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Abstract— Motivated by an interest in human-like controllers
for humanoids to increase their social acceptance, we investi-
gate lateral balancing for artistic performances on challenging
surfaces. Control design for lateral balancing in humanoids has
primarily focused on optimal control techniques. While these
techniques generate balancing controllers, it remains unclear
whether humans use similar strategies. Here we propose that
humans prefer intuitive task-space control for lateral balancing
on simple as well as challenging surfaces. We develop a virtual
model controller for this task and compare with simulations of
a planar model, the resulting balancing behavior against human
lateral balancing on flat ground and on a seesaw as an example
of a challenging surface. We find that the proposed controller
can be tuned to respond to balance disturbances on flat ground
in a human-like way, and that it mimics human behavior on a
seesaw including the failure to stabilize the board, even though
an optimal LQR controller is capable of stabilizing it. The
results support the hypothesis that humans prefer intuitive
control in lateral balancing and suggest that state-of-the-art
control approaches in robotics may go beyond what humans
can accomplish. These limitations should be taken into account
when designing human-like controllers for humanoids.

I. INTRODUCTION AND RELATED WORK

Similar to [1] and [2], we are interested in human-like
controllers for humanoids, because they may increase the
social acceptance of robots performing in entertainment envi-
ronments. Our current focus is on lateral balancing strategies,
in particular for artistic performances on challenging surfaces
like a seesaw or a bongo board.

Control of humanoid robots has primarily been designed
for walking and sagittal plane balancing [3], [4]. Lateral
balancing on challenging surfaces is less often addressed,
although significant active control might be essential in this
case [5]. For lateral balance of a humanoid on a seesaw,
Anderson and Hodgins [6] proposed an inverse dynamics
policy mixing controller that uses optimization to match
desired contact forces and joint accelerations. They also later
proposed a cascade framework with receding horizon control
that robustly balanced a robot on a bongo board in simulation
[7]. Hyon [8] distributed contact forces in a feedforward
manner and then used a global center of mass (COM) con-
troller to achieve balance. Recently, Nagarajan and Yamane
[9] proposed a universal controller for lateral balance using
output feedback. Using feedback of global pelvis position
and velocity as well as the global foot angle, their controller
robustly stabilized a robot model in lateral balancing on a
variety of challenging surfaces including a seesaw, a bongo
board, and curved and tilted surfaces. However, it remains
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unclear whether these different control strategies are similar
to human control approaches for the same balancing tasks.
For instance, while humans may be optimizing for metabolic
cost and stability [14], they might not be able to find the
optimal gains needed for the generalized controller of [9] or
LQR, which requires optimizing future costs (value function)
for infinite horizon. Nor might they be able to perform the
finite but longer term planning required by the receding
horizon control in [7].

Direct hypotheses about human control of lateral balancing
are rare. Human control strategies in the sagittal and lateral
planes are believed to be distinct, based on observed joint
torques [10], [11]. Hence, hypotheses about sagittal plane
control cannot be directly used to explain lateral balancing.
Winter [10] investigated possible error signals and control
policies for lateral balance during standing and walking in
humans. He suggested that the difference between the center
of pressure (COP) and center of mass (COM) positions is a
probable error signal used for lateral stabilization in humans.
The hypothesis was supported in mediolateral perturbation
experiments of human standing by Rietdyk and Matjacié
[11], [12]. While explicit control strategies like ankle, hip
and stepping strategies are known for sagittal balancing,
such control strategies for lateral balancing still need to be
identified [10].

We propose that humans prefer an intuitive task-space
control for lateral balancing on simple as well as challenging
surfaces. Evidence of task space control in humans has
been found in studies of goal directed arm or eye-saccadic
movements, which showed that humans seem to minimize
the variance in the end-point position of these redundant
movements [13]. Further evidence for end-point control is
found in the impedance control literature, where experi-
ments suggest that humans control the magnitude, shape
and orientation of endpoint stiffness [14]. We hypothesize
that humans try to minimize the variance in the COM
position and trunk orientation in lateral balancing tasks,
and that designing a corresponding humanoid controller will
produce human-like balancing behavior. Towards testing this
hypothesis, we here develop a virtual model control of
human or humanoid balancing and compare with simulations
of a planar model the resulting balancing behavior against
human lateral balancing on flat ground and on a seesaw.
Virtual model control is a simplified, intuitive version of
task space control that neglects segment dynamics. It has
been introduced for walking by Pratt and colleagues [15] and
successfully been used by Hoffmann and colleagues [16] to
simulate human behavior during one-legged balancing.

