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Abstract Over the past few years, wireless networking tech-

nologies have made vast forays into our daily lives. Today,

one can find 802.11 hardware and other personal wireless

technology employed at homes, shopping malls, coffee shops

and airports. Present-day wireless network deployments bear

two important properties: they are unplanned, with most ac-

cess points (APs) deployed by users in a spontaneous manner,

resulting in highly variable AP densities; and they are unman-
aged, since manually configuring and managing a wireless

network is very complicated. We refer to such wireless de-

ployments as being chaotic.

In this paper, we present a study of the impact of inter-

ference in chaotic 802.11 deployments on end-client per-

formance. First, using large-scale measurement data from

several cities, we show that it is not uncommon to have tens

of APs deployed in close proximity of each other. More-

over, most APs are not configured to minimize interference

with their neighbors. We then perform trace-driven simu-

lations to show that the performance of end-clients could
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suffer significantly in chaotic deployments. We argue that

end-client experience could be significantly improved by

making chaotic wireless networks self-managing. We design

and evaluate automated power control and rate adaptation al-

gorithms to minimize interference among neighboring APs,

while ensuring robust end-client performance.

Keywords Dense deployment . 802.11 access points .

Interference . Power control . Channel assignment

1 Introduction

Wireless networking technology is ideal for many envi-

ronments, including homes, airports, and shopping malls

because it is inexpensive, easy to install (no wires), and sup-

ports mobile users. As such, we have seen a sharp increase

in the use of wireless over the past few years. However, us-

ing wireless technology effectively is surprisingly difficult.

First, wireless links are susceptible to degradation (e.g., at-

tenuation and fading) and interference, both of which can

result in poor and unpredictable performance. Second, since

wireless deployments must share the relatively scarce spec-

trum that is available for public use, they often interfere with

each other. These factors become especially challenging in

deployments where wireless devices such as access points

(APs) are placed in very close proximity.

In the past, most dense deployments of wireless networks

were in campus-like environments, where experts could care-

fully manage interference by planning cell layout, sometimes

using special tools [10]. However, the rapid deployment of

cheap 802.11 hardware and other personal wireless technol-

ogy (2.4 GHz cordless phones, bluetooth devices, etc.) is

quickly changing the wireless landscape. Market estimates

indicate that approximately 4.5 million WiFi APs were sold

during the 3rd quarter of 2004 alone [13] and that the sales of
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WiFi equipment will triple by 2009 [7]. The resulting dense

deployment of wireless networking equipment in areas such

as neighborhoods, shopping malls, and apartment buildings

differs from past dense campus-like deployments in two im-

portant ways:� Unplanned. While campus deployments are carefully

planned to optimize coverage and minimize cell overlap,

many recent deployments result from individuals or inde-

pendent organizations setting up one or a small number

of APs. Such spontaneous deployment results in variable

densities of wireless nodes and APs and, in some cases, the

densities can become very high (e.g. urban environments,

apartments). Moreover, 802.11 nodes have to share the

spectrum with other networking technologies (e.g., Blue-

tooth) and devices (e.g., cordless phones).� Unmanaged. Configuring and managing wireless net-

works is difficult for most people. Management issues in-

clude choosing relatively simple parameters such as SSID

and channel, and more complex questions such as number

and placement of APs, and power control. Other aspects of

management include troubleshooting, adapting to changes

in the environment and traffic load, and making the wire-

less network secure.

We use the term chaotic deployments or chaotic networks
to refer to a collection of wireless networks with the above

properties. Such deployments provide many unique oppor-

tunities. For example, they may enable new techniques to

determine location [15] or can provide near ubiquitous wire-

less connectivity. However, they also create numerous chal-

lenges. As wireless networks become more common and

more densely packed, more of these chaotic deployments

will suffer from serious contention, poor performance, and

security problems. This will hinder the deployment and use

of these infrastructures, negating many of the benefits offered

by wireless networks.

The main goal of this paper is to show that interference

in chaotic 802.11 deployments can significantly affect end-

user performance. To this end, we first use large-scale mea-

surements of 802.11 APs deployed in several US cities, to

quantify current density of deployment, as well as configura-

tion characteristics, of 802.11 hardware. Our analysis of the

data shows that regions with tens of APs deployed in close

proximity of each other already exist in most major cities.

Also, most 802.11 users employ default, factory-set configu-

rations for key parameters such as the transmission channel.

Interestingly, we find that relatively new wireless technology

(e.g., 802.11g) gets deployed very quickly.

We then simulate the measured deployment and configu-

ration patterns to study the impact that unplanned AP deploy-

ments have on end-user performance. While it is true that the

impact on end-user performance depends on the workloads

imposed by users on their network, we do find that even when

the APs in an unplanned deployment are carefully configured

to use the optimal static channel assignment, users may expe-

rience significant performance degradation, e.g. by as much

of a factor of 3 in throughput. This effect is especially pro-

nounced when AP density (and associated client density) is

high and the traffic load is heavy.

To improve end-user performance in chaotic deployments,

we explore the use of algorithms that automatically man-

age the transmission power and transmissions rates of APs

and clients. In combination with careful channel assignment,

our power control algorithms attempt to minimize the inter-

ference between neighboring APs by reducing transmission

power on individual APs when possible. The strawman power

control algorithm we develop, called Power-controlled Esti-

mated Rate Fallback (PERF), reduces transmission power

as long as the link between an AP and client can maintain

the maximum possible speed (11 Mbps for 802.11b). Ex-

periments with an implementation of PERF show that it can

significantly improve the performance observed by clients of

APs that are close to each other. For example, we show that a

highly utilized AP-client pair near another such pair can see

its throughput increase from 0.15 Mbps to 3.5 Mbps. In gen-

eral, we use the term self management to refer to unilateral au-

tomatic configuration of key access point properties, such as

transmission power and channel. Incorporating mechanisms

for self-management into future wireless devices could go a

long way toward improving end-user performance in chaotic

networks.

The rest of the paper is structured as follows. We present

related work in Section 2. In Section 3 we characterize

the density and usage of 802.11 hardware across various

US cities. Section 4 presents a simulation study of the ef-

fect of dense unmanaged 802.11 deployments on end-user

performance. We present an analysis of power control in

two-dimensional grid-like deployment in Section 5. In Sec-

tion 6, we outline the challenges involved in making chaotic

deployments self-managing. We describe our implementa-

tion of rate adaptation and power management techniques

in Section 7. Section 8 presents an experimental evaluation

of these techniques. We discuss other possible power control

algorithms in Section 9 and conclude the paper in Section 10.

2 Related work

We first discuss current efforts to map 802.11 deployments.

Then, we present an overview of commercial services and

products for managing networks in general, and wireless

networks in particular. Finally, we contrast our proposal for

wireless self management (i.e., transmission power control

and multi-rate adaptation) with related past approaches.

Several Internet Web sites provide street-level maps of

WiFi hot-spots in various cities. Popular examples include

Springer



Wireless Netw

Wifi Maps [33], Wi-Fi-Zones.com [32] and JIWire.com [16].

Several vendors also market products targeted at locating

wireless networks while on the go (see for example, Intego

WiFi Locator [14]. Among research studies, the Intel Place

Lab project [4, 15] maintains a database of up to 30,000

802.11b APs from several US cities. In this paper, we use

hot-spot data from Wifi Maps.com, as well as the Intel Place

Lab database of APs, to infer deployment and usage charac-

teristics of 802.11 hardware. To the best of our knowledge,

ours is the first research study to quantify these characteris-

tics. We describe our data sets in greater detail in Section 3.

