the fraction of points in
the symmetric difference under the optimal renumbering of the
clusters.

We are interested in naturalpropertiesthat we might ask a simi-
larity function to satisfy with respect to the ground truth clustering.
For example, one (strong) property would be that all pointsx are
more similar to all pointsx′ ∈ C(x) than to anyx′ 6∈ C(x) – we
call this thestrict separationproperty. A weaker property would
be to just require that pointsx areon averagemore similar to their
own cluster than to any other cluster, that is,K(x, C(x) − {x}) >
K(x, Ci) for all Ci 6= C(x). We will also consider intermediate
“stability” conditions. For properties such as these we will be in-
terested in the size of the smallest list any algorithm couldhope to
output that would guarantee that at least one clustering in the list
has error at mostε. Specifically, we define theclustering complex-
ity of a property as:

DEFINITION 1. Given a propertyP and similarity functionK,
define the(ε, k)-clustering complexity of the pair(P ,K) to be the
length of the shortest list of clusteringsh1, . . . , ht such that any
consistentk-clustering isε-close to some clustering in the list.3

That is, at least onehi must have error at mostε. The (ε, k)-
clustering complexity of P is the maximum of this quantity over
all similarity functionsK.

The clustering complexity notion is analogous to notions ofca-
pacity in classification [11, 19, 35] and it provides a formalmeasure
of the inherent usefulness of a given property.

In the following sections we analyze the clustering complex-
ity of several natural properties and provide efficient algorithms
to take advantage of such functions. We start by analyzing the
strict separation property as well as a natural relaxation in Sec-
tion 3. We also give formal relationships between these proper-
ties and those considered implicitly by approximation algorithms
for standard clustering objectives. We then analyze a much weaker
average-attraction property in Section 4 that has close connections
to large margin properties studied in Learning Theory [6, 7,21,
31, 29]. This property is not sufficient to produce a hierarchical
clustering, however, so we then turn to the question of how weak
a property can be and still be sufficient for hierarchical clustering,
which leads us to analyze properties motivated by game-theoretic
notions of stability in Section 5.

Our framework allows one to study computational hardness re-
sults as well. While our focus is on getting positive algorithmic
results, we discuss a simple few hardness examples in the full ver-
sion of the paper [8].
3A clusteringC is consistent ifK has propertyP with respect toC.

3. SIMPLE PROPERTIES
We begin with the simple strict separation property mentioned

above.

PROPERTY 1. The similarity functionK satisfies thestrict sep-
aration property for the clustering problem(S, `) if all x are
strictly more similar to any pointx′ ∈ C(x) than to everyx′ 6∈
C(x).

Given a similarity function satisfying the strict separation prop-
erty, we can efficiently construct a tree such that the ground-truth
clustering is a pruning of this tree (Theorem 2). As mentioned
above, a consequence of this fact is a2O(k) upper bound on the
clustering complexity of this property. We begin by showinga
matching2Ω(k) lower bound.

THEOREM 1. For ε < 1
2k

, the strict separation property has

(ε, k)-clustering complexity at least2k/2.

PROOF. The similarity function is a generalization of the pic-
ture in Figure 1. Specifically, partition then points intok subsets
{R1, . . . , Rk} of n/k points each. Group the subsets into pairs
{(R1, R2), (R3, R4), . . .}, and letK(x, x′) = 1 if x andx′ be-
long to the sameRi, K(x, x′) = 1/2 if x andx′ belong to two
subsets in the same pair, andK(x, x′) = 0 otherwise. Notice that

in this setting there are2
k
2 clusterings (corresponding to whether or

not to split each pairRi ∪Ri+1) that are consistent with Property 1
and differ from each other on at leastn/k points. Sinceε < 1

2k
,

any given hypothesis clustering can beε-close to at most one of
these and so the clustering complexity is at least2k/2.

We now present the upper bound.

THEOREM 2. LetK be a similarity function satisfying the strict
separation property. Then we can efficiently construct a tree such
that the ground-truth clustering is a pruning of this tree.

PROOF. If K is symmetric, then to produce a tree we can simply
use bottom up “single linkage” (i.e., Kruskal’s algorithm). That
is, we begin withn clusters of size 1 and at each step we merge
the two clustersC, C′ maximizingKmax(C, C′). This maintains
the invariant that at each step the current clustering is laminar with
respect to the ground-truth: if the algorithm merges two clustersC
andC′, andC is strictly contained in some clusterCr of the ground
truth, then by the strict separation property we must haveC′ ⊂
Cr as well. IfK is not symmetric, then single linkage may fail.4

However, in this case, the following “Boruvka-inspired” algorithm
can be used. Starting withn clusters of size 1, draw a directed edge
from each clusterC to the clusterC′ maximizingKmax(C, C′).
Then pick some cycle produced (there must be at least one cycle)
and collapse it into a single cluster, and repeat. Note that if a cluster
C in the cycle is strictly contained in some ground-truth cluster
Cr, then by the strict separation property its out-neighbor must be
as well, and so on around the cycle. So this collapsing maintains
laminarity as desired.

One can also consider the property thatK satisfies strict separation
for mostof the data.