In Sec. II, we present the planar model and develop the



virtual model controller for lateral balancing on flat ground
and on a seesaw as an example of a challenging surface.
We then show in Sec. III that the resulting model can be
tuned to respond to disturbances in a human-like way. We
further show that the proposed control as well as humans
fail to balance on the seesaw, even though an optimal LQR
controller is capable of balancing (Sec. IV).

II. APPROACH
A. Model on Flat Ground

The flat-ground model represents a human(oid) in two-
legged standing posture (Fig. 1). The upper body is modeled
as a single trunk link with mass M and inertia ;. The trunk
is rigidly connected to a pelvis link of length 2d,, with point
masses m; << M at each end (open circles in Fig. 1).
The leg segments are massless and connected by revolute
hip joints describing the adduction and abduction degree of
freedom of human hips. The human knee primarily moves
in the sagittal plane, effectively changing the leg length
when projected to the frontal plane (L'/"). This effect of
knee motion is captured in the model with telescopic joints.
The feet are modeled as point masses my << M that are
attached at the end of each leg and connected to the ground
with rotational degrees of freedom which describes the ankle
joint.

The hip joints and the telescoping leg joints are actuated,
generating hip torques T}ll/ " (positive torque describes exten-
sion) and leg forces Fll/ " (which can only be positive, exten-
sion forces). We neglect ankle actuation as the human ankle
moment arms are small in the frontal plane, and hip loading
and unloading has been observed as the dominant policy
in lateral balancing with hip moments contributing 85% of
the total moments during perturbations [10],[12]. Further,
balance experiments with lower-limb amputees confirmed
that amputees had greater problem controlling dynamic bal-
ance in the anteroposterior direction than the mediolateral
direction, suggesting that ankle might not be as important
for balance in the lateral plane as in the sagittal plane [17].

B. Controller for Lateral Balance on Flat Ground

The model has three degrees of freedom (DOF). These can
be described by the horizontal (z) and vertical position (y)
of the trunk COM and by the rotation of the trunk (6;) about
the Z axis perpendicular to the frontal plane. We formulate
the lateral balancing problem as maintaining desired states
for these three DOFs and use virtual model control [15] to
design an intuitive controller (Fig. 1B).

If the model is in a perturbed pose, virtual forces f., fy,
and f; are generated as

frc = k’pm(gjgom - xcom) - kdmx‘com
fy = (M + 2mt)g + kpy (ylciom - ycom) - kdyycom
fo = k(60 = 61) — kary )

to restore the position of the trunk and its global orientation.

Here, z¢,, yd . and 0¢ are the desired trunk COM positions

and desired trunk orientation with respect to the global
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Fig. 1. Planar model on flat ground. (A) The configuration variables and
mass properties of the model are shown. Arrows at the joints show positive
angle and torque conventions. The task space coordinate system is shown by
x-y located at the origin. The distance d.. is the height of trunk COM from
the pelvis along the trunk, and w denotes the step width. (B) The model is
shown in a perturbed pose with desired virtual forces and the target pose (in
grey). The desired virtual forces f; and fy are applied to the trunk COM.
The virtual force f: denotes the torque desired to be applied at the trunk
COM to control the global trunk angle 6;.

vertical axis, the term (M + 2my)g in the vertical force
compensates gravity, and g is the gravitational acceleration.
The gains kp,, Kaz, kpy, Kay, kpe and kg, are the proportional
and derivative feedback gains of virtual PD controllers,
which control the stiffness of COM in task space. The desired
virtual forces are mapped into the model’s joint torques under
the static assumption 7 = JTf, where f = [f, f, fi]T and
J is the Jacobian relating trunk velocities to joint velocities.
1) Jacobian computation: The planar model forms a
closed chain mechanism, and the COM of the trunk can be
considered as its end-effector. We derive separate Jacobians
for the left and right legs, J;, and Jg, respectively. For each
leg, the configuration space vector [051/ " LY76,]" includes
the hip angle, the leg length, and the global trunk angle.
The ankle angle is omitted, as it can be substituted using the
hip and global trunk angles. The global trunk angle can be
estimated in humans via the vestibular system. For humanoid
applications, an IMU at the robot’s trunk is required in
addition to joint sensors to implement the proposed control.
The trunk’s COM «x and y positions are
i FLF L0 F 0,) — dos(0;) + dye(6y)
L's(0)" 7 6,) + dec(y) + dps(6)

)

2

where [/r and =+ indicate the path through the left or right
leg, ¢() and s() represent cosine and sine functions, d. and d,,
are geometric link constants, and w is the distance between
the feet (Fig. 1A). The resulting left and right legs’ Jacobians,
Jr, and Jg, are given by .

l/r

Ycom

+A :Fcos(GﬁL/TZFHt) —AFd,sin(0y)—d.cos(6y)
B sin(@il/r¥9t) FB=+d,cos(6;)—d.sin(6;)
0 0 1

JL/R=

3)



where A=LY"s(6Y/"56,) and B=L""c(0!/" F6,).