The general problem of automatically managing and confi

guring devices has been well-studied in the wired networking

domain. While many solutions exist [30, 35] and have been

widely deployed [9], a number of interesting research prob-

lems in simplifying network management still remain (e.g.,

[6, 26]). Our work in this paper compliments these results by

extending them to the wireless domain.

In the wireless domain, several commercial vendors mar-

ket automated network management software for APs. Ex-

amples include Propagate Networks’ Autocell [22], Strix

Systems’ Access/One Network [29] and Alcatel OmniAc-

cess’ Air-View Software [3]. At a high-level, these products

aim to detect interference and adapt to it by altering the trans-

mit power levels on the access points. Some of them (e.g.,

Access/One) have additional support for managing load and

coverage (or “coverage hole management”) across multiple

APs deployed throughout an enterprise network. However,

most of these products are tailor-made for specific hardware

(for example, AirView comes embedded in all Alcatel Om-

niAcess hardware) and little is known about the (proprietary)

designs of these products. Also, these products are targeted

primarily at large deployments with several tens of clients

accessing and sharing a wireless network.

Also, several rate adaptation mechanisms that leverage the

multiple rates supported by 802.11 have recently been pro-

posed. For example, Sadeghi et al. [27] study new multi-rate

adaptation algorithms to improve throughput performance in

ad hoc networks. While our rate control algorithms, in con-

trast, are designed specifically to work well in conjunction

with power control, it is possible to extend past algorithms

such as [27] to support power control.

Similarly, traffic scheduling algorithms have been pro-

posed to optimize battery power in sensor networks, as well

as 802.11 networks (see [19, 23]). In contrast, our focus in

this paper is not on saving energy, per se. Instead we de-

velop power control algorithms that enable efficient use of

the wireless spectrum in dense wireless networks.

In general, ad hoc networks have recently received a great

deal of attention and the issues of power and rate control have

been also studied in the context of ad hoc routing protocols,

e.g. [8, 11, 18, 28]. There are, however, significant differences

between ad hoc networks and chaotic networks. First, ad hoc

networks are multi-hop while our focus is on AP-based in-

frastructure networks. Moreover, nodes in ad hoc networks

are often power limited and mobile. In contrast, the nodes in

chaotic networks will typically have limited mobility and suf-

ficient power. Finally, most ad hoc networks consist of nodes

that are willing to cooperate. In contrast, chaotic networks

involve nodes from many organizations, which are compet-

ing for bandwidth and spectrum. As we will see in Section 6,

this has a significant impact on the design of power and rate

control algorithms.

3 Characterizing current 802.11 deployments

To better understand the problems created by chaotic deploy-

ments, we collect and analyze data about 802.11 AP deploy-

ment in a set of metropolitan areas. We present preliminary

observations of the density of APs in these metropolitan ar-

eas, and typical usage characteristics, such as the channels

used for transmission and common vendor types.

3.1 Measurement data sets

We use four separate measurement data sets to quantify the

deployment density and usage of APs in various U.S. cities.

The characteristics of the data sets are outlined in Table 1. A

brief description of the data sets follows:

1. Place Lab: This data set contains a list of 802.11b APs

located in various US cities, along with their GPS coordi-

nates. The data was collected as part of Intel’s Place Lab

project [4, 15] in June 2004. The Place Lab software al-

lows commodity hardware clients like notebooks, PDAs

and cell phones to locate themselves by listening for radio

Table 1 Characteristics of the

data sets
Data set Collected on No. of APs Stats collected per AP

Place Lab Jun 2004 28475 MAC, ESSID, GPS coordinates

Wifi Maps Aug 2004 302934 MAC, ESSID, Channel

Pittsburgh Wardrive A Jul 2004 667 MAC, ESSID, Channel

supported rates, GPS coordinates

Pittsburgh Wardrive B Nov 2005 4645 MAC, ESSID, Channel

supported rates, GPS coordinates, encryption
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Table 2 Statistics for APs

measured in 6 US cities (Place

Lab data set)

Max AP degree Max. connected No. of connected

City Number of APs (i.e., # neighbors) component size components

Chicago 2370 20 54 369

Washington D.C. 2177 39 226 162

Boston 2551 42 168 320

Portland 8683 85 1405 971

San Diego 7934 54 93 1345

San Francisco 3037 76 409 186

beacons such as 802.11 APs, GSM cell phone towers, and

fixed Bluetooth devices.

2. WifiMaps: Wifi Maps.com [33] provides an online GIS

visualization tool, to map wardriving results uploaded

by independent users onto street-level data from the US

Census. We obtained access to the complete database of

wardriving data maintained at this website as of August

2004. For each AP, the database provides the AP’s ge-

ographic coordinates, zip code, its wireless network ID

(ESSID), channel(s) employed and the MAC address.

3. Pittsburgh wardrive A: This data set was collected on

July 29, 2004, as part of a small-scale wardriving effort

which covered portions of a few densely populated resi-

dential areas of Pittsburgh. For each unique AP measured,

we again collected the GPS coordinates, the ESSID, the

MAC address and the channel employed.

4. Pittsburgh wardrive B: This data was collected on

November 22, 2005. This wardrive was more extensive

and thorough than the Pittsburgh wardrive A dataset, and

as a result, contains far more access points. In addition to

the information collected in the A dataset, we also col-

lected information regarding the use of encryption, the

exact data rates offered by APs, and the physical areas

covered by APs.

3.2 Measurement observations

In this section, we analyze our data sets to identify real-

world deployment properties that are relevant to the efficient

functioning of wireless networks. The reader should note

that data analyzed here provides a gross underestimate of

any real-world efficiency problem. First, none of above data

sets are complete—they may fail to identify many APs that

are present and they certainly do not identify non-802.11

devices that share the same spectrum. Second, the density of

wireless devices is increasing at a rapid rate, so contention in

chaotic deployments will certainly increase dramatically as

well. Because of these properties, we believe these data sets

will lead us to underestimate deployment density. However,

these data sets are not biased in any specific way and we

expect our other results (e.g. channel usage, AP vendor and

802.11 g deployment) to be accurate.

3.2.1 802.11 Deployment density

First, we use the location information in the Place Lab data

set to identify how many APs are within interference range

of each other. For this analysis, we conservatively set the

interference range to 50 m, which is considered typical of

indoor deployments. We assume two nodes to be “neighbors”

if they are within each other’s interference range. We then

use this neighborhood relationship to construct “interference

graphs” in various cities.

The results for the analysis of the interference graphs in

six US cities are shown in Table 2. On average we note 2400

APs in each city from the Place Lab dataset. The third column

of Table 2 identifies the maximum degree of any AP in the

six cities (where the degree of an AP is the number of other

APs in interfering range). In San Francisco, for example,

a particular wireless AP suffers interference from about 80

other APs deployed in close proximity.

In Fig. 1, we plot a distribution of the degrees of APs mea-

sured in the Place Lab data set. In most cities, we find several

hundreds of APs with a degree of at least 3. In Portland, for

example, we found that more than half of the 8683 nodes

measured had 3 or more neighbors. Since only three of the

802.11b channels are non-overlapping (channel 1, 6 and 11),

these nodes will interfere with at least one other node in their

vicinity.

