Using Kodu to Teach Reasoning About Programs

David S. Touretzky
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

Joint work with:

Christina Gardner-McCune and Ashish Aggarwal
University of Florida

October 19, 2016

WHY TEACH REASONING ABOUT PROGRAMS?

- * Teaching kids to program is not the main goal.
 - + They can copy code without understanding it.
 - + Programming by trial and error ≠ understanding.
- We teach programming as part of a broader effort to teach <u>computational thinking</u>.
 - + Reasoning about programs is part of CT.
- If kids can <u>reason</u> about programs, then they will also be able to <u>write</u> programs.

WHAT CAN A COMPETENT REASONER DO?

- Explain observed program behavior in terms of the code and the "laws" of computation.
- * Predict program behavior from the code. How?
 - + Mental simulation: execute the code in one's head.
 - + Recognize patterns in the code that provide insight and eliminate the need to explicitly simulate.
- Construct programs by applying design patterns and computational principles.

1. WHY IS KODU DIFFERENT?

More powerful primitives than other languages designed for children.

- * The WHEN part does pattern matching.
- The DO part uses object-centered actions, not screen coordinates.
- Every rule is a conditional.
- Implicit looping: rules run all the time.

WHY IS KODU DIFFERENT? (2)

- Kodu is a robot language, not a graphics language.
 - + Characters are semi-autonomous.
 - + Capable of complex perception & goal-directed action.
 - + They fidget when they have nothing else to do.
- X Kodu worlds are truly three-dimensional.
 - + Scratch is 2D; Alice is pseudo-3D.
- Built in physics (gravity, collisions, inertia, wind, ...)
- * Built in sound effects.

WHY IS KODU DIFFERENT? (3)

- Teaching young kids to reason about programs requires that the programs be short.
- But programs also need to be interesting!
- Because the Kodu language and worlds are so rich, one can write interesting 2-3 line Kodu programs.
- * Kodu's idioms and laws provide a good framework for teaching kids to reason about these programs.

2. KODU IDIOMS (DESIGN PATTERNS)

"DO TWO THINGS" IDIOM

Do Two Things

When you've bumped an apple, eat it and also play the coin sound.

General Form:

WHEN something DO action1

→WHEN DO action2

Indenting the second rule makes it dependent on the WHEN part of the rule above.

"COUNT ACTIONS" IDIOM

Count Actions

Make the Kodu keep a count of an action it takes. This is a special case of Do Two Things.

WHEN something DO action

and also

score color 1 point

Count Actions

When you eat an apple, add one to the red score.

General Form:

WHEN something DO action

→WHEN DO score color 1 point

Scores named by colors, such as "red", are displayed automatically. Scores named by letters, like "A", are kept but not displayed.

3. LAWFULNESS

- Not "obedience to authority"!
- "Lawful" in the scientific sense:
 - + Every action has a cause.
 - + The causes are knowable.
 - + So behavior is predictable.
- × As in Newton's laws.

LAWS OF KODU (1): VARIABLE BINDING

VIDEO: THE FIRST LAW OF KODU

"The First Law of Kodu"

WHICH SCENARIO VIOLATES THE FIRST LAW?

WHICH SCENARIO OBEYS THE FIRST LAW?

LAWS OF KODU (2): RULE EXECUTION

VIDEO: THE SECOND LAW OF KODU

"The Second Law of Kodu"

LAWS OF KODU (3): CONFLICT RESOLUTION

LAWS OF KODU (4): DEPENDENCY

EXAMPLES OF REASONING PROBLEMS

With these three rules, what will the rover grab first? Circle your answer.

- a. A red rock
- b. A green rock
- c. It will grab any rock at random.
- d. The closest rock no matter what color.

When will the rover grab its first green rock?

- a. When the red rocks are gone.
- **b.** Right after it grabs a red rock.
- c. It will never grab a green rock; it will keep looking for red rocks.
- **d.** It will only grab a green rock if it bumps into one by accident.

4. COMMON FALLACIES

- * The sequential procedure fallacy:
 - + Students think rules run in the order they're written.
 - + This would be true in Scratch or Python.
 - + In Kodu, rules can run in any order (Second Law).
- * The collective decision fallacy:
 - + Students think the rules pick one "closest" object.
 - + Actually, each rule makes its own choice (First Law).
 - + Rule ordering (Third Law) determines which object is acted upon if the actions conflict.

5. STATE MACHINES

- State machines are found in every area of computer science.
 - + Automata theory, digital logic design, network protocols, game design, parsing, robot programming, etc.
- Important tool for describing and reasoning about behavior.
- Most K-12 teachers have never heard of them!

STATE MACHINE FOR GHOSTS IN PACMAN

Image from http://images.slideplayer.com/11/3228338/slides/slide_19.jpg

STATE MACHINES IN KODU

- × A Kodu program is a set of pages.
- * Each page can contain multiple rules.
- The "switch to page" action transfers control from one page to another.

- Pages are the states.
- "Switch to page" rules are the transitions.

REASONING ABOUT STATE MACHINES

- 1. After the kodu grabs a soccer ball, will it ever eat another apple?
- 2. If there are no fish, can the kodu ever grab a soccer ball?

CONCLUSIONS

- Kids should learn to reason about programs:
 - + Recognize common design patterns.
 - + Know the "laws" of their computational framework.
 - + Be able to mentally simulate a program to predict its behavior.
- Kodu is a good framework for teaching this kind of reasoning because:
 - + Its idioms and laws are accessible to kids.
 - Kodu programs can be both short and interesting.

FOR MORE INFORMATION

* Microsoft's Kodu site:

http://www.kodugamelab.com

My "Kodu Resources for Teachers" site:

http://www.cs.cmu.edu/~dst/Kodu

QUESTIONS?