PROPERTY 2. The similarity functionK satisfiesν-strict sep-
aration for the clustering problem(S, `) if for someS′ ⊆ S of size
(1 − ν)n, K satisfies strict separation for(S′, `).
4Consider 3 pointsx, y, z whose correct clustering is({x}, {y, z}). If
K(x, y) = 1, K(y, z) = K(z, y) = 1/2, andK(y, x) = K(z, x) =
0, then this is consistent with strict separation and yet the algorithm will
incorrectly mergex andy in its first step.



THEOREM 3. If K satisfiesν-strict separation, then so long
as the smallest correct cluster has size greater than5νn, we can
produce a tree such that the ground-truth clustering isν-close to a
pruning of this tree.

PROOF. See appendix.

Approximation Assumptions: When developing ac-approximation
algorithm for some clustering objective functionF , if the goal is to
actually get the points correct, then one is implicitly making the as-
sumption (or hope) that anyc-approximation toF must beε-close
in symmetric difference to the target clustering. We show here we
show how assumptions of this kind can be viewed as special cases
of theν-strict separation property.

PROPERTY 3. Given objective functionF , we say that a metric
d over point setS satisfies the(c, ε)-F property with respect to
targetC if all clusteringsC′ that are within a factorc of optimal in
terms of objectiveF are ε-close toC.

We now consider in particular thek-median andk-center objective
functions.

THEOREM 4. If metric d satisfies the (2, ε)-k-median property
for datasetS, then the similarity function−d satisfies theν-strict
separation property forν = 3ε.

PROOF. Suppose the data does not satisfy strict separation. Then
there must exist pointsa1, b1, c1 with a1 andb1 in one cluster and
c1 in another such thatd(a1, b1) > d(a1, c1). Remove these three
points and repeat witha2, b2, c2. Suppose for contradiction, this
process continues pastaεn, bεn, cεn. Then, moving allai into the
clusters of the correspondingci will increase thek-median objec-
tive by at most

P

i[d(ai, ci) + cost(ci)], where cost(x) is the con-
tribution of x to the k-median objective function. By definition
of theai and by triangle inequality, this is at most

P

i[cost(ai) +
cost(bi)+cost(ci)], which in turn is at most

P

x∈S cost(x). Thus,
thek-median objective at most doubles, contradicting our initial as-
sumption.

THEOREM 5. If metric d satisfies the (3, ε)-k-center property,
then the similarity function−d satisfies theν-strict separation prop-
erty forν = 3ε.

(proof omitted). In fact, the(2, ε)-k-median property is quite a
bit more restrictive thanν-strict separation. It implies, for instance,
that except for anO(ε) fraction of “bad” points, there existsd such
that all points in the same cluster have distance much less than d
and all points in different clusters have distance much greater than
d. In contrast,ν-strict separation would allow for different distance
scales at different parts of the graph.

4. WEAKER PROPERTIES
A much weaker property to ask of a similarity function is just

that most points are noticeably more similaron averageto points
in their own cluster than to points in any other cluster. Specifically,
we define:

PROPERTY 4. A similarity functionK satisfies the(ν, γ)-average
attraction property for the clustering problem(S, `) if a 1−ν frac-
tion of examplesx satisfy:

K(x,C(x)) ≥ K(x, Ci) + γ for all i ∈ Y, i 6= `(x).

This is a fairly natural property to ask of a similarity function: if
a pointx is more similar on average to points in a different cluster

than to those in its own, it is hard to expect an algorithm to label it
correctly. The following is a simple clustering algorithm that given
a similarity functionK satisfying the average attraction property
produces a list of clusterings of size that depends only onε, k, and
γ. Specifically,

Algorithm 1 Sampling Based Algorithm, List Model

Input: Data setS, similarity functionK, parametersγ, ε > 0, k ∈
Z+; N(ε, γ, k), s(ε, γ, k).

• SetL = ∅.

• RepeatN(ε, γ, k) times

Fork′ = 1, . . . , k do:

- Pick a setRk′

S of s(ε, γ, k) random points fromS.

- Let h be the average-nearest neighbor hypothesis in-
duced by the setsRi

S , 1 ≤ i ≤ k′. That is, for any point
x ∈ S, defineh(x) = argmaxi∈{1,...k′}[K(x, Ri

S)].
Add h toL.

• Output the listL.

THEOREM 6. LetK be a similarity function satisfying the(ν, γ)-
average attraction property for the clustering problem(S, `). Us-
ing Algorithm 1 with the parameterss(ε, γ, k) = 4

γ2 ln
`

8k
εδ

´

and

N(ε, γ, k) =
`

2k
ε

´
4k

γ2
ln

`

8k
εδ

´

ln( 1
δ
) we can produce a list of at

mostk
O

`

k

γ2
ln

`

1

ε

´

ln
`

k
εδ

´´

clusterings such that with probability
1 − δ at least one of them is(ν + ε)-close to the ground-truth.

PROOF. We say that a ground-truth cluster is big if it has prob-
ability mass at leastε

2k
; otherwise, we say that the cluster is small.

Let k′ be the number of “big” ground-truth clusters. Clearly the
probability mass in all the small clusters is at mostε/2.