The fourth column in Table 2 shows the size of the max-

imum connected component in the interference graph of a
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Table 3 Statistics for

Pittsburgh APs (Pittsburgh

wardrive B data set)

Max AP degree Max. connected No. of connected

City Number of APs (i.e., # neighbors) component size components

Pittsburgh 4645 48 853 8

city. The final column shows the number of connected com-

ponents in the interference graph. From these statistics, we

find several large groups of APs deployed in close proxim-

ity. Together, these statistics show that dense deployments of

802.11 hardware have already begun to appear in urban set-

tings. As mentioned earlier, we expect the density to continue

to increase rapidly. Our analysis of the interference graphs in

Pittsburgh based on the wardrive B dataset is shown in Table 3

and confirms the above observations regarding density.

3.2.2 802.11 Usage: Channels

Table 4 presents the distribution of channels used by APs in

the Pittsburgh wardrive A and B data sets. This provides an

indication of whether users of APs manage their networks at

all. Notice that many APs transmit on channel 6, the default

on many APs, and only a third use the remaining two non-

overlapping channels in 802.11b (i.e., channels 1 and 11).

While this does not identify particular conflicts, this distri-

bution suggests that many of the APs that overlap in coverage

are probably not configured to minimize interference.

3.2.3 802.11 Variants

The Pittsburgh wardrive A data set contains information

about rates supported for about 71% of the measured APs,

or 472 out of the 667. We use this information to classify

these APs as 802.11b or 802.11g. We find that 20% of the

classified APs, or 93, are 802.11g. Given the relatively recent

standardization of 802.11g (June 2003), these measurements

Table 4 Channels employed by APs in the Pittsburgh A and

B data sets

%-age of APs %-age of APs

Channel (wardrive A) (wardrive B)

1 15.55 13.14

2 0.86 1.12

3 2.37 1.45

4 0.86 0.99

5 0.65 0.69

6 50.97 52.48

7 1.73 1.15

8 0.43 1.32

9 1.30 2.03

10 4.32 3.18

11 20.95 22.45

suggest that new wireless technology gets deployed rela-

tively quickly. Table 6 repeats this analysis for the more re-

cent wardrive B data. We find that 802.11 g continues to be

adopted at a rapid rate, and is approximately 43%. 802.11 b

variants make up just over half of the market while legacy

802.11 systems are nearly non-existent.

3.2.4 Supported rates

Even two networks that conform to the same standard can

operate in a very different manner. One example of this is seen

by examining the transmission rates supported by deployed

access points. Figure 5 shows the supported rates advertised

by the access points observed in the Pittsburgh B wardrive.

The 802.11b and b+ networks support 6 different sets of

rates while the g networks support 15 different sets of rates.

While many of the rate sets are uncommon, it is clear that one

cannot assume that all rates of a given standard are available.

3.2.5 Vendors and AP management support

To determine popular AP brands, we look up the MAC ad-

dresses available in the Wifi Maps data set against the IEEE

Company id assignments [12] to classify each AP accord-

ing to the vendor. For the APs that could be classified in this

manner (2% of the APs in the Wifi Maps data set did not have

a matching vendor name), the distribution of the vendors is

shown in Table 7. Notice that Cisco products (Linksys and

Aironet) make up nearly half of the market. This observation

suggests that if future products from this vendor incorpo-

rated built-in mechanisms for self-management of wireless

networks this could significantly limit the impact of interfer-

ence in chaotic deployments.

To understand if specific models incorporate software for

configuration and management of wireless networks, we sur-

vey the popular APs marketed by the top three vendors in

Table 7. All products (irrespective of the vendors) come with

software to allow users to configure basic parameters for

their wireless networks, such as ESSID, channel and secu-

rity settings. Most “low-end” APs (e.g., those targeted for

deployment by individual home users) do not include any

software for automatic configuration and management of the

wireless network. Some of the products targeted at enter-

prise and campus-style deployments, such as Cisco Aironet

350 series, allow more sophisticated, centralized manage-

ment of parameters such as transmit power levels, selecting
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non-overlapping channels, etc. across several deployed APs.

Since these products are targeted at campuses, they are

too expensive for use in smaller-scale deployments such as

apartment-buildings.

3.2.6 Security settings

Table 8 displays security settings gleaned from the wardrive

B data for two parameters: SSID visibility and encryption.

Encrypted networks encrypt the contents of data packets in

order to hide them from eavesdroppers. As an additional mea-

sure of security, some networks hide their SSID in order to

discourage unauthorized network access.

The access points in the Pittsburgh B data set are nearly

evenly split between open networks and encrypted networks.

Roughly 12% of networks hide their SSID to discourage

unauthorized access.

3.2.7 Coverage area

The amount of interference in chaotic networks is largely

determined by access point density and the coverage area of

access points. To gain insight into access point coverage in

chaotic networks, we computed approximate lower bounds

on the areas covered by each access point in the Pittsburgh

wardrive B dataset (our calculation neglects potential “holes”

in coverage). We took the observed measurement locations

of each access point, computed a convex hull between these

points (this gives us a rough estimate of the coverage area to

the extent we can measure it), and then computed the area of

each convex hull. Note that the area estimated for each AP

in this manner is, in fact, a lower bound on the actual area

covered by each access point. Figure 2 plots the estimated

coverage areas for all access points measured in Pittsburgh.

Access points with estimated coverage areas less than 400

square meters are omitted.
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Fig. 2 AP coverage

Clearly there is a large variation in access point cover-

age with the largest area in excess of two square kilome-

ters. This variation comes from three factors: measurement

error, transmission power, and physical variation in the RF

propagation environment. Of particular interest are the few

access points that have extremely large coverage areas. In

this dataset, the area covered by an access point had little

to do with the network type (i.e., b, g or b+) despite claims

frequently used for marketing purposes. In fact, the single

legacy 802.11 system we observed in this data set has the

fifth largest estimated coverage area. We found that, as ex-

pected, the physical environment is a much more dominant

factor in determining the coverage area than the type of net-

work used.

Figure 3 shows the area covered by the Pittsburgh B

wardrive. Each pin on the map depicts a measurement lo-

cation. The oval shows the area where the access points with

the largest estimated coverage areas were observed. These

were all located near the Monongahela river in Pittsburgh

where there is ample open space for free-space radio propa-

gation.

While such large coverage areas are convenient for lower-

ing the amount of equipment required to cover large amounts

of territory, they present challenges in chaotic networks, as

they greatly increase the number of potential interferers. In

other words, chaotic networks may actually benefit from

walls, trees, and other obstacles to RF propagation, as these

obstacles limit the scope of interference. Large open areas

require mechanisms such as transmit power control in order

to mitigate the effects of interference.

3.2.8 An aside: anomalous operation

We have observed two cases of anomalous network oper-

ation in the Pittsburgh wardrive B data set. The first is a

minor issue of 5 access points (all Linksys) with rate sets

containing duplicate rate advertisements as seen in line 5 of

Table 5.

The second more serious issue is that several Netgear ac-

cess points appear to have been given the same MAC address

(the MAC addresses have the form 00:90:4c:7e:00:xx). We

observe three distinct MAC addresses that have this problem.

In each case several access points share the MAC in question.

That the access points are distinct is revealed by the fact that

we observe multiple SSIDs, distinct channels, and an unrea-

sonably large coverage area for the given MACs. These sets

have at least 4, 6, and 7 access points that share the MACs;

the true number is difficult to determine due to the fact that

the default SSID could be shared by multiple distinct MACs.

We found an additional MAC in the Wifi Maps database that

is shared by access points in several distinct locations across

the United States.

