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Abstract

For mobile robots to assist people in everyday life, they must
be easy to instruct. This paper describes a gesture-based
interface for human robot interaction, which enables people
to instruct robots through easy-to-perform arm gestures. Such
gestures might be staticpose gestures, which involve only
a specific configuration of the person’s arm, or they might
be dynamicmotion gestures(such as waving). Gestures are
recognized in real-time at approximate frame rate, using a
hybrid approach that integrates neural networks and template
matching. A fast, color-based tracking algorithm enables the
robot to track and follow a person reliably through office
environments with drastically changing lighting conditions.
Results are reported in the context of an interactive clean-up
task, where a person guides the robot to specific locations that
need to be cleaned, and the robot picks up trash which it then
delivers to the nearest trash-bin.

Introduction
The field of robotics is currently undergoing a change.

While in the past, robots where predominately used in facto-
ries for purposes such as manufacturing and transportation,
a new generation of “service robots” has recently begun to
emerge. Service robots cooperate with people and assist
them in their everyday tasks. A landmark service robot
is Helpmate Robotics’s Helpmate robot, which has already
been deployed at numerous hospitals worldwide (King &
Weiman 1990). In the near future, similar robots are ex-
pected to appear in various branches of entertainment, recre-
ation, health-care, nursing, etc., and we expect them to in-
teract closely with people.

This upcoming generation of service robots opens up
new research opportunities. While the issue ofmo-
bile robot navigationhas been researched quite exten-
sively (see e.g., (Kortenkamp, Bonassi, & Murphy 1998;
Borenstein, Everett, & Feng 1996)), considerably little at-
tention has been paid to issues ofhuman-robot interaction.
However, many service robots will be operated by non-expert
users, who might not even be capable of operating a com-
puter keyboard. It is therefore essential that these robotsbe
equipped with “natural” human robot interfaces that facili-
tate the interaction of robots and people.
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The need for more effective human robot interfaces has
been recognized. For example, in his M.Sc. thesis, Torrance
developed a natural language interface for teaching mobile
robots names of places in an indoor environment (Torrance
1994). Due to the lack of a speech recognition system,
his interface still required the user to operate a keyboard;
however, the natural language component made instructing
the robot significantly easier. More recently, Asoh and col-
leagues (Asohet al. 1997) developed an interface that inte-
grates a speech recognition system into a phrase-based natu-
ral language interface. They successfully instructed their
“office-conversant” robot to navigate to office doors and
other significant places in their environment, using verbal
commands. Other researchers have proposed vision-based
interfaces that allow people to instruct mobile robots via
arm gestures. For example, Kortenkamp and colleagues
(Kortenkamp, Huber, & Bonassi 1996) recently developed
a gesture-based interface, which is capable of recognizing
arm poses such as pointing towards a location on the ground.
In a similar effort, Kahn and colleagues (Kahnet al. 1996)
developed a gesture-based interface which has been demon-
strated to reliably recognize static arm poses (pose gestures)
such as pointing. This interface was successfully integrated
into Firby’s reactive plan-execution system RAP (Firbyet
al. 1995), where it enabled people to instruct a robot to
pick up free-standing objects. Both of these approaches,
however, recognize only static pose gestures. They cannot
recognize gestures that are defined through specific temporal
patterns of arm movements, such as waving. Motion ges-
tures, which are commonly used for communication among
people, provide additional freedom in the design of gestures.
In addition, they reduce the chances of accidentally classi-
fying arm poses as gestures that were not intended as such.
Thus, they appear better suited for human robot interaction
than static pose gestures.

This paper presents a vision-based human robot interface
that has been designed to instruct a mobile robot through both
pose and motion gestures. An adaptive dual-color tracking
algorithm enables the robot to find, track, and follow a person
around at speeds of up to one foot per second. This tracking
algorithm can quickly adapt to different lighting conditions.
Gestures are recognized by a real-time template-matching
algorithm. This algorithm works in two phases: one that
recognizes static arm poses, and one that recognizes gestures.



Figure 1: AMELIA, the robot used
in our research, is a RWI B21
robot equipped with a color camera
mounted on a pan-tilt unit, 24 sonar
sensors, and a 180� SICK laser range
finder.

The algorithm can recognize both pose and motion gestures.
This approach has been integrated into our existing robot

navigation and control software (Thrunet al. 1998; Burgard
et al. 1998), where it enables human operators� to provide direct motion commands (e.g., stopping),� to guide the robot to places which it can memorize� to indicate the location of objects (e.g., trash on the floor)� and to initiate clean-up tasks, where the robot searches for

trash, picks it up, and delivers it to the nearest trash-bin.