2) Actuator torques: For each leg, the joint torques and
leg force can be related to the virtual force generated at the
trunk as

T}lL T fml T}TL T .fzr
F‘ll :']L fyl y -Flr :JR fyr y 4
Ttl fu Ti fer

where the total virtual force is given by the sum of the legs’
virtual forces,

fz fa:l fzr
Tyl = | fu| + | for]| - (5
ft ftl ftr

Egs. 4 and 5 relate six joint torques to three desired virtual
forces. However, the legs have no actuators between trunk
segment and world frame, introducing the two constraints
TtI/ " = 0, which, substituted into Eq. 4, lead to

ft - ft’l' + (fy - fyT')(‘riom + %) - (f»L - f-’ET‘)yiom = 0’

w

ftT+fyT(xZom_ 2) _fxrygom =0 (6)
where (2., ¥t 0m) = (T70msYrom). Furthermore, from
Eq. 5, we obtain

Jor = fz — far
fyl = fy - fyr
Ju = ft — fur )

Substituting Eq. 7 into Eq. 6, reduces the two equations to
the three unknowns f;., fyr and f;.. To solve for all the
unknown variables, we introduce the additional constraint

fwr = fwl = % ()
on the virtual horizontal forces, leading to
ftr = f:cr(ycom) + fyr(dr - xcom)
f9 + f (H + xco’rn) - f;c(ycom)
fyr = — 9)

w
for the remaining unknowns. Finally, the actuator torques
that generate the net desired virtual forces are obtained by

applying Eq. 4.
C. Extension to Seesaw Balance

The seesaw is modeled as a rigid board of mass m; and
inertia Ij, which pivots about a revolute joint located at the
board’s center (Fig. 2). The human(oid) model on the seesaw
is the same as in Sec. ITA. The only difference is that now
the model’s feet are contacting the seesaw board.

In addition to the three trunk DOFs (Sec. II B), the task
space now includes the board angle 8, making the net DOFs
of the model to be four. We extend the virtual model control
and introduce f; as the force required to stabilize the board
angle, given by a virtual PD control

fo = Fpp (08 — 05) + Kap(0 — 6), (10)

where 9? = 0 is the desired global board angle measured
from the horizontal axis, and k, and kg are the proportional
and derivative gains.
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Fig. 2. Planar model on seesaw. (A) The configuration variables now

include the global board angle 6. (B) The model is shown in a perturbed
pose with desired pose shown in grey. f; denotes the desired virtual force
applied at the seesaw’s pivot joint to control the global board angle. See
caption of Fig. 1 for additional explanations.

1) Jacobian computation: The configuration space vector
for each leg is now given by [92/ "L 92/ "0,)T, where the
ankle angle has been added to represent the global board
angle (which cannot be measured directly in humans) with
internal joint angles and the global trunk angle,

0/ =647 6" + 6, £ . (11)

The trunk’s COM z and y positions are given by .

2| L0 +0 " F0,) T A—deos(0;) £ dype(6))

e | |~ 2s(0+6)F0,)+ B+d.c(6:) £ dys(6;)
(12)

with A = LY/7¢(Y"56,) and B = LY"s(6Y/"56,). The

left and right Jacobians resolve to .

F5c(o1) Feloz) iLl/Ts(Ug):F%c(al) A

Jin = ~2s(01) s(o2) LYTc(on) — Ys(or) B 7
F1 0 F1 1
0 0 0 1

where o = 6" +6Y" 76, 00 = 6" 76, A = —dc(6,) T
dys(0;)—LY7s(02)+%s(01) and B = —d.s(0;) £d,c(6;) F
LUre(os) + Le(o).

2) Actuator torques: Like the virtual forces f., f, and
ft, the desired virtual board force can be divided into left
and right leg components,

fo = fou+ for

The actuator torque vectors for the left and right leg can then
be written as

(14)

T(lll fml 7_(: .f.tr
F 7 | fyl Ey 7 | fyr

=J Lol I e B | . 15
T A fu T B for (15
Ttl fu Ttr fer



As the ankle joints are passive and the trunk cannot be

actuated with respect to the world frame, we obtain four
. . l/r l/r .

constraint equations 7,/ = 0 and 7, = 0 with .