Let us arbitrarily number the big clustersC1, . . . , Ck′ . Notice

that in each round there is at least a
`

ε
2k

´s(ε,γ,k)
probability that

RS
i ⊆ Ci, and so at least a

`

ε
2k

´ks(ε,γ,k)
probability thatRS

i ⊆
Ci for all i ≤ k′. Thus the number of rounds

`

2k
ε

´
4k

γ2
ln

`

8k
εδ

´

ln( 1
δ
)

is large enough so that with probability at least1 − δ/2, in at least
one of theN(ε, γ, k) rounds we haveRS

i ⊆ Ci for all i ≤ k′. Let
us fix now one such good round. We argue next that the clustering
induced by the sets picked in this round has error at mostν+ε with
probability at least1 − δ.

Let Good be the set ofx in the big clusters satisfying

K(x, C(x)) ≥ K(x, Cj) + γ for all j ∈ Y, j 6= `(x).

By assumption and from the previous observations,Prx∼S[x ∈
Good] ≥ 1 − ν − ε/2. Now, fix x ∈ Good. SinceK(x, x′) ∈
[−1, 1], by Hoeffding bounds we have that over the random draw
of RS

j , conditioned onRS
j ⊆ Cj ,

Pr
RS

j

“˛

˛

˛
Ex′∼RS

j [K(x, x′)] −K(x, Cj)
˛

˛

˛
≥ γ/2

”

≤ 2e−2|RS
j |γ2/4,

for all j ∈ {1, . . . , k′}. By our choice ofRS
j , each of these prob-

abilities is at mostεδ/4k. So, for any givenx ∈ Good, there is
at most aεδ/4 probability of error over the draw of the setsRS

j .
Since this is true for anyx ∈ Good, it implies that theexpected
error of this procedure, overx ∈ Good, is at mostεδ/4, which by
Markov’s inequality implies that there is at most aδ/2 probabil-
ity that the error rate overGood is more thanε/2. Adding in the



ν + ε/2 probability mass of points not inGood yields the theo-
rem.

Note that Theorem 6 immediately implies a corresponding upper
bound on the(ε, k)-clustering complexity of the(ε/2, γ)-average at-
traction property. We can also give a lower bound showing that
the exponential dependence onγ is necessary, and furthermore this
property is not sufficient to cluster in the tree model:

THEOREM 7. For ε < γ/2, the(ε, k)-clustering complexity of

the(0, γ)-average attraction property is at leastmax
k′≤k

k′ 1

γ /k′!, and

moreover this property is not sufficient to cluster in the tree model.

PROOF. Omitted. See the full version of the paper [8].

Note: In fact, the clustering complexity bound immediately implies
one cannot cluster in the tree model since fork = 2 the bound is
greater than 1.

One can even weaken the above property to ask only that there
existsan (unknown) weighting function over data points (thought
of as a “reasonableness score”), such that most points are onav-
erage more similar to thereasonablepoints of their own cluster
than to thereasonablepoints of any other cluster. This is a gener-
alization of the notion ofK being a kernel function with the large
margin property [6, 32, 35, 30]. For details see the full version of
the paper [8].

5. STABILITY-BASED PROPERTIES
The properties in Section 4 are fairly general and allow construc-

tion of a list whose length depends only on onε andk (for constant
γ), but are not sufficient to produce a single tree. In this section,
we show that several natural stability-based properties that lie be-
tween those considered in Sections 3 and 4 are in fact sufficient for
hierarchicalclustering.

For simplicity, we focus on symmetric similarity functions. We
consider the following relaxations of Property 1 which ask that the
ground truth be “stable” in the stable-marriage sense:

PROPERTY 5. A similarity functionK satisfies thestrong sta-
bility property for the clustering problem(S, `) if for all clusters
Cr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr, A′ ⊆ Cr′ we
have

K(A, Cr \ A) > K(A, A′).

PROPERTY 6. A similarity functionK satisfies theweak sta-
bility property for the clustering problem(S, `) if for all Cr, Cr′ ,
r 6= r′, for all A ⊂ Cr, A′ ⊆ Cr′ , we have:

• If A′ ⊂ Cr′ then eitherK(A, Cr \ A) > K(A, A′) or
K(A′, Cr′ \ A′) > K(A′, A).

• If A′ = Cr′ thenK(A, Cr \ A) > K(A, A′).

We can interpret weak stability as saying that for any two clus-
ters in the ground truth, there does not exist a subsetA of one and
subsetA′ of the other that are more attracted to each other than to
the remainder of their true clusters (with technical conditions at the
boundary cases) much as in the classic notion of stable-marriage.
Strong stability asks thatbothbe more attracted to their true clus-
ters. To further motivate these properties, note that if we take the
example from Figure 1 and set a small random fraction of the edges
inside each dark-shaded region to 0, then with high probability this

would still satisfy strong stability with respect to all thenatural
clusters even though it no longer satisfies strict separation (or even
ν-strict separation for anyν < 1 if we included at least one edge
incident to each vertex). Nonetheless, we can show that these sta-
bility notions are sufficient to produce a hierarchical clustering. We
prove this for strong stability here; the proof for weak stability ap-
pear in the full version of the paper [8].

Algorithm 2 Average Linkage, Tree Model

Input: Data setS, similarity functionK. Output: A tree on
subsets.

• Begin withn singleton clusters.

• Repeat till only one cluster remains: Find clustersC, C′ in
the current list which maximizeK(C, C′) and merge them
into a single cluster.

• Output the tree with single elements as leaves and internal
nodes corresponding to all the merges performed.

THEOREM 8. LetK be a symmetric similarity function satisfy-
ing Property 5. Then we can efficiently construct a binary tree such
that the ground-truth clustering is a pruning of this tree.