In a pilot study, we have successfully instructed our robot to
pick up trash scattered in an office building, and to deposit
it into a trash-bin. This task was motivated by the “clean-up
an office” task, which was designed for the AAAI-94 mobile
robot competition (Simmons 1995). Our scenario differs
from the competition task in that a human interacts with the
robot and initiates the clean-up task, which is then performed
autonomously by the robot.

In our experiments, we found the interface to be reliable
and relatively easy to use. While this is only an example
application designed to test the utility of motion gestures
in human robot interaction, we believe that our interface is
applicable to a larger range of upcoming service robots.

Visual Tracking and Servoing
The lowest-level component of our approach is a color-based
tracking algorithm, which enables the robot to find, track,
and follow people in real-time. Visual tracking of peo-
ple has been studied extensively (Darrel, Moghaddam, &
Pentland 1996; Crowley 1997; Wrenet al. 1997). Many
existing approaches assume that the camera is mounted
at a fixed location. Such approaches typically rely on a
static background, so that human motion can be detected
through image differencing. Some approaches (e.g., (Yang
& Waibel 1995)) can track people if the camera is mounted
on a pan-tilt unit, which can impose mild changes in illu-
mination. Recognizing gestures with a robot-mounted cam-
era is more difficult due to the occasional occurrence of
drastic changes in background and lighting conditions that
are caused by robot motion. This problem has previously
been addressed by (Wong, Kortenkamp, & Speich 1995;
Huber & Kortenkamp 1995), who successfully devised al-
gorithms for tracking people visually similar to the one pro-
posed here.

Since our algorithm for finding people is a specialization
of our tracking algorithm, let us first describe the tracking
algorithm. This algorithm tracks people based on a combi-
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Figure 2: Tracking a person: (a) Raw camera image, (b) face-color
filtered image, and (c) body-color filtered image. The darkera pixel
in the filtered images, the smaller the Mahalanobis distanceto the
mean color. (d) Projection of the filtered image onto the horizontal
axis (within a search window). (e) Face and body center, as used
for tracking and adaptation of the filters. (f) Search window, in
which the person is expected to be found in the next image.

nation of two colors, namely face color and body color (i.e.,
shirt color). It iterates four steps:
Step 1: Color Filtering. Two Gaussian color filters are
applied to each pixel in the image. Each filter is of the formci =  e(Xi�X̂face)T Σ�1

face (Xi�X̂face)e(Xi�X̂body)T Σ�1
body (Xi�X̂body) ! (1)

whereXi is the color vector of thei-th image pixel,X̂face
andΣfaceare the mean and covariance matrix of a face color
model, andX̂body and Σbody are the mean and covariance
matrix of a body (shirt) color model. The result of this
operation are two filtered images, example of which are
shown in Figures 2b&c. These images are then smoothed
locally using a pseudo-Gaussian kernel with width 5, in order
to reduce the effects of noise.
Step 2: Alignment. Next, the filtered image pair is searched
for co-occurrences of vertically aligned face and body color.
This step rests on the assumption that a person’s face is above
his/her shirt in the camera image. First, the image is mapped
into a horizontal vector, where each value corresponds to the
combined face- and body-color integrated vertically. Fig-
ure 2d illustrates the results of this alignment step. The
gray-level in the two center regions indicate graphically the
horizontal density of face and body color. The darker a
region, the better the match. Both responses are then mul-
tiplied, to determine the estimated horizontal coordinates of
the person. Finally, the filtered image regions are searched
vertically for the largest occurrence of the respective color, to
determine the vertical coordinates of face and body. Figure
2e shows the results of this search. We found this scheme
to be highly reliable, even for people that moved hastily in
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Figure 3: Example gestures: (a) stop gesture and (b) follow gesture.
While the stop gesture is a pose gesture, the follow gesture involves
motion, as indicated by the arrows.

front of the robot.
Step 3: Servoing. If the robot is in visual servoing mode
(meaning that it is following a person), it issues a motion
command that makes the robot turn and move towards this
person. The command is passed on to a collision avoidance
method (Fox, Burgard, & Thrun 1997) that sets the actual
velocity and motion direction of the robot in response to
proximity sensor data.
Step 4: Adaptation. Finally, the means and covariancesX̂face;Σface; X̂body;Σbodyare adapted, to compensate changes
in illumination. The robot computes new means and co-
variances from small rectangular regions around the cen-
ter of the face and the body (shown in Figure 2e). LetX̂�

face;Σ�face; X̂�
body;Σ�body denote these new values, obtained

from the most recent image. The means and covariances are
updated according to the following rule, which is a temporal
estimator with exponential delay:X̂face  � �X̂�

face + (1��)X̂face�face  � ���face + (1��)�faceX̂body  � �X̂�
body + (1��)X̂body�body  � ���body + (1��)�body (2)

Here � is a decay factor, which we set to 0.1 in all our
experiments.
Finding a person. To find a person and acquire an initial
color model, the robot scans the image for face color only,
ignoring its body color filter. Once a color blurb larger than
a specific threshold is found, the robot acquires its initial
body color model based on a region below the face. Thus,
the robot can track people with arbitrary shirt colors, as long
as they are sufficiently coherent.