Springer



Wireless Netw

Table 5 Supported rate sets in

the Pittsburgh B data set
Network Type Rate Set Number Percentage

b [11.0] 8 0.17

b [5.5 11.0] 33 0.71

b [2.0 5.5 11.0] 2 0.04

b [1.0 2.0 5.5 11.0] 1977 42.70

b [1.0 5.5 11.0 11.0] (sic) 5 0.11

b+ [1.0 2.0 5.5 11.0 22.0] 578 12.48

g [5.5 11.0 54.0] 1 0.02

g [11.0 36.0 48.0 54.0] 56 1.21

g [1.0 2.0 5.5 6.0 9.0 11.0] 1 0.02

g [11.0 24.0 36.0 48.0 54.0] 1 0.02

g [5.5 11.0 24.0 36.0 48.0 54.0] 1 0.02

g [1.0 2.0 5.5 11.0 6.0 9.0 12.0 18.0] 71 1.53

g [1.0 2.0 5.5 6.0 9.0 11.0 12.0 18.0] 280 6.05

g [11.0 12.0 18.0 24.0 36.0 48.0 54.0] 1 0.02

g [1.0 2.0 5.5 11.0 6.0 12.0 24.0 36.0] 318 6.87

g [1.0 2.0 5.5 11.0 6.0 12.0 24.0 54.0] 2 0.04

g [1.0 2.0 5.5 11.0 18.0 24.0 36.0 54.0] 1272 27.47

g [5.5 6.0 9.0 11.0 12.0 18.0 24.0 36.0] 1 0.02

g [6.0 9.0 11.0 12.0 18.0 24.0 36.0 48.0] 1 0.02

g [1.0 2.0 5.5 11.0 6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0] 4 0.09

g [1.0 2.0 5.5 6.0 9.0 11.0 12.0 18.0 24.0 36.0 48.0 54.0] 16 0.35

legacy 802.11 [1.0 2.0] 1 0.02

Fig. 3 Pittsburgh B wardrive Map
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Table 6 Networks types observed in the Pittsburgh

wardrive B data set

Network type Number Percentage

b 2025 43.73

b+ 578 12.48

g 2026 43.75

legacy 802.11 1 0.02

Table 7 Popular AP vendors (Wifi Maps data set)

Vendor Percentage of APs

Linksys (Cisco) 33.5

Aironet (Cisco) 12.2

Agere systems 9.6

D-Link 4.9

Apple computer 4.6

Netgear 4.4

ANI communications 4.3

Delta networks 3.0

Lucent 2.5

Acer 2.3

Others 16.7

Unclassified 2

Table 8 AP security settings

Broadcast Hide

SSID SSID Total

Encrypted 39.87 9.65 49.52

Unencrypted 48.09 2.26 50.35

Unknown 0.11 0.02 0.13

Total 88.07 11.93 100

4 Impact on end-user performance

In order to quantify the impact of the deployment and us-

age characteristics of 802.11b APs on the Internet perfor-

mance observed by end-users, we conducted trace-driven

simulations using the publicly available GloMoSim simula-

tor [34]. We simulated two real deployment topologies shown

in Figs. 4(a) and (b). These topologies, which we refer to asR
and S, were collected during the Pittsburgh wardrive. They

Table 9 Table (a) shows minimum required SNR for Prism 2.5.

Table (b) shows maximum 802.11 b throughput

Rate (Mbps) Minimum SNR Rate (Mbps) Throughput

(dB) (Mbps)

1 3 1 0.85

2 4 2 1.7

5.5 8 5.5 3.5

11 12 11 4.9

(a) (b)

contain 20 and 29 APs respectively. We use the following

settings and assumptions in our simulations: (1) Each node

in the map corresponds to an AP; (2) Each AP has D clients

(e.g., laptops) associated with it. We vary D between 1 and 31

(3) Clients are located less than 1m away from their respec-

tive APs and do not move; (4) Unless otherwise specified,

we assume that all APs transmit on channel 6; (5) All APs

employ a fixed transmit power level of 15 dBm, unless other-

wise specified (This is the default setting in most commercial

APs); (6) All APs transmit at a single rate, 2 Mbps (there is

no multi rate support in GloMoSim). At these settings, the

transmission and interference ranges are 31 m and 65 m,

respectively; (7) RTS/CTS is turned off. This is the default

setting in most commercial APs; And, (8) We use a modi-

fied two-ray path loss model for large-scale path loss, and

a Ricean fading model with a K-factor of 0 for small scale

fading [25].

Intuition suggests that the impact of interference in chaotic

wireless deployments depends, to a large extent, on the work-

loads imposed by users. If most APs are involved in just occa-

sional transmission of data to their users, then it is very likely

that users will experience no degradation in performance due

to interference from nearby APs. A key goal of our simula-

tions, then, is to systematically quantify the precise impact

of user workloads on eventual user performance. To achieve

this, we simulate two types of user workloads over the above

simulation set-up. These workloads differ mainly in their

relative proportions of HTTP (representing Web-browsing

activity) and FTP (representing large file downloads)

traffic.

In the first set of workloads, called http, we assume that

the clients are running HTTP sessions across their APs. The

HTTP file size distribution is based on a well-known model

for HTTP traffic [20]. On a client, each HTTP transfer is

separated from the previous one by a think time drawn from

a Poisson distribution with a mean of s seconds. We vary s
between the values of 5 s and 20 s (We also simulated HTTP

workloads with 10 s, 30 s and 60 s sleep times. The results

are qualitatively similar and are omitted for brevity). The

average load offered by the HTTP client is 83.3 Kbps for a

5 s sleep time, and 24.5 Kbps for a 20 s sleep time. There is

no other interfering traffic in the http workload.

The second set of workloads, called comb-ftpi , is sim-

ilar to the http workload with the exception of i clients

in the entire set-up running long-lived FTP flows for the du-

ration of the simulation. We vary i between 1 and 3. The

average load offered by the FTP clients in our simulation is

0.89 Mbps. We simulate either set of workloads for 300 s.

4.1 Interference at low client-densities and traffic volumes

First, we conduct simulations with the http and comb-
ftp1 workloads, and low client densities (D = 1). All the
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Fig. 4 Two simulation topologies derived from the Pittsburgh wardrive data set; the x and y axes are in meters

results we present in this section are for simulations over the

R topology (Fig. 4(a)), unless otherwise specified. In general,

we note that the experimental results for the S topology are

identical.

The results for theR topology are shown in Fig. 5. The per-

formance measurements are the average of 5 different simu-

lation runs; the variance between runs is not shown since it

was low. The x-axis in these pictures is the “stretch” param-

eter which allows us to tune the density of APs per square

meter in a given simulation. A simulation with a stretch of l
indicates that the distance between a pair of APs in the sim-

ulation topology is l times the actual distance in the original

topology. The distance between an AP and its clients does not

change. The higher the value of stretch, the lower the likeli-

hood of interference between nodes in the simulation topol-

ogy. For the R topology, we note that at stretch ≈ 20, the

nodes are completely out of each others’ interference range.

Also, in our simulations, beyond stretch = 10, we see little

impact of interference between nodes on user performance.

In either figure, the y-axis shows the average normalized per-

formance of HTTP (Fig. (a)) or FTP flows (Fig. (b)) in our

simulations. Normalized HTTP (FTP) performance is simply

the ratio of the average throughput of an HTTP (FTP) flow

to the throughput achieved by an FTP bulk transfer when

operating in isolation, i.e., 0.89 Mbps. This can be viewed

as the amount of work a user completed during a fixed time

interval, relative to the maximum achievable work.