Proof Sketch: We will show that Algorithm 2 (Average Link-
age) will produce the desired result. Note that the algorithm uses
K(C, C′) rather thanKmax(C, C′) as in single linkage.

We prove correctness by induction. In particular, assume that
our current clustering is laminar with respect to the groundtruth
clustering (which is true at the start). That is, for each clusterC
in our current clustering and eachCr in the ground truth, we have
eitherC ⊆ Cr, or Cr ⊆ C or C ∩ Cr = ∅. Now, consider a
merge of two clustersC and C′. The only way that laminarity
could fail to be satisfied after the merge is if one of the two clus-
ters, say,C′, is strictly contained inside some ground-truth cluster
Cr (so,Cr − C′ 6= ∅) and yetC is disjoint fromCr. Now, note
that by Property 5,K(C′, Cr − C′) > K(C′, x) for all x 6∈ Cr,
and so in particular we haveK(C′, Cr − C′) > K(C′, C). Fur-
thermore,K(C′, Cr −C′) is a weighted average of theK(C′, C′′)
over the setsC′′ ⊆ Cr−C′ in our current clustering and so at least
one suchC′′ must satisfyK(C′, C′′) > K(C′, C). However, this
contradicts the specification of the algorithm, since by definition it
merges the pairC, C′ such thatK(C′, C) is greatest.

While natural, Properties 5 and 6 are still somewhat brittle: in
the example of Figure 1, for instance, if one adds a small number of
edges with similarity 1betweenthe natural clusters, then the prop-
erties are no longer satisfied for them (because pairs of elements
connected by these edges will want to defect). We can make the
properties more robust by requiring that stability hold only for large
sets. This will break the average-linkage algorithm used above, but
we can show that a more involved algorithm building on the ap-
proach used in Section 4 will nonetheless find an approximately
correct tree. For simplicity, we focus on broadening the strong sta-
bility property, as follows (one should views as small compared to
ε/k in this definition):

PROPERTY 7. The similarity functionK satisfies the(s, γ)-strong
stability of large subsets property for the clustering problem(S, `)
if for all clusters Cr, Cr′ , r 6= r′ in the ground-truth, for all
A ⊂ Cr, A′ ⊆ Cr′ with |A| + |A′| ≥ sn we have

K(A, Cr \ A) > K(A, A′) + γ.



The idea of how we can use this property is we will first run an algo-
rithm for the list model much like Algorithm 1, viewing its output
as simply a long list of candidate clusters (rather than clusterings).

In particular, we will get a listL of k
O

`

k

γ2
log 1

ε
log k

δf

´

clusters
such that with probability at least1 − δ any cluster in the ground-
truth of size at leastε

4k
is close to one of the clusters in the list.

We then run a second “tester” algorithm that is able to throw away
candidates that are sufficiently non-laminar with respect to the cor-
rect clustering and assembles the ones that remain into a tree. We
present and analyze the tester algorithm, Algorithm 3, below.

Algorithm 3 Testing Based Algorithm, Tree Model.

Input: Data setS, similarity functionK, parametersγ > 0,
k ∈ Z+, f, g, s, α > 0. A list of clustersL with the property
that any clusterC in the ground-truth is at leastf -close to
one of them.
Output: A tree on subsets.

1. Throw out all clusters of size at mostαn. For every pair of
clustersC, C′ in our list L of clusters that are sufficiently
“non-laminar” with respect to each other in that|C \ C′| ≥
gn, |C′ \ C| ≥ gn and |C ∩ C′| ≥ gn, computeK(C ∩
C′, C \ C′) andK(C ∩ C′, C′ \ C). Throw out whichever
one does worse: i.e., throw outC if the first similarity is
smaller, else throw outC′. Let L′ be the remaining list of
clusters at the end of the process.

2. Greedily sparsify the listL′ so that no two clusters are ap-
proximately equal (that is, choose a cluster, throw out all
that are approximately equal to it, and repeat). We say two
clustersC, C′ are approximately equal if|C \ C′| ≤ gn,
|C′ \ C| ≤ gn and |C′ ∩ C| ≥ gn. Let L′′ be the list re-
maining.

3. Construct a forest on the remaining listL′′. C becomes a
child of C′ in this forest ifC′ approximately containsC, i.e.
|C \ C′| ≤ gn, |C′ \ C| ≥ gn and|C′ ∩ C| ≥ gn.

4. Complete the forest arbitrarily into a tree.

THEOREM 9. Let K be a similarity function satisfying(s, γ)-
strong stability of large subsets for the clustering problem (S, `).
LetL be a list of clusters such that any cluster in the ground-truth
of size at leastαn is f -close to one of the clusters in the list. Then
Algorithm 3 with parameters satisfyings + f ≤ g, f ≤ gγ/10
andα > 6kg yields a tree such that the ground-truth clustering is
2αk-close to a pruning of this tree.

Proof Sketch: Let k′ be the number of “big” ground-truth clus-
ters: the clusters of size at leastαn; without loss of generality as-
sume thatC1, ...,Ck′ are the big clusters.