Our tracking algorithm, which can be viewed of a
two-color extension of basic color-based tracking algo-
rithms such as those described in (Yang & Waibel 1995;
Swain 1991), was found to work reliably when tracking
people and following them around through buildings with
rapidly changing lighting conditions. The tracking routine
is executed at a rate of 20 Hertz on a 200 Mhz Pentium PC.
This speed is achieved by focusing the computation (Steps
1 and 2) on a small window around the location where the
person was previously seen. Thus far, we tested the tracker
only for various types of single-color shirts with long sleeves;
experiments for multi-colored shirts were not yet conducted.
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Figure 4: Neural network pose analysis: (a) Camera image, with
the two arm angles as estimated by the neural network superim-
posed. The box indicates the regions which is used as network
input. (b) The input to the neural network, a down-sampled, color-
filtered image of size 10 by 10, and the outputs and targets of the
networks for the two angle.

Template-Based Recognition of Pose and
Motion Gestures

A primary goal of this work has been to devise a vision-based
interface that is capable of recognizing both pose and motion
gestures. Pose gestures involve a static configuration of a
person’s arm, such as the “stop” gesture shown in Figure 3a,
whereas motion gestures are defined through specific motion
patterns of an arm, such as the “follow me” gesture shown
in Figure 3b.

Our approach employs two phases, one for recognizing
poses from a single image (pose analysis), and one for recog-
nizing sequences of poses from a stream of images (temporal
template matching).

Pose Analysis
In the first phase, a probability distribution over all posesis
computed from a camera image. Our approach integrates
two alternative methods for image interpretation: a neural-
network based method and a graphical template matcher
(called: pose template matcher). Both approaches operate
on a color-filtered sub-region of the image which contains
the person’s right side,as determined by the tracking module.
They output a probability distribution over arm poses.

Theneural network-based approachpredicts the angles of
the two arm segments relative to the person’s body from the
image segment. The input to the network is a down-sampled
image segment, and the output are the angles, encoded using
multi-unit Gaussian representations (Pomerleau 1993). In
our implementation, we used 60 output units, 30 for each of
the two arm angles. The network was trained with Back-
propagation, using a database of 758 hand-labeled training
images. After training, the average error was 4:91� for the
angle of the upper arm segment and 5:54� for the angle of
the lower arm segment. These numbers were obtained using
an independent set of 252 testing images. Figure 4a shows
an example image. Superimposed here are the two angle
estimates, as generated by the neural network. Figure 4b
shows the input, output, and target values for the network.
The input is a down-sampled, color-filtered image of size 10
by 10. The output is Gauss-encoded. The nearness of the
outputs (first and third row) and the targets (second and forth
row) suggests that in this example, the network predicts the
angle with high accuracy.



Figure 5: Examples of pose templates. The excitatory region is
shown in black and the inhibitory in gray. White regions are not
considered in the matching process.

Our approach also employs a template-based algorithm
for analyzing poses, which compares poses to a set of pre-
recordedpose templates. More specifically, the color-filtered
image is correlated with a set of 16 pre-recorded templates of
arm poses. Each pose template consist of three regions: an
excitatory region, which specifies where the arm is to be ex-
pected for a specific pose, aninhibitory region,where the arm
shouldnotbe for this pose, and adon’t-know region, which
is not considered when computing the correlation. Figure 5
shows examples of pose templates. Here excitatory regions
are shown in black, whereas inhibitory regions are shown in
gray. The templates are constructed from labeled examples
of human arm poses (one per template), where the excita-
tory region is extracted from the largest coherent region in
the filtered image segment, and a straightforward geometric
routine is employed to determine a nearby inhibitory region.
In a experiment involving 122 example images, we recorded
that in 85.8% of all cases, the correct pose was identified; in
9.68% a nearby pose was recognized, and in only 4.52% the
pose template matcher produced an answer that was clearly
wrong. While the choice of 16 as the number of templates
is somewhat ad hoc, we found that it covered the space of
possible arm poses in sufficient density for the tasks at hand.