Notice that, for workloads with an “aggressive” HTTP

component (i.e., think time of 5 s), the performance of the

HTTP flows improves until stretch = 10; beyond this point

performance stays relatively flat. For less aggressive HTTP

workloads (i.e., think interval of 20 s), the impact on the

performance of the HTTP flows is less severe. The perfor-

mance of the FTP flow in comb-ftp1 workload is shown

in Fig. 5(b). When the HTTP component of this workload is

aggressive (s = 5 s), the performance of the lone FTP flow

suffers by about 17%. With a not-so-aggressive HTTP com-

ponent, as expected, the impact on the FTP flow is minimal.

So far, we studied the impact of interfere nce under rel-

atively “light-weight” user traffic at each access points. In

the next two sections, we vary two important factors deter-

mining the client load—the density of clients per AP and
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Fig. 6 Average performance of HTTP and FTP flows at greater client densities (D = 3) for topology R

the traffic volume of the clients—to create more aggressive

interference settings.

4.2 Impact of client densities and traffic load

Impact of client density. Figures 6(a) and (b) show the av-

erage performance of the individual HTTP and FTP sessions,

respectively, in the comb-ftp1 and http workloads, for a

high number of clients associated per AP (D = 3). The per-

formance in both cases suffers significantly under high client

densities: From Fig. 6(a), HTTP performance is lowered by

about 65% (compare stretch = 1 with stretch = 10) due to

interference between aggressive HTTP flows (s = 5 s). The

same is true for the performance of the FTP flow in Fig. 6(b).

For a less aggressive HTTP component (s = 20 s) the perfor-

mance of the HTTP flows is 20% inferior, while the FTP flow

suffers by about 36%. For the S topology, the performance

impact on HTTP and FTP is 57% and 60% respectively, with

an aggreesive HTTP component in interfering traffic (results

omitted for brevity).

Impact of traffic volume. Figures 7(a)and (b) show the av-

erage performance of the HTTP and FTP flows, respectively,

in simulations with a few more competing FTP flows—

i.e., the comb-ftp2 and comb-ftp3 workloads—for D =
3. The performance impact on HTTP and FTP flows is

slightly more pronounced, even for the cases where the

HTTP component of these workloads is not very aggres-

sive (see the curves corresponding to s = 20 s in Fig. 7(b)).

Results for the S topology are identical and omitted for

brevity.

Using realistic channel assignments. We also performed

simulations on the 20-node topology, where the APs were

statically assigned channels based on the distribution in

Table 4. However, we note similar levels of interference and

impact on performance as observed above. This is because

more than half the APs in this simulation were assigned chan-

nel 6, which was the most predominant channel employed by

most APs according to our measurements.

4.3 Limiting the impact of interference

In this section, we explore the effect of two simple mecha-

nisms on mitigating interference in chaotic networks: First,

we study if an optimal static allocation of non-overlapping

channels across APs could eliminate interference altogether.

Second, we present a preliminary investigation of the effect
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Fig. 7 Average performance of HTTP and FTP flows at higher competing FTP traffic levels (i.e., the comb-ftp{2, 3} workloads) and for D = 3 in
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Fig. 8 Two sub-topologies obtained from static optimal channel allo-

cation. Figure (a) shows an 8-node sub-topology of map R in Fig. 4(a).

All 11 nodes were assigned channel 1 by the optimal static allocation

algorithm. Similarly, Fig. (b) shows an 11-node sub-topology of map S
in Fig. 4(b)

of reducing the transmit power levels at APs on the interfer-

ence experienced. We also investigate how transmit power

control improves the total capacity of a chaotic, network, as

well as the fairness in the allocation of the capacity among

individual APs.

4.3.1 Effect of optimal static channel allocation

We performed simulations on the topologies of Fig. 4,

where the APs are statically assigned one of the three non-

overlapping channels (1, 6 and 11) such that no two neigh-

boring APs share a channel, whenever possible. Figures 8(a)

and (b) show the lay-out of APs on maps R and S that were

all assigned channel 1 by this scheme. We only show results

for the Rsub sub-topology in Fig. 8(a). The results for Ssub

are identical and omitted for brevity.

The performance of HTTP and FTP flows in these sim-

ulations are shown in Figs. 9(a) and (b), respectively. The

average performance of both HTTP and FTP flows improves

significantly. Comparing with Figs. 7(a) and (b) respectively,

we note that the performance curves “flatten out” earlier on

account on the sparse nature of the interference graph. Never-

theless, the impact of interference can still be seen: the aver-

age HTTP performance is about 25% inferior at stretch = 1

compared to the case when no nodes interferes with another

(stretch = 10). FTP performance, similarly, is far from op-

timal. These observations suggest that while optimal static

channel allocation reduces the impact of interference, it can-

not eliminate it altogether.

4.3.2 Impact of transmit power control

We augment above simulations of optimal static channel al-

location with more conservative (lower) power settings on

the APs: we forced the APs in Figs. 8(a) and (b) to use a

power level of 3 dBm. This yields a transmission range of

15 m, which is half the range from using the default power

level of 15 dBm. Next, we show how this improves HTTP

and FTP performance, as well as the total network capacity.

We show results for the Rsub topology next. The results for

Ssub are very similar.
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Fig. 9 Performance of HTTP and FTP flows with optimal static assignment of APs to the three non-overlapping channels for topology R. The

transmit power level is set at 15 dBm, corresponding to a reception range of 31 m
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Fig. 10 Performance of HTTP and FTP flows with optimal static channel assignment of APs and the transmit power level set at 3 dBm. This

corresponds to a reception range of 15 m

Improvement in application performance. The performance

results for HTTP and FTP flows in these simulations are

shown in Figs. 10(a) and (b)respectively. Compared with

Figs. 9(a) and (b), the performance of individual flows im-

proves significantly. The interference among nodes is low-

ered, as can be seen by both the performance curves flat-

tening out at stretch = 2. These results show that transmit

power control, in conjunction with a good channel allocation

mechanism, could help reduce the impact of interference in

chaotic networks substantially.

Improvement in network capacity. In Fig. 11 we show how

transmit power control improves user performance for a

workload composed fully of bulk FTP transfers (i.e., each

AP has one user associated with it, and the AP runs an FTP

bulk transfer to the user). This simulation sheds light on how

careful management of APs can improve the total capacity

of the network. When APs are completely unmanaged, the

capacity of a densely packed network of APs is only 15%

of the maximum capacity (see Fig. 11(a)). Static channel al-

location of APs improves the capacity two-fold. Lowering

the transmit power on APs improves capacity by nearly an

additional factor of 2.

Fairness. In Fig. 11(b), we show the fairness in the through-

puts achieved by individual FTP flows to understand if the

performance of certain APs in a chaotic deployment suffers

significantly compared to others. Our fairness metric is de-

rived from [5] and is defined as
(
∑

xi )
2

n
∑

x2
i

, where xi ’s are the

throughputs of individual flows.

For the highest densities of access points, we see that poor

management results in unfair allocation of capacity across ac-

cess points. Channel allocation coupled with transmit power

control immediately ensures a highly equitable allocation:

except for the highest density, the fairness of allocation is

above 0.9.