Let C′
1, ...,C′

k′ be clusters inL such thatd(Ci, C
′
i) is at mostf

for all i. By Property 7 and Lemma 10 (stated below), we know that
after Step1 (the “testing of clusters" step) all the clustersC′

1, ...,C′
k′

survive; furthermore, we have three types of relations between the
remaining clusters. Specifically, either:

(a) C andC′ are approximately equal; that means|C \ C′| ≤
gn, |C′ \ C| ≤ gn and|C′ ∩ C| ≥ gn.

(b) C andC′ are approximately disjoint; that means|C \ C′| ≥
gn, |C′ \ C| ≥ gn and|C′ ∩ C| ≤ gn.

(c) orC′ approximately containsC; that means|C \ C′| ≤ gn,
|C′ \ C| ≥ gn and|C′ ∩ C| ≥ gn.

Let L′′ be the remaining list of clusters after sparsification. It’s
easy to show that there existsC′′

1 , ..., C′′
k′ inL′′ such thatd(Ci, C

′′
i )

is at most(f + 2g), for all i. Moreover, all the elements inL′′ are
either in the relation “subset" or “disjoint". Also, since all the clus-
tersC1, ...,Ck′ have size at leastαn, we also have thatC′′

i , C′′
j are

in the relation “disjoint”, for alli, j, i 6= j. That is, in the forest we
constructC′′

i are not descendants of one another.
We showC′′

1 , ..., C′′
k′ are part of a pruning of small error rate

of the final tree. We do so by exhibiting a small extension to a
list of clustersL′′′ that are all approximately disjoint and nothing
else inL′′ is approximately disjoint from any of the clusters inL′′′

(thusL′′′ will be the desired pruning). Specifically greedily pick a
clusterC̃1 in L′′ that is approximately disjoint fromC′′

1 , ..., C′′
k′ ,

and in general in stepi > 1 greedily pick a clusterC̃1 in L′′

that is approximately disjoint fromC′′
1 , ..., C′′

k′ , C̃1, . . . , C̃i−1. Let
C′′

1 , ..., C′′
k′ , C̃1, . . . , C̃k̃ be the listL′′′. By design,L′′′ will be a

pruning of the final tree and we now claim its total error is at most
2αkn. In particular, note that the total number of points missing
from C′′

1 , ..., C′′
k′ is at mostk(f + 2g)n + kαn ≤ 3

2
kαn. Also,

by construction, each̃Ci must contain at leastαn − (k + i)gn

new points, which together with the above implies thatk̃ ≤ 2k.
Thus, the total error ofL′′′ overall is at most3

2
αkn + 2kk′gn ≤

2αkn.

LEMMA 10. LetK be a similarity function satisfying the(s, γ)-
strong stability of large subsets property for the clustering problem
(S, `). LetC, C′ be such that|C ∩ C′| ≥ gn, |C \ C′| ≥ gn and
|C′ \ C| ≥ gn. LetC∗ be a cluster in the underlying ground-truth
such that|C∗ \ C| ≤ fn and |C \ C∗| ≤ fn. LetI = C ∩ C′. If
s + f ≤ g andf ≤ gγ/10 , thenK(I, C \ I) > K(I, C′ \ I).

PROOF. Omitted. See the full version of the paper [8].

THEOREM 11. LetK be a similarity function satisfying the(s, γ)-
strong stability of large subsets property for the clustering problem
(S, `). Assume thats = O(ε2γ/k2). Then using Algorithm 3 with
parametersα = O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2), to-
gether with Algorithm 1 we can with probability1 − δ produce a
tree with the property that the ground-truth isε-close to a pruning
of this tree. Moreover, the size of this tree isO(k/ε).

Proof Sketch: First, we run Algorithm 1 get a listL of clusters
such that with probability at least1 − δ any cluster in the ground-
truth of size at leastε

4k
is f -close to one of the clusters in the list.

We can ensure that our listL has size at mostk
O

`

k

γ2
log 1

ε
log k

δf

´

.
We then run Procedure 3 with parametersα = O(ε/k), g =
O(ε2/k2), f = O(ε2γ/k2). We thus obtain a tree with the guar-
antee that the ground-truth isε-close to a pruning of this tree (see
Theorem 9). To complete the proof we only need to show that this
tree hasO(k/ε) leaves. This follows from the fact that all leaves of
our tree have at leastαn points and the overlap between any two of
them is at mostgn.

6. INDUCTIVE SETTING
In this section we consider aninductivemodel in whichS is

merely a small random subset of points from a much larger abstract
instance spaceX, and clustering is representedimplicitly through
a hypothesish : X → Y . In the list model our goal is to produce
a list of hypotheses,{h1, . . . , ht} such that at least one of them
has error at mostε. In the tree model we assume that each node



in the tree induces a cluster which is implicitly represented as a
function f : X → {0, 1}. For a fixed treeT and a pointx, we
defineT (x) as the subset of nodes inT that containx (the subset
of nodesf ∈ T with f(x) = 1). We say that a treeT has error at
mostε if T (X) has a pruningf1, ..., fk′ of error at mostε.

We analyze in the following, for each of our properties, how
large a setS we need to see in order for our list or tree produced
with respect toS to induce a good solution with respect toX.

The average attraction property. Our algorithms for the aver-
age attraction property (Property 4) and the average weighted at-
traction property are already inherently inductive.