7 —for—2 fuc(0L+6) —0,)+% frus(0+6), —6,)
T _ for+ fet Fyilom — FatYbom
7—; fbr_%fyrc(ag—i_e}:+9t)+%fxrs(92+92+9t)
TtT fbr+ftr+fyr-rgom_fwrygom

(16)

Rearranging 7/ = 0 and 77 = 0 in Eq. 16, we obtain a
linear relationship,

fb+ft +fyxcom - f:z:ycom =0,

between the four desired virtual forces at any COM position.
This relationship implies that we cannot choose all four
virtual forces independently, even though the model has four
actuators. Thus, we cannot achieve the desired state for all
four DOFs in task space simultaneously.

We prioritize three goals to resolve this issue. The virtual
force f, holds the model against gravity and the virtual
force f; keeps the trunk upright. Both goals are important in
general locomotion including balancing. Hence, we maintain
fy and f; using Eq. 1. Between f, and f;, we choose to
control f, as in Eq. 1 and solve for f; in terms of f., f,
and f; using Eq. 17 instead of obtaining fj, in a proportional-
derivative fashion as in Eq. 10. To obtain the actuator torques,
we further assume the design constraint

fi

ftr:ftl: 9

and solve for fy,, f,» and fy, using the first three equations
in Eq. 16. Subsequently, f;, fy and fi can be obtained
using Eqgs. 5 and 14.

a7

(18)

III. RESULTS
A. Comparison to Human Lateral Balance on Flat Ground

We first check if the proposed control can generate human-
like balance recovery. For this purpose, we try to replicate
a typical human balance recovery experiment during quiet
standing based on the experimental results reported in [12].
The mass parameters of the model in Fig. 1 are set to
approximately match the human subjects in the experiments
(see Tab. I, segment masses and lengths are scaled using
anthropomorphic data in [18]). The controller gains are
manually tuned. Furthermore, we add zero mean and unit
variance gaussian noise for joint measurements (range: [-0.01
0.01] radians) and current and desired trunk COM position
estimations (range: [-5 5] cm) to account for the noise that
is present in the human nervous system [19].

The model starts from the desired pose in Fig. 1B where a
disturbance of peak impulse magnitude 22.8 N s is applied to
the pelvis from the right side (Fig. 3). The COM is perturbed
and the trunk sways in the direction of perturbation. The
controller recovers the model from the disturbed pose and
returns it back into the desired pose (Fig. 3). The smoothed
trajectories of COM-COP displacement, trunk sway, and hip
torques for the model’s response are compared in Fig. 4
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to those trajectories of a human subjected to a similar
disturbance. While we used the trunk sway motion to guide
our manual gain tuning for Fig. 4A (kps, kdz, kpy, Kdy, kpt
and kg in Tab. I are tuned to match trunk sway of the
model to human data), the control also produces COM-
COP displacement trajectories that compare to humans in
magnitude (Fig. 4B). However, the recovery torques at the
hip in the model differ from those in humans especially at
the ipsilateral side (Fig. 4C). Torque at the contralateral hip,
dominantly responsible for the recovery, differs only in peak
magnitude. The deviation in the hip torques could be caused
by differences in inertial properties between humans and the
model, in which the leg masses are concentrated at the hip.

TABLE I
CONTROL GAINS AND MODEL PARAMETERS FOR FLAT GROUND
DISTURBANCE SIMULATION.

parameter | value | parameter |  value
body weight (bw) 86 kg de 0.3130 m
M 0.6780xbw kg dp 0.1750 m

mi 0.1xbw kg w 0.35 m
my 0.0610xbw kg I; 1.6 kgm?
kpa, kpy 750 Nrad—1! pt 60 Nrad—!
kdazs Kdy 220 Nsrad—! kat 25 Nrad—1!

Note that because we manually tuned the gains in Tab. I, a
combination of gain values different than the ones mentioned
in Tab. I might also produce trajectories similar to those in
Fig. 4A.

T

time

Fig. 3. Planar model on flat ground recovers from a disturbance of impulse
amplitude 22.8Ns, applied at the right pelvis (indicated by arrow). Bold
circles represent the location of segment masses in the model as in Fig. 1.

