
15-859(D) Randomized Algorithms
Notes for 10/1/98

* approximating MAX SAT

MAX-SAT

Here is a classic problem, whose solution combines randomized rounding idea and the con-
ditional expecation idea.

A CNF formula is an AND of clauses. A k-CNF is a CNF where each clause has each of size
at most k. Let’s define an “exactly-k CNF” to be a CNF where each clause is of size exactly
k (a given variable is not allowed to appear several times in the same clause to inflate its
size). Say we’re given a formula and we want to satisfy as many clauses as we can.

Claim: For any “exactly k-CNF”, there exists a solution that satisfies at least 1 − 1/2k of
the clauses.

Proof: consider a random assignment. Expected number of clauses satisfied is (1− 1/2k)m.
(m =number of clauses). Therefore, an assignment with this property exists.

What about MAX-SAT in general? If there are mk clauses of size k, a random assignment
will satisfy an expected

∑
k mk(1− 1/2k) of them.

How about a deterministic algorithm? Idea: given any partial assignment P, we can calculate
the expected number of clauses satisfied given that those variables not specified in P are set
randomly. (It is just the number of clauses already satisfied plus

∑
k mk(1−1/2k), where mk

is the number of clauses of size k in the “formula to go”.) So, we just use the conditional
expectation method, going through the variables one at a time, setting the next xi to 0 or
1 depending on which produces the greater expected value. Since the expected number of
clauses satisfied by a random assignment is the average of the expected number given xi = 0
and the expected number given xi = 1, our “expectation to go” never decreases.

For the MAX-SAT problem in general, in the worst case this bound is 1/2. Can’t hope for
better, e.g., if the formula is just “x1 and ¬x1.” How about an approximation algorithm
that satisfies nearly as many clauses as the best possible solution? (note: MAX 2-SAT is
NP-hard). It turns out there is a way to satisfy at least 3/4 of the maximum possible. Note:
above will work so long as there are no singletons. We’ll look next at a randomized rounding
procedure that does well so long as all clauses are small. Then we’ll combine them.

Here is the algorithm:

• Solve a fractional version of the problem. Instead of requiring variable xi ∈ {0, 1}, we
allow xi ∈ [0, 1]. Define ¬xi to be 1− xi. Allow clauses to be “partially satsified:” for
clause (x1 ∨ x2 ∨ ¬x3), let “satisfiedness” be: min(1, x1 + x2 + (1 − x3)). I.e., if the

1



sum is less than 1, then it represents how satisfied the clause is, and if greater than
1, then we say the clause is satisfied. Then we find the solution that maximizes total
satisfaction.

To set up as an LP: xi ∈ [0, 1]. Variable zj for clause j: zj ≤ 1 and zj ≤ sum-of-
literals-in-clause-j. Then, maximize

∑
zj.

• Now, let’s do randomized rounding: set variable i to 1 with probability xi.

Claim: if clause j has k literals, then Pr(clause j is satisfied) ≥ zj(1− (1− 1/k)k).

[Note: for k = 1, this is zj, for k=2, this is 3z/4, for k = 3, this is 0.704z]

Proof: Say zj = 1 and all variables in it are at 1/k. Then, the probability the clause
is not satisfied is exactly (1 − 1/k)k. Say zj may not be 1, but all variables are
equal at zj/k. Then the probability the clause is satisfied is 1 − (1 − zj/k)k, which
is ≥ zj(1 − (1 − 1/k)k). (Get equality at zj = 0 and zj = 1.) Then we just need to
show that the “all equal” case is the worst case. This is the same as saying “given k
quantities that sum to a given value (k − z), the product is maximized when they are
all equal.”

• This strategy does well when the clauses are small, and the previous did well when the
clauses are big. E.g., prob(clause j is satisfied) as a function of k is:

strategy 1 | strategy 2

------------|-------------

k=1 1/2 | z_j

k=2 3/4 | 3/4 z_j

k=3 7/8 | 0.704 z_j

• So, let’s just flip a coin and with prob 1/2 use strategy 1, and with probability 1/2 use
strategy 2. The probability clause j is satisfied is then the average of the two values
from the above table. Just want this to be ≥ (3/4)zj, which, in fact, it is. (just have
to do the calculation in general).

Notes:

Current best approxs: 0.931 for MAX 2-SAT [Feige-Goemans], 0.801 for MAX 3-SAT [Tre-
visan, Sorkin, Sudan, Williamson], (if formula is satisfiable then can get 7/8 [Karloff, Zwick]),
0.770 for MAX-SAT [Asano] building on [Goemans-Williamson].

Current best hardness results: 7/8 for MAX-3SAT [Hastad], 73/74=0.986 for MAX 2-SAT.

2