The strict separation property. We can adapt the algorithm in
Theorem 2 to the inductive setting as follows. We first draw a set
S of n = O

`

k
ε

ln
`

k
δ

´´

unlabeled examples. We run the algorithm
described in Theorem 2 on this set and obtain a treeT on the sub-
sets ofS. Let Q be the set of leaves of this tree. We associate each
nodeu in T a boolean functionfu specified as follows. Consider
x ∈ X, and letq(x) ∈ Q be the leaf given byargmaxq∈QK(x, q);
if u appears on the path fromq(x) to the root, then setfu(x) = 1,
otherwise setfu(x) = 0.

Note thatn is large enough to ensure that with probability at
least1− δ, S includes at least a point in each cluster of size at least
ε
k

. Remember thatC = {C1, . . . , Ck} is the correct clustering of
the entire domain. LetCS be the (induced) correct clustering on
our sampleS of sizen. Since our property is hereditary, Theo-
rem 2 implies thatCS is a pruning ofT . It then follows from the
specification of our algorithm and from the definition of the strict
separation property that with probability at least1− δ the partition
induced over the whole space by this pruning isε-close toC.

The strong stability of large subsets property. We can also nat-
urally extend the algorithm for Property 7 to the inductive setting.
The main difference in the inductive setting is that we have to esti-
mate(rather thancompute) the|Cr \ Cr′ |, |Cr′ \ Cr|, |Cr ∩ Cr′ |,
K(Cr ∩ Cr′ , Cr \ Cr′) andK(Cr ∩ Cr′ , Cr′ \ Cr) for any two
clustersCr, Cr′ in the list L. We can easily do that with only
poly(k, 1/ε, 1/γ, 1/δ) log(|L|)) additional points, whereL is the
input list in Algorithm 3 (whose size depends on1/ε, 1/γ andk
only). Specifically, using a modification of the proof in Theorem 11
and standard concentration inequalities (e.g. the McDiarmid in-
equality [19]) we can show that:

THEOREM 12. Assume thatK is a similarity function satisfy-
ing the(s, γ)-strong stability of large subsets property for(X, `).
Assume thats = O(ε2γ/k2). Then using Algorithm 3 with pa-
rametersα = O(ε/k), g = O(ε2/k2), f = O(ε2γ/k2), together
with Algorithm 1 we can produce a tree with the property that the
ground-truth isε-close to a pruning of this tree. Moreover, the size

of this tree isO(k/ε). We useO
`

k
γ2 ln

`

k
εδ

´

·
`

k
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´
4k

γ2
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´

ln( 1
δ
)
´

points in the first phase andO
`

1
γ2

1
g2

k
γ2 log 1

ε
log k

δf
log k

´

points
in the second phase.

Note that each cluster is represented as a nearest neighbor hy-
pothesis over at mostk sets.

The strong stability property. We first note that we need to con-
sider a variant of our property that has aγ-gap. To see why this
is necessary consider the following example. Suppose allK(x, x′)
values are equal to1/2, except for a special single center pointxi

in each clusterCi with K(xi, x) = 1 for all x in Ci. This satisfies
strong-stability since for everyA ⊂ Ci we haveK(A, Ci \ A) is
strictly larger than1/2. Yet it is impossible to cluster in the in-
ductive model because our sample is unlikely to contain the center

points. The variant of our property that is suited to the inductive
setting is the following:

PROPERTY 8. The similarity functionK satisfies theγ-strong
stability property for the clustering problem(X, `) if for all clus-
ters Cr, Cr′ , r 6= r′ in the ground-truth, for allA ⊂ Cr, for all
A′ ⊆ Cr′ we have

K(A, Cr \ A) > K(A, A′) + γ.

For this property, we could always run the algorithm for Theo-
rem 12, though running time would be exponential ink and1/γ.
We show here how we can get polynomial dependence on these pa-
rameters by adapting Algorithm 2 to the inductive setting asin the
case of the strict order property. Specifically, we first drawa set
S of n unlabeled examples. We run the average linkage algorithm
on this set and obtain a treeT on the subsets ofS. We then attach
each new pointx to its most similar leaf in this tree as well as to
the set of nodes on the path from that leaf to the root. For a formal
description see Algorithm 4. While this algorithm looks natural,
proving its correctness requires more involved arguments.

Algorithm 4 Inductive Average Linkage, Tree Model

Input: Similarity functionK, parametersγ, ε > 0, k ∈ Z+;
n = n(ε, γ, k, δ);

• Pick a setS = {x1, . . . , xn} of n random examples fromX

• Run the average linkage algorithm (Algorithm 2) on the set
S and obtain a treeT on the subsets ofS. Let Q be the set
of leaves of this tree.

• Associate each nodeu in T a functionfu (which induces a
cluster) specified as follows.

Considerx ∈ X, and letq(x) ∈ Q be the leaf given by
argmaxq∈QK(x, q); if u appears on the path fromq(x) to
the root, then setfu(x) = 1, otherwise setfu(x) = 0.

• Output the treeT .

We show in the following that forn = poly(k, 1/ε, 1/γ, 1/δ)
we obtain a treeT which has a pruningf1, ..., fk′ of error at most
ε. Specifically:

THEOREM 13. LetK be a similarity function satisfying the strong
stability property for the clustering problem(X, `). Then using Al-
gorithm 4 with parametersn = poly(k, 1/ε, 1/γ, 1/δ), we can
produce a tree with the property that the ground-truth isε-close to
a pruning of this tree.