In this section, we used simulations on two distinct sets

of deployment topologies to study the impact of transmit

power reduction on network performance. The key obser-

vation from our simulations is that end-user performance

can suffer significantly in chaotic deployments, especially

when the interference is from aggressive sources (such as
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Fig. 11 Performance FTP flows with and without optimal channel as-

signment and AP transmit power control. The workload is composed of

FTP flows between each client and its AP, with D = 1. Figure (a) shows

the performance of FTP flows in the simulations. Figure (b) shows the

fairness index for the throughput achieved by the FTP flows
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bulk FTP transfers). We showed that careful management

of APs, via transmit power control (and static channel allo-

cation), could mitigate the negative impact on performance.

Moreover, transmit power control can also enable an equi-

table allocation of capacity among interfering APs. A key

drawback of our simulations, however, is the lack of support

for multi-rate adaptation. We further explore the benefits of

transmit power control in conjunction with multi-rate adap-

tation in the next section.

5 Benefits of transmit power reduction

Next, we use a simple model of wireless communication

applied to a 2-D grid topology as shown in Fig. 12 to quantify

the advantages of transmit power control. We also model the

impact of rate adaptation. For our analysis, we assume that

each AP sends traffic to a single client at a fixed distance

(dclient) from the AP. In practice, if this transfer used TCP,

we would expect a small amount of traffic from the client

to AP due to the TCP acknowledgements. As the amount of

uplink traffic is small, we only consider the downlink traffic

to simplify our analysis. We also ignore many real-world

effects such as multipath fading and channel capture. We do

not use these simplifying assumptions in subsequent sections.

In particular, we stress that our algorithms are designed to

operate in a symmetric fashion on both uplink and downlink

traffic.

We examine a range of transmit power levels and traffic

loads. For each transmit power level and traffic load pair,

we determine the minimum physical spacing required be-

tween APs (dmin) to support the specified load. To com-

pute this, we first calculate the medium utilization required

AP

dclient

mediumUtilization = (utilization of all in-range APs)

Interference range of AP transmission
to client at given power level.

dmin

Fig. 12 Computing minimum AP spacing for a grid topology

by each AP: utilizationAP = load/throughputmax. The max-

imum throughput is determined by first calculating path loss

from the AP to the client (in dB) as: pathloss = 40 + 3.5 ∗
10 ∗ log(dclient); this is based on the pathloss model from [25]

with constants that correspond to measurements collected in

our local environment.

Received signal strength can then be computed as

RSS = txPower − pathloss, and the signal-to-noise ratio is

SNR = RSS − noiseFloor. We choose the noise floor to be

−100 dBm, which is typical for our hardware. Using SNR

and the data in Tables 9(a) and (b) (based on measurements

presented in [1]) we then determine the maximum transmis-

sion rate that can be used for the AP-client link and the cor-

responding maximum throughput for that rate.

After we have computed the utilization for a single link,

we determine the medium utilization at each AP by summing

the utilization of all in-range APs. We determine that two APs

are in range by computing the RSS between them using the

same formula used above. We consider the candidate AP to be

in range of the local AP if RSS > interferenceThreshold. We

set inter ferenceThreshold to −100 dBm for our calculations.

Figure 13 shows the results of our calculations for a client

distance of 10 meters and loads ranging from 0.1 Mbps to 1.1

mbps. Other client distances and loss parameters would shift

or scale the graph, but the trends would remain the same. The

2, 5.5, and 11 Mbps regions shown near the bottom of the

chart specify the maximum transmission rate that can be used

for each power level. Consider a specific point on this graph,

such as the point at −15 dBm power on the x-axis; using the

1.1 Mbps load line, this translates into a 20 m AP distance

on the y-axis. This implies that if you want to transmit at

1.1 Mbps from each AP at −15 dBm, the APs must be at

least 20 m apart in order to avoid overloading the wireless

link. In addition, the solid-black line parallel to the x-axis

indicates that each AP uses a transmission rate of 5.5 Mbps

to communicate with its client. For the simulations in the
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previous section we typically fixed the transmit power and

then increased the stretch; this corresponds to picking a point

on the x-axis and moving up vertically.

We draw a few key conclusions from Fig. 13. Clearly

the minimum distance between APs that can be supported

decreases (i.e. maximum supported density increases) dra-

matically as the transmission power (in dBm) is decreased.

We also find that high AP density and higher loads require

transmit power levels below 0 dBm. This is the lowest trans-

mit power available from commercial hardware that we are

aware of. Adding support for lower transmit power levels to

wireless hardware would be a simple way of improving the

density of APs that can be supported. Secondly, the graph

can also be used to determine the upper bound on the power

level that should be employed (x-axis) in order to achieve a

certain throughput, given a certain inter-AP distance (y-axis).

Using a higher power level will typically not affect (i.e. not

decrease or increase) the performance for that node, but will

reduce performance for other, nearby nodes. This is the basis

for one of the power control algorithms discussed in the next

section. Finally we note that the highest densities require the

use of very low transmission power, forcing nodes to use a

transmission rate under 11 Mbps. This suggests that, when

their traffic requirements are low, it may be advantageous if

nodes voluntarily reduce not only their transmission power

but also their transmission rate since it could increase the

overall network capacity in very dense networks. We will

revisit this issue in Section 9.

6 Deployment challenges

Power control offers a simple but powerful technique for re-

ducing interference. The tradeoffs are obvious: reducing the

power on a channel can improve performance for other chan-

nels by reducing interference, but it can reduce the throughput

of the channel by forcing the transmitter to use a lower rate

to deal with the reduced signal-to-noise ratio. As a result, we

must carefully consider the incentives that users may have

for using such techniques. In practice, the incentives for us-

ing power control are complex and we have to distinguish

between the techniques that are applicable to campus de-

ployments and chaotic wireless networks.

In campus environments, there are a number of APs un-

der the control of a single organization. This organization is

in a position to do power control in each cell in a way that

optimizes some global network metric, e.g. total network

throughput or fairness. An additional important considera-

tion is that in campus networks a user can obtain service

from any of the APs in transmission range. Therefore, any

design may need to carefully consider issues such as load-

balancing of users across APs along with power control.

In chaotic networks, the infrastructure is controlled by

multiple organizations, and, unfortunately, their priorities of-

ten conflict. For example, for a home network consisting of a

single AP, the best strategy is to always transmit at maximum

power, and there is no incentive to reduce power and, thus, in-

terference. The results in the previous section show that such

a “Max Power” strategy, when employed by multiple APs,

will result in suboptimal network performance. This implies

that while a single node can improve its performance by in-

creasing power, it can actually obtain better performance if it,

and all of its neighbors, act socially and reduce their transmis-

sion power appropriately. This is analogous to the tradeoffs

between selfish and social congestion control in the Internet

[2]. While a node can improve performance by transmitting

more quickly in the Internet, this can result in congestion

collapse and degraded performance for all. We believe that

similar factors that drove the wide deployment of congestion

control algorithms will drive the deployment of power con-

trol algorithms. We should note that an added side incentive

for the deployment of automatic power control is that it lim-

its the propagation of an AP’s transmission which, in turn,

limits the opportunity of malicious users eavesdropping on

any transmission.

Our work focuses on socially responsible power control

algorithms that would work well in chaotic environments. We

call such power control algorithms “socially responsible” to

differentiate them from approaches that require global coor-

dination across multiple access points (e.g., for campus-wide

wireless networks). Our algorithms are targeted at individ-

ual access points and clients, which behave in an altruistic

manner, agnostic to the actions of other APs and clients. Our

algorithms could also work in campus scenarios. However,

we do not consider issues such a AP load-balancing which

arise in such environments. Extending our design to campus

deployments is left for future work.

