
Using Kodu to Teach

Reasoning About Programs

David S. Touretzky

Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

Joint work with:

Christina Gardner-McCune and Ashish Aggarwal

University of Florida

October 19, 2016

Funded by a gift from Microsoft Research. 1

WHY TEACH REASONING ABOUT PROGRAMS?

 Teaching kids to program is not the main goal.

 They can copy code without understanding it.

 Programming by trial and error ≠ understanding.

 We teach programming as part of a broader effort
to teach computational thinking.

 Reasoning about programs is part of CT.

 If kids can reason about programs, then they will
also be able to write programs.

2

WHAT CAN A COMPETENT REASONER DO?

 Explain observed program behavior in terms of the
code and the “laws” of computation.

 Predict program behavior from the code. How?

 Mental simulation: execute the code in one’s head.

 Recognize patterns in the code that provide insight and
eliminate the need to explicitly simulate.

 Construct programs by applying design patterns
and computational principles.

3

1. WHY IS KODU DIFFERENT?

 More powerful primitives than other languages
designed for children.

 The WHEN part does pattern matching.

 The DO part uses object-centered actions, not
screen coordinates.

 Every rule is a conditional.

 Implicit looping: rules run all the time.
4

WHY IS KODU DIFFERENT? (2)

 Kodu is a robot language, not a graphics language.

 Characters are semi-autonomous.

 Capable of complex perception & goal-directed action.

 They fidget when they have nothing else to do.

 Kodu worlds are truly three-dimensional.

 Scratch is 2D; Alice is pseudo-3D.

 Built in physics (gravity, collisions, inertia, wind, …)

 Built in sound effects.

5

WHY IS KODU DIFFERENT? (3)

 Teaching young kids to reason about programs
requires that the programs be short.

 But programs also need to be interesting!

 Because the Kodu language and worlds are so
rich, one can write interesting 2-3 line Kodu
programs.

 Kodu’s idioms and laws provide a good framework
for teaching kids to reason about these programs.

6

2. KODU IDIOMS (DESIGN PATTERNS)

7

“DO TWO THINGS” IDIOM

8

“COUNT ACTIONS” IDIOM

9

3. LAWFULNESS

 Not “obedience to authority”!

 “Lawful” in the scientific sense:

 Every action has a cause.

 The causes are knowable.

 So behavior is predictable.

 As in Newton’s laws.

10

LAWS OF KODU (1): VARIABLE BINDING

11

VIDEO: THE FIRST LAW OF KODU

https://www.youtube.com/watch?v=xK_tUcsyNuQ
12

https://www.youtube.com/watch?v=xK_tUcsyNuQ

WHICH SCENARIO VIOLATES THE FIRST LAW?

13

WHICH SCENARIO OBEYS THE FIRST LAW?

14

LAWS OF KODU (2): RULE EXECUTION

15

VIDEO: THE SECOND LAW OF KODU

https://www.youtube.com/watch?v=eEdgnUz6Kac
16

https://www.youtube.com/watch?v=eEdgnUz6Kac

LAWS OF KODU (3): CONFLICT RESOLUTION

17

LAWS OF KODU (4): DEPENDENCY

18

EXAMPLES OF REASONING PROBLEMS

19

4. COMMON FALLACIES

 The sequential procedure fallacy:

 Students think rules run in the order they’re written.

 This would be true in Scratch or Python.

 In Kodu, rules can run in any order (Second Law).

 The collective decision fallacy:

 Students think the rules pick one “closest” object.

 Actually, each rule makes its own choice (First Law).

 Rule ordering (Third Law) determines which object is
acted upon if the actions conflict.

20

5. STATE MACHINES

 State machines are found in every area of

computer science.

 Automata theory, digital logic design, network

protocols, game design, parsing, robot

programming, etc.

 Important tool for describing and reasoning

about behavior.

 Most K-12 teachers have never heard of them!

21

STATE MACHINE FOR GHOSTS IN PACMAN

22

Image from http://images.slideplayer.com/11/3228338/slides/slide_19.jpg

STATE MACHINES IN KODU

 A Kodu program is a set of pages.

 Each page can contain multiple rules.

 The “switch to page” action transfers control

from one page to another.

 Pages are the states.

 “Switch to page” rules are the transitions.
23

REASONING ABOUT STATE MACHINES

24

1. After the kodu grabs a soccer ball, will it

ever eat another apple?

2. If there are no fish, can the kodu ever grab

a soccer ball?

CONCLUSIONS

 Kids should learn to reason about programs:

 Recognize common design patterns.

 Know the “laws” of their computational framework.

 Be able to mentally simulate a program to predict its
behavior.

 Kodu is a good framework for teaching this kind of
reasoning because:

 Its idioms and laws are accessible to kids.

 Kodu programs can be both short and interesting.

25

FOR MORE INFORMATION

 Microsoft’s Kodu site:

 http://www.kodugamelab.com

 My “Kodu Resources for Teachers” site:

 http://www.cs.cmu.edu/~dst/Kodu

26

http://www.kodugamelab.com/
http://www.cs.cmu.edu/~dst/Kodu

QUESTIONS?

27