Both methods, the neural network-based method and the
pose template matcher, generate multi-dimensionalfeature
vectors, one for each image. The integration of two different
methods forposeanalysis was originally driven by thegoal of
understanding the different strengths and weaknesses of the
approaches. While neural networks generate information at
much higher accuracy (floating-point accuracy vs. 1-out-of-
16), in preliminary evaluations we observed that they are less
robust to occlusions of body parts. These results, however,
are preliminary, and a systematic experimental comparison
is currently underway.

Temporal Template Matching
In the second phase, a temporal template matcher compares
the temporal stream of feature vectors with a set of pre-
recorded prototypes (gesture templates) of individual ges-
tures.

Figure 6 shows examples of gesture templates, for the
gestures “stop” (Figure 6a) and “follow” (Figure 6b). Each
of these templates is a sequence of prototype feature vec-
tors, where time is arranged vertically. The size of the white
boxes indicates the magnitude of the corresponding numer-
ical value. Gesture templates are composed of a sequence
of feature vectors, constructed from a small number (e.g.,
5) of training examples. For graphical clarity, only feature
vectors with 16 components obtained with the pose template

(a) (b)

Figure 6: Examples of gesture templates. Gesture templates are
sequences of prototype feature vectors. Shown here are gesture
templates for (a) stop gesture (does not involve motion), (b) follow
gesture (involves motion, as indicated by the change over time).

matchers are shown here. As can be seen in this figure, the
stop gesture is a pose gesture (hence all feature vectors look
alike), whereas the follow gesture involves motion. Both
types of gestures—pose gestures and motion gestures—are
encoded through such gesture templates.

The temporal template matcher continuously analyzes the
stream of incoming feature vectors for the presence of ges-
tures. It does this by matching the gesture template to the
most recentn feature vectors, for varying numbers ofn (in
our implementation,n = 40; 50; : : : ; 80); notice that the
gesture templates are much shorter thann. To compensate
differences in theexact timing when performing gestures, our
approach uses the Viterbi algorithm (Rabiner & Juang 1986)
for time alignment. The Viterbi alignment employs dynamic
programming to find the best temporal alignment between
the feature vector sequence and the gesture template, thereby
compensating for variations in the exact timing of a gesture.
Figure 7 shows an actual sequence, during which a person
performs the follow gesture. The reader should notice that
this example exhibits a similar pattern as shown in Figure
6b. The arrow marks the point in time at which the follow
gesture is complete and recognized as such by the Viterbi
algorithm.

Learning
Both sets of templates, the pose templates and the gesture
templates, are learned from examples, just like the neural net-
work. To teach the robot a new gesture, the person presents
itself in front of the robot and executes this gesture several
times, in pre-specified time intervals. Our approach then
segments these examples into pieces of equal length, and
uses the average feature vector in each time segment as a
prototype segment. We found the current training scheme to
be robust to variations of various sorts, as long as the person
exercises reasonable care when training the robot. In most
cases, a single training gesture suffices to build a reliable
template.

Integration and Results
The gesture-based approach has been integrated into our pre-
viously developed mobile robot navigation system, thereby
building a robot that can be instructed by natural means
(Thrunet al. 1998; Burgardet al. 1998). In a nutshell, our
navigation methods enable robots to navigate safely while
acquiring maps of unknown environments. A fast motion
planner allows robots to move from point to point or, alter-
natively, to explore unknown terrain. Collisions with obsta-
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Figure 7: Example of a feature vector stream that contains afollow
gesture. The arrow indicates the point in time whenfollow is
recognized.

cles are avoided by a fast, reactive routine, which sets the
velocity and travel direction of the robot according to peri-
odic measurements of the robot’s various proximity sensors
(laser, sonar, infrared, tactile). While the robot is in mo-
tion, a concurrent localization method continuously tracks
the robot’s position, by comparing sensor readings with the
learned map of the environment. Permanent blockages lead
to modifications of the map, and thus to new motion plans.