Note that while our algorithms are targeted at nodes be-

having in an altruistic manner, there are also practical con-

siderations that make them more feasible than simply relying

on the altruism of end users would. In particular, these algo-

rithms are implemented not by end users, but by equipment

vendors. From an equipment vendor’s point-of-view, reduc-

ing interference is beneficial. Moreover, regulatory mandates

already limit transmit power, and could be extended to require

dynamic adjustment of transmit power in order to increase

spatial reuse and potentially allow for higher transmit power

limits which would clearly benefit both end users and equip-

ment vendors. Finally, as discussed in Section 3.2, we find

that new technology is quickly adopted in chaotic networks,

and that many users in chaotic networks do not change fac-

tory default settings. Hence, vendor implemented intelligent

transmit power control could be deployed relatively quickly

and would be widely adopted.
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7 Transmission power and rate selection

In order to characterize how power adaptation affects both

network-wide and individual user throughput, we ran exper-

iments with several rate selection algorithms implemented

on both APs and clients. In this section, we describe the

fixed-power rate selection algorithms and adaptive-power

algorithms that we evaluate. Before we introduce the algo-

rithms, we briefly describe our implementation environment

for the rate selection algorithms.

7.1 Rate selection implementation

Our experiments use a NIC based on the Prism chipset run-

ning the 2.5 version of the firmware. The driver is a modified

version of the HostAP [21] Prism driver for Linux, which

was extensively modified to give fine-grained control of rate

selection and transmission power to the driver.

The driver achieves per-packet control over transmission

rate by tagging each packet with the rate at which it should

be sent. The Prism 2.5 firmware will then ignore its internal

rate selection algorithm and send the packet at the specified

rate; all firmware retransmissions will use this same rate.

The Prism 2.5 firmware also allows us to take control over

the retransmission of packets (in the driver) by tagging each

packet with a specified number of retries. For instance, setting

the packet retry count to zero tells the firmware to attempt no

retries in firmware, and to merely inform the driver if a packet

is not acknowledged. This allows us to completely replace

the firmware rate selection and retransmission algorithms.

While this gives us the ability to control the rate at which

retransmissions are sent, one disadvantage of this approach

is that retransmissions occur much more slowly than they

would if implemented in firmware. As a compromise, we

set the retransmit count to 2 so that most retransmissions are

handled by the firmware, but the driver is still informed fairly

quickly when channel conditions are too poor to allow the

packet to be sent.

Unfortunately, the Prism 2.5 chipset does not support per-

packet transmission power control the way it does for the

transmission rate. This is not a fundamental limitation of

wireless NICs, but rather a characteristic of the Prism 2.5

firmware. We overcome this limitation as follows. Whenever

we want to change the transmission power, we wait for the

NIC’s transmission buffers to empty. We then change the

power level and queue packets that should be sent at the

new power level. While this technique supports per-packet

power control for packets which pass through the driver (user

data), it does not allow us to set the power for 802.11 control

and management packets (e.g. ACKs, RTS/CTS, beacons),

handled completely in firmware; these packets will simply

be sent at the power level that the card happens to be using

at the time. Our approach also introduces overhead (extra

idle time) for each power level set operation. Nevertheless,

it enables us to examine the basic tradeoffs resulting from

changing transmission power levels.

7.2 Fixed-power rate selection algorithms

Most 802.11b implementations select transmission rate using

a variation of the Auto Rate Fallback (ARF) algorithm [31].

ARF attempts to select the best transmission rate via in-band

probing using 802.11’s ACK mechanism. ARF assumes that

a failed transmission indicates a transmission rate that is too

high. A successful transmission is assumed to indicate that

the current transmission rate is good, and that a higher rate

might be possible.

Our ARF implementation works as follows. If a thresh-

old number of consecutive packets are sent successfully, the

node selects the next higher transmission rate. If a threshold

number of consecutive packets are dropped, the node decre-

ments the rate. If no traffic has been sent for a certain time, the

node uses the highest possible transmission rate for the next

transmission. In our implementation, the increment thresh-

old is set to 6 successful packet transmissions, the decrement

threshold to 4 dropped packets (that is, 2 notifications of

transmission failure from the firmware as discussed in Sec-

tion 7.1), and the idle timeout value to 10 seconds. Within the

constraints of our driver-based approach, these settings are

designed to approximate the Prism 2.5 firmware’s implemen-

tation of ARF algorithm which appears to use an increment

threshold of 6, a decrement threshold of 3, and an idle timeout

of 10 seconds.

An alternative to probing the channel for the best transmis-

sion rate is to use the channel’s signal-to-noise ratio (SNR)

to select the optimal rate for a given SNR. While SNR-based

rate selection algorithms eliminate the overhead of probing

for the correct transmission rate, they face a number of prac-

tical challenges. First, card measurements of SNR can be

inaccurate and may vary between different cards of the same

make and model. Second, SNR measurements do not com-

pletely characterize channel degradation due to multipath

interference. Finally, the information that SNR-based rate

selection algorithms need is measured at the receiver, since

it is the SNR at the receiver that determines whether or not

a packet is received successfully. While proposals have been

made for overcoming this problem by leveraging 802.11’s

RTS/CTS mechanism (see, for example, [11]), these solu-

tions do not work on current hardware.

In our implementation, we overcome the last challenge by

tagging each packet with channel information. Specifically,

each packet contains the transmit power level used to send it,

as well as the path loss and noise estimate of the last packet

sent from the destination towards the sender. This allows

the receiver to estimate both uplink and downlink path loss
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information (both are required as asymmetry may arise due

to antenna diversity).

The SNR-based algorithm that we use, Estimated Rate
Fallback [17] (ERF), is actually a hybrid between pure

SNR-based and ARF-based algorithms. It uses the path loss

information to estimate the SNR with which each transmis-

sion will be received. ERF then determines the highest trans-

mission rate that can be supported for this SNR. In addition,

since SNR measurements have some uncertainty, if the es-

timated SNR is just below a rate selection decision bound-

ary, ERF will try the rate immediately above the estimate

best transmission rate after a given number of successful

sends. Similarly, if the estimated SNR is just above a de-

cision threshold, ERF will use the rate immediately below

the estimated best transmission rate after a given number

of failures. Finally, if no packets have been received from

the destination for a given interval, ERF will begin to fall

back towards the lowest rate until new channel informa-

tion has been received. This keeps ERF from getting stuck

in a state where stale channel information prevents com-

munication, which in turn prevents obtaining new channel

information.

7.3 Power and rate selection algorithms

Both the ARF and ERF algorithms use a fixed transmis-

sion power, which is typically set fairly high to maximize

the chance that a node can communicate with the intended

destination. However, as we discussed earlier, high power

levels create significant interference which may reduce per-

formance for other channels. Next, we discuss two algo-

rithms that combine power and rate control to try to min-

imize interference. In both strategies, each transmitter at-

tempts to reduce its power to the minimum level that allows

it to reach the intended receiver at the maximum transmis-

sion rate. In essence, each sender acts socially (by reducing

interference) as long as it does not cost anything (no rate

reduction).

ARF can be extended naturally to support conservative

power control by adding low power states above the highest

rate state: At the highest rate, after a given number of suc-

cessful sends, transmit power is reduced by a fixed amount.

This process repeats until either the lowest transmit power

is reached or the transmission failed threshold is reached.

In the latter case, the power is raised a fixed amount. If

failures continue, power is raised until the maximum trans-

mit power is reached after which rate fallback begins. We

call this algorithm Power-controlled Auto Rate Fallback
(PARF).