Proof Sketch: Remember thatC = {C1, . . . , Ck} is the ground-
truth clustering of the entire domain. LetCS = {C′

1, . . . , C
′
k} be

the (induced) correct clustering on our sampleS of size n. As
in the previous arguments we assume that a cluster is big if ithas
probability mass at leastε

2k
.

First, Theorem 14 below implies that with high probability the
clustersC′

i corresponding to the large ground-truth clusters satisfy
our property with a gapγ/2. (Just perform a union bound overx ∈
S \ C′

i.) It may be thatC′
i corresponding to the small ground-truth

clusters do not satisfy the property. However, a careful analysis of
the argument in Theorem 8 shows that that with high probability
CS is a pruning of the treeT . Furthermore sincen is large enough
we also have that with high probabilityK(x, C(x)) is within γ/2



of K(x, C′(x)) for a 1 − ε fraction of pointsx. This ensures that
with high probability, for any such goodx the leafq(x) belongs to
C(x). This finally implies that the partition induced over the whole
space by the pruningCS of the treeT is ε-close toC.

Note that each clusteru is implicitly represented by the function
fu defined in the description of Algorithm 4.

We prove in the following that for a sufficiently large value of n
sampling preserves stability. Specifically:

THEOREM 14. Let C1, C2, . . . , Ck be a partition of a setX
such that for anyA ⊆ Ci and anyx 6∈ Ci,

K(A, Ci \ A) ≥ K(A, x) + γ.

Let x 6∈ Ci and letC′
i be a random subset ofn′ elements ofCi.

Then,n′ = poly(1/γ, log(1/δ)) is sufficient so that with probabil-
ity 1 − δ, for anyA ⊂ C′

i,

K(A, C′
i \ A) ≥ K(A, x) +

γ

2
.

Proof Sketch: First of all, the claim holds for singleton subsets
A with high probability using a Chernoff bound. This implies the
condition is also satisfied for every subsetA of size at mostγn′/2.
Thus, it remains to prove the claim for large subsets. We do this
using the cut-decomposition of [20] and the random samplinganal-
ysis of [3].

Let N = |Ci|. By [20], we can decompose the similarity matrix
for Ci into a sum of cut-matricesB1+B2+. . .+Bs plus a low cut-
norm matrixW with the following properties. First, eachBj is a
cut-matrix, meaning that for some subsetSj1 of the rows and subset
Sj2 of the columns and some valuedj , we have:Bj [xy] = dj for
x ∈ Sj1, y ∈ Sj2 and allBj [xy] = 0 otherwise. Second, each
dj = O(1). Finally, s = 1/ε2 cut-matrices are sufficient so that
matrixW has cut-norm at mostε2N : that is, for any partition of the
verticesA, A′, we have|P

x∈A,y∈A′ W [xy]| ≤ εN2; moreover,
||W ||∞ ≤ 1/ε and||W ||F ≤ N .

We now closely follow arguments in [3]. First, let us imagine
that we have exact equalityCi = B1 + . . . + Bs, and we will
add in the matrixW later. We are given that for allA, K(A, Ci \
A) ≥ K(A, x) + γ. In particular, this trivially means that for each
“profile” of sizes{tjr}, there is no setA satisfying

|A ∩ Sjr| ∈ [tjr − α, tjr + α]N

|A| ≥ (γ/4)N

that violates our given condition. The reason for considering cut-
matrices is that the values|A ∩ Sjr| completely determine the
quantity K(A, Ci \ A). We now setα so that the above con-
straints determineK(A, Ci \ A) up to±γ/4. In particular, choos-
ing α = o(γ2/s) suffices. This means that fixing a profile of
values{tjr}, we can replace “violates our given condition” with
K(A, x) ≥ c0 for some valuec0 depending on the profile, los-
ing only an amountγ/4. We now apply Theorem 9 (random sub-
programs of LPs) of [3]. This theorem states that with probability
1−δ, in the subgraphC′

i, there is no setA′ satisfying the above in-
equalities where the right-hand-sides and objectivec0 are reduced
by O(

p

log(1/δ)/
√

n). Choosingn � log(1/δ)/α2 we get that
with high probability the induced cut-matricesB′

i have the property
that there is noA′ satisfying

|A′ ∩ S′
jr| ∈ [tjr − α/2, tjr + α/2]N

|A′| ≥ (γ/2)n′

with the objective valuec0 reduced by at mostγ/4. We now sim-
ply do a union-bound over all possible profiles{tjr} consisting of
multiples ofα to complete the argument.

Finally, we incorporate the additional matrixW using the fol-
lowing result from [3].

LEMMA 15. [3][Random submatrix] Forε, δ > 0, and anyW
an N × N real matrix with cut-norm||W ||C ≤ εN2, ||W ||∞ ≤
1/ε and ||W ||F ≤ N , let S′ be a random subset of the rows ofW
with n′ = |S′| and letW ′ be then′ × n′ submatrix ofW corre-
sponding toW . For n′ > (c1/ε4δ5) log(2/ε), with probability at
least1 − δ,

||W ′||C ≤ c2
ε√
δ
n′2

wherec1, c2 are absolute constants.