We tested the effectiveness of the gesture-based interface
in the context of a clean-up task that involved human user
interaction and mobile manipulation. The specific choice of
the task was motivated by past AAAI mobile robot compe-
titions, in which robots were asked to find and remove all
sorts of objects (trash, tennis balls, etc.).� Follow: If the robot is shown a follow gesture, it follows

a person around. The follow gesture involves waving the
arm, as indicated in Figure 3a.� Stop: If the robot is shown a stop gesture, it immediately
stops. The stop gesture is a pose gesture, as shown in
Figure 3b.� Pointing: If the person points towards an object on the
ground, the robot starts searching for an object within its
visual field. If it succeeds, it moves towards the object,
picks it up, and then returns to the nearest trash-bin. The
location of trash-bins is known to the robot. In our im-
plementation, the pointing gesture is actually a motion
gesture, which involves moving the arm from the body

recognition result
follow stop point-1 point-2 abort no gesture

follow 59 - - - - -
stop - 39 1 - - -
point-1 - - 44 - - 6
point-2 - - - 42 - -
abort 1 2 - - 16 1
no gesture - - - - - 50

Table 1: Recognition results. Each row shows the recognition
result for examples of a specific gesture (including 50 testswhere
the human subject did not perform any gesture).

towards the pointing direction and back. We found this
version of the pointing gesture to lead to fewer false-
positives.� Abort: If the person shows an abortion gesture, the robot
moves back to its initial position and waits for a new
person.

Table 1 surveys experimental results for the recognition ac-
curacy of the gesture-based interface. Each row corresponds
to a number of experiments, in which a human subject pre-
sented a specific gesture. Because of the diversity of possible
pointing gestures, this specific gesture was realized by two
different gesture templates,one for pointing towards the floor
(labeled “point-1” in Table 1) and one for pointing horizon-
tally (labeled “point-2”). In some experiments, no gesture
was shown, to test the robot’s ability to detect gestures only
if the person actually performed one.

As can be seen in Table 1, our approach recognizes ges-
tures fairly accurately. In 211 experiments in which a human
showed a gesture and an additional50 experiments where the
human did not show a gesture, the robot classified 95.8% of
the examples correctly. With 95% confidence, the overall
accuracy is in the range[93:3%; 98:3%]. Some gestures had
a 100% recognition rate (follow and point-2), whereas the
point-1 gesture was only recognized with 88% accuracy.

Figure 8 shows an example run, in which our robot
AMELIA is instructed to pick up a piece of trash. Shown
there is a map of the the robot’s environment, con-
structed using an occupancy grid technique (Moravec 1988;
Thrunet al. 1998), along with the actual path of the robot
and the (known) location of a trash-bin. Initially, the robot
waited in the corridor for a person. The person instructed the
robot to follow him into the lab (using the follow gesture),
where it first stopped the robot (using the stop gesture), then
pointed at a piece of trash (a can). The robot picked up the
can, and returned to the corridor where it deposited the trash
in a bin. We found that operating the robot at low speed (0.7
feet per second) made it easier to instruct the robot. Tests
at higher speeds (1.5 feet per second) made it difficult to
position the robot reliably close to a trash can, even though
our software can manage much higher speeds. In the future,
we plan to extend the interface so that the person can select
the speed, and in addition give direct commands to the robot
(such as “rotate left” or “move 2 feet back”).

Discussion
This paper described a gesture-based interface for human-
robot interaction. A hybrid approach, consisting of an adap-



Figure 8: Map of the robot’s operational range (80 by 25 meters)
with trace of a specific example of a successfulclean-up operation.
The robot waited in the corridor, was then guided by a human into a
lab, where it picked up a can and later deposited it into a trash-bin.

tive color-filter, two template matchers and an artificial neu-
ral network, were described for recognizing human arm ges-
tures from streams of camera images. Our approach is ca-
pable of recognizing both static pose gestures and dynamic
motion gestures. The paper demonstrated the usefulness of
the interface in the context of a clean-up task, where a person
cooperated with the robot in cleaning up trash.

We believe that finding “natural” ways of communication
between humans and robots is of importance for the field
of robotics, as a variety of recent changes in both robotic
hardware and software suggests that service robots will soon
become possible, and commercially viable. This research is
intended to be a step towards this goal.

There are several open questions and limitations that war-
rant further research. For example, the tracking module is
currently unable to deal with multi-colored shirts, or to fol-
low people who do not face the robot. We believe, however,
that the robustness can be increased by considering other
cues, such as shape and texture, when tracking people. Sec-
ondly, our approach currently lacks a method for teaching
robots new gestures. This is not really a limitation of the ba-
sic gesture-based interface, as it is a limitation of the robot’s
finite state machine that controls its operation. Future work
will include providing the robot with the ability to learn new
gestures, and to associate those with specific actions and/or
locations. Together with our existing mapping and naviga-
tion software, this should lead to a robot that can be taught
a collection of tasks in novel indoor environments. Thus, by
providing the robot with the ability to learn new things, we
seek to explore further the practical utility of gesture-based
instruction in the context of mobile service robotics. Finally,
we believe it is worthwhile to augment the interface by a
speech-based interface, so that both gestures and speech can
be combined when instructing a mobile robot.
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