ERF can also be easily extended to implement conser-

vative power control as follows. First, an estimated SNR

at the receiver is computed as described earlier. Now, if

the estimated SNR is a certain amount (the “power mar-

gin”) above the decision threshold for the highest transmit

rate, the transmit power is lowered until estimatedSNR =
decisionThreshold + powerMargin. The power Margin vari-

able allows the aggressiveness of the power control algorithm

to be tuned. We call this algorithm Power-controlled Esti-
mated Rate Fallback (PERF).

8 Performance evaluation

We now discuss the results of some basic experiments we

conducted to verify that current commodity hardware is able

to achieve performance improvements when using transmit

power control. These experiments use the modified HostAP

driver and Prism 2.5 802.11b cards described previously.

8.1 Interference test

We first measured the interference to an aggressive TCP flow

from a bandwidth-limited TCP flow for the ARF, ERF, and

PERF algorithms discussed previously. Note that we did not

use the PARF algorithm. In our initial experimentation with

PARF, we found that its behavior was quite unstable. This

may be because power decrease decisions by the “receiver”

could result in the ACK-half of a data transmission/ACK ex-

change failing due to insufficient power. This could, in turn,

result in the sender increasing its power even if it was the

fault of the receiver’s power level setting. While this could

also happen to PERF (since it also considers packet losses),

PERF largely avoids this overreaction to packet losses by bas-

ing most of it’s power and rate selection on the SNR of the

interactions. This makes PERF react more slowly to trans-

mission failures. As a result, PERF always behaved more

stably and performed significantly better than PARF and we

did not consider PARF any further in our evaluation.

Our experimental topology is shown in Fig. 14. Two

AP-client pairs communicate in a laboratory setting where

all nodes communicate via coaxial cables. Attenuators are

placed on the cables to control the attenuation between nodes.

The “victim” pair repeatedly executes a TCP throughput

benchmark from the AP to the client and always runs the

ERF algorithm, but with power set to 0 dBm instead of the

default 23 dBm. The “aggressor” pair executes a rate-limited

transfer of 1.2 Mbps from the AP to the client. The power

110 dB pathloss

95 dB pathloss79 dB pathloss

Victim Pair Aggressor Pair

TCP

benchmark

Rate limited file
transfer

Fig. 14 Laboratory interference test topology
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Fig. 15 Lab interference test

and rate selection algorithm used by the aggressor pair was

varied to measure the ability of the algorithms to reduce the

interference experienced by the victim pair.

As shown in Fig. 15(a), the power reduction used by PERF

nearly completely eliminated the interference experienced

by the victim pair. (The error bars show 95% confidence

intervals.)

Figure 15(b) shows the same test but with the aggressor

transfer running at unlimited speed and with 106 dB of loss

between the pairs. This represents an extreme situation that

may occur to some degree even in current fixed power net-

works due to heterogeneous transmit power levels. Clearly, in

this case, the victim’s communication under ARF and ERF is

practically zero. The poor performance for ARF and ERF is a

result of asymmetric carrier sense [24]. In this experiment, the

victim pair is able to sense transmissions of the aggressor pair

and defer transmissions to prevent collisions. However, the

aggressor pair is not able hear the lower powered transmis-

sions of the victim. Therefore, it transmits packets as quickly

as possible, essentially interfering with any transmission be-

tween the victim pair. Note that the aggressor transmissions

are nearly always received successfully — the aggressor pair

always obtains a throughput of approximately 3.5 Mbps in

each setting. PERF alleviates this situation by reducing the

power of the aggressor since the aggressor AP-client link

is overprovisioned in terms of power. In this experiment,

PERF is able to nearly completely isolate the pairs from each

other.

Note that when using power control, care must be taken

so that this asymmetric carrier sense situation is not actually

introduced inadvertently. That is, an AP-client link should

not reduce power so much that it becomes overwhelmed by

neighboring uncooperative high power nodes. This is un-

desirable since we assume that APs and clients do not de-

sire to sacrifice (much) performance when lowering transmit

power.

To show that a similar situation can occur outside of the

laboratory, we then repeated the rate-limited interference test

in a residential setting where the nodes communicated over

the air as shown in Fig. 16(a) instead of over coaxial cables as

they did in the laboratory tests. Figure 16(b) shows the results

of this test. ARF and ERF experienced similar performance

degradation due to interference. PERF was able to reduce

this degradation by about 50%.
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9 Discussion

In our evaluation, we considered protocols that reduce power

as long as transmission rate was unaffected. One possibility to

reduce interference even further is to consider algorithms that

allow the transmission rate to be reduced. In one such strat-

egy that we also considered in our implementation, called

Load-sensitive, Power-controlled Estimated Rate Fallback
(LPERF), transmitters reduce their power even if it reduces

their transmission rate. Specifically, they reduce their power

as long as the resulting transmission rate is sufficient to sup-

port their actual traffic demands.

While potentially increasing network throughput, LPERF

involves a subtle tradeoff between the scope of the interfer-

ence (controlled by power level) and the duration of inter-

ference (determined by the transmission rate). Our analysis

in Section 5 indicates that, at least for simple topologies,

achieving the highest possible AP density requires using an

LPERF-like approach where lower transmit rates are used to

enable lower transmit power settings. In practice, we found

that achieving good performance and interference reduction

using the LPERF technique can be challenging.

First, we must be sure that actual demand does not require

a higher transmission rate than the one we select. This can be

difficult since demand may be a function of the transmission

rate used. In addition, since the wireless medium is shared,

the ability to satisfy traffic demand at a particular transmis-

sion rate depends on the particular fraction of the shared

medium that a node receives. Assuming a fair distributed

MAC protocol, the size of this fair share depends on the de-

mands of the other nearby nodes. An additional complication

is that the set of nearby nodes changes with the transmission

power used since the power determines the range of any trans-

mission. In order to address this need, LPERF incorporates

techniques to continuously monitor link traffic demand and

medium utilization. Tuning such techniques to adapt quickly

to changes in demand is an open research question.

Second, we must have accurate measurements of received

signal strength, noise, and transmit power from all nodes in

the area. For the hardware we used in our implementation,

4 dB of variance in RSS and noise estimates is typical. As

the entire range of SNR thresholds for 802.11b transmission

rates is only 9 dB, this can be a significant issue.

In summary, the design of algorithms that consider low-

ering transmission rates is a challenging task. In the future,

we expect that the range of transmit rates supported by wire-

less cards will greatly increase. This greatly helps such algo-

rithms by both creating more situations where the maximum

link bandwidth is not used and by providing a much wider

range of power levels that such algorithms can employ. In

addition, we also have anecdotal evidence that vendors are

providing more accurate RSS and noise estimators in newer

cards. As a result, we believe that LPERF-like algorithms are

a promising direction.

10 Summary

A chaotic network consists of a set of co-located wire-

less nodes owned and controlled by different people or

organizations. Its main characteristic is that the deployment is

largely unplanned and unmanaged. In this paper, we studied

important characteristics of chaotic wireless networks. We

used measurements from several cities to show that chaotic

networks can be quite dense and we used trace-driven simu-

lations to show that the performance of end-clients can suffer

significantly in these dense chaotic wireless deployments. We

also presented and evaluated automated power control and

rate adaptation algorithms that reduce interference among

neighboring nodes while ensuring robust endclient perfor-

mance. Specifically, we showed how the PERF algorithm,

that reduces transmission power as much as possible without

reducing transmission rate, can improve aggregate through-

put significantly in our small testbed. We also discussed

how further improvements may be possible in denser de-

ployments.
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