We want the addition ofW ′ to influence the valuesK(A, C′
i −A)

by o(γ). We now use the fact that we only care about the case that
|A| ≥ γn′/2 and|C′

i −A| ≥ γn′/2, so that it suffices to affect the
sum

P

x∈A,y∈C′

i
−A K(x, y) by o(γ2n′2). In particular, this means

it suffices to haveε = õ(γ2), or equivalentlys = Õ(1/γ4). This
in turn implies that it suffices to haveα = õ(γ6), which implies
thatn′ = Õ(1/γ12) suffices for the theorem.

7. CONCLUSIONS AND OPEN QUESTIONS
In this paper we provide a generic framework for analyzing what

properties of a similarity function are sufficient to allow it to be
useful for clustering, under two natural relaxations of thecluster-
ing objective. We propose a measure of theclustering complexity
of a given property that characterizes its information-theoretic use-
fulness for clustering, and analyze this complexity for a broad class
of properties, as well as develop efficient algorithms that are able
to take advantage of them.

Our work can be viewed both in terms of providing formal ad-
vice to thedesignerof a similarity function for a given clustering
task (such as clustering query search results) and in terms of ad-
vice about whatalgorithmsto use given certain beliefs about the
relation of the similarity function to the clustering task.Our model
also provides a better understanding of when (in terms of therela-
tion between the similarity measure and the ground-truth cluster-
ing) different hierarchical linkage-based algorithms will fare better
than others. Abstractly speaking, our notion of apropertyparallels
that of adata-dependent concept class[35] (such as large-margin
separators) in the context of classification.

Open questions: Broadly, one would like to analyze other natural
properties of similarity functions, as well as to further explore and
formalize other models of interactive feedback. In terms ofspecific
open questions, for the average attraction property (Property 4) we
have an algorithm that fork = 2 produces a list of size approxi-
mately2O(1/γ2 ln 1/ε) and a lower bound on clustering complexity
of 2Ω(1/γ). One natural open question is whether one can close
that gap. A second open question is that for the strong stability of
large subsets property (Property 7), our algorithm produces hierar-
chy but has larger running time substantially larger than that for the
simpler stability properties. Can an algorithm with running time
polynomial ink and1/γ be developed? Can one prove stability
properties for clustering based on spectral methods, e.g.,the hierar-
chical clustering algorithm given in [14]? More generally,it would
be interesting to determine whether these stability properties can be
further weakened and still admit a hierarchical clustering. Finally,
in this work we have focused on formalizing clustering with non-
interactive feedback. It would be interesting to formalizeclustering
with other natural forms of feedback.
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APPENDIX
Theorem 3 If K satisfiesν-strict separation, then so long as the
smallest correct cluster has size greater than5νn, we can produce
a tree such that the ground-truth clustering isν-close to a pruning
of this tree.

PROOF. Let S′ ⊆ S be the set of(1 − ν)n points such that
K satisfies strict separation with respect toS′. Call the points in
S′ “good”, and those not inS′ “bad” (of course, goodness is not
known to the algorithm). We first generate a listL of n2 clusters
such that, ignoring bad points, any cluster in the ground-truth is in
the list. We can do this by for each pointx ∈ S creating a cluster
of thet nearest points to it for each4νn ≤ t ≤ n.

We next run a procedure that removes points from clusters that
are non-laminar with respect to each other without hurting any of
the correct clusters, until the remaining set is fully laminar. Specif-
ically, while there exist two clustersC andC′ that are non-laminar
with respect to each other, we do the following:

1. If eitherC or C′ has size≤ 4νn, delete it from the list. (By
assumption, it cannot be one of the ground-truth clusters).

2. If C andC′ are “somewhat disjoint” in that|C \ C′| > 2νn
and |C′ \ C| > 2νn, each pointx ∈ C ∩ C′ chooses one
of C or C′ to belong to based on whichever ofC \ C′ or
C′ \ C respectively has largermediansimilarity to x. We
then removex from the cluster not chosen. Because each of
C \ C′ andC′ \ C has a majority of good points, if one ofC
or C′ is a ground-truth cluster (with respect toS′), all good
pointsx in the intersection will make the correct choice.C
andC′ are now fully disjoint.

3. If C, C′ are “somewhat equal” in that|C \ C′| ≤ 2νn and
|C′ \ C| ≤ 2νn, we make them exactly equal based on the
following related procedure. Each pointx in the symmetric
difference ofC andC′ decidesin or out based on whether
its similarity to the(νn + 1)st most-similar point inC ∩ C′

is larger or smaller (respectively) than its similarity to the
(νn + 1)st most similar point inS \ (C ∪ C′). If x is a
good point inC \C′ andC is a ground-truth cluster (with re-
spect toS′), thenx will correctly choosein, whereas ifC′ is
a ground-truth cluster thenx will correctly chooseout. Thus,
we can replaceC andC′ with a single cluster consisting of
their intersection plus all pointsx that chosein, without af-
fecting the correct clusters.

4. If none of the other cases apply, it may still be there exist
C, C′ such thatC “somewhat contains”C′ in that|C \C′| >
2νn and0 < |C′ \C| ≤ 2νn. In this case, choose the largest
suchC and apply the same procedure as in Step 3, but only
over the pointsx ∈ C′ \ C. At the end of the procedure, we
haveC ⊇ C′ and the correct clusters have not been affected
with respect to the good points.

Since all clusters remaining are laminar, we can now arrangethem
into a forest, which we then arbitrarily complete into a tree.