B. Seesaw Balance

The linear relationship between the virtual forces (Eq. 17)
requires giving up one of the four goals in task space.
We chose to give up the goal of maintaining board angle
and solve for the virtual force f; to obtain the controller
as described in Sec. II-C. If we start from an initial dis-
turbed pose, this controller brings the trunk’s COM z and
y positions to their desired values and uprights the trunk
while constantly rocking the seesaw (Figs. 5B and 6). The
rocking of the seesaw continues until the errors in these three
goals converge to zero. After that the controller makes no
effort to stabilize the board angle. The board remains in a
configuration where one of its ends is in contact with the
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Fig. 4. Comparison of disturbance recovery response between proposed

control and humans on flat ground. Trunk sway motion (A), COM-COP
displacement (B), and hip torques are shown (C). The shaded patch indicates
when the disturbance is active. Human responses are obtained from [12].
Controller gains are tuned to match trunk sway of the model to human
data in (A), which also produces COM-COP displacement trajectories that
compare to humans in magnitude in (B).

ground and the model remains in a configuration with upright
trunk and COM in its desired position.

If humans use a similar control framework for lateral
balancing, they should be subjected to the same constraint
on task-space goals. To test if this could be the case and
if giving up controlling the board angle goal might explain
human behavior on a seesaw, we captured the motion of
an expert at bongo board balancing on a seesaw (Fig. 5A).
Although the subject explored various strategies like chang-
ing COM height, different feet alignment, rocking the board
at high frequency and balancing with locked and unlocked
knees, the subject could not stabilize the seesaw and the
board repeatedly hit the ground on one end or the other.
Similar behavior was observed for other subjects. The goal
of achieving a desired board angle seems to be compromised
in humans just as it is in the proposed control.

For a more qualitative comparison, we adapt the model’s
mass and inertia to the subject and start the simulation using
initial conditions from the experimental data. We also add
noise in joint measurements and trunk COM state estimation
as described in Sec. IITA. The noise prevents the controller
from driving the error in COM position and trunk angle
to zero, resulting in an intermittent rocking motion of the
board in simulation, which visually looks very similar to
a human balancing on a seesaw. Fig. 6 compares data
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B.
Fig. 5. Rocking motion of seesaw in humans and in simulation (A) A
subject balancing on a seesaw during a motion capture study keeps rocking
the board in an attempt to stabilize it but never succeeds in doing so. (B) The
rocking motion in simulation is an outcome of virtual model control when

giving up the task space goal of stabilizing the board angle and introducing
Sensor noise.
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Fig. 6. Comparison of balancing motion of proposed control vs humans

on a seesaw. (A) Board motion illustrates qualitatively similar intermittent
rocking. (B) Trunk angle oscillates about zero degrees as both the model
and the human subject try to maintain an upright trunk. (C) Displacement in
COM’s x position oscillates about zero. Human data is obtained from our
motion capture experiments. The board and COM motions are comparable
to human data in terms of amplitude and frequency (A,C).

from the first 25 seconds of a trial in our human expert
experiment with simulation results. The qualitative similarity
in board, trunk and COM motion supports the visual realism
of the model’s motion. Apart from visually looking at the
motion, measuring human-likeness is hard. Here, we use
amplitude and frequency features of motion trajectories for
this comparison. The amplitudes of trunk sway (£0.5 deg)
and COM displacement in = (£5 cm) for the simulation
compares with those of the human expert. Analyzing the
frequency of the rocking motion of the board with fast fourier
transformation reveals a characteristic frequency of about 0.2
Hz for both the simulation and human data.



IV. DiScusSION AND FUTURE WORK

Motivated by an interest in human-like controllers for hu-
manoids to increase their social acceptance, we investigated
balancing for artistic performances on challenging surfaces.
In particular, we hypothesized that humans prefer an intuitive
task-space control for lateral balancing, developed a virtual
model controller for this task, and compared with simulations
of a planar model, the resulting balancing behavior against
human lateral balancing on flat ground and on a seesaw as
an example of a challenging surface. Our results show that
the proposed controller can be tuned to respond to balance
disturbances on flat ground in a human-like way (Fig. 4),
and that the controller mimics human behavior on a seesaw
including the failure to stabilize the board (Fig. 6). Although
not providing conclusive evidence, the results support the
hypothesis that humans prefer intuitive control in lateral
balancing and serve as further evidence for task space control
in humans [13].

Our results also point towards more human-like controllers
for humanoid robots. Previous control design for lateral bal-
ancing in humanoids focused on optimal control techniques
[81, [6], [7], [9]. Indeed, applying standard linear quadratic
regulator (LQR) techniques to the seesaw balancing model,
we confirmed that controllers exist which can simultane-
ously stabilize the trunk pose and the board angle. This
observation indicates that the state-of-art control approaches
in robotics may go beyond what humans can do. In the
seesaw example, we find that it may be even difficult for
humans to use non-intuitive coordinate systems. A stabilizing
LQR controller of seesaw balancing can still be found if the
coriolis and centrifugal contributions are neglected in the
linearized dynamics matrix when computing control gains.
The only difference between the resulting LQR control and
the quasistatic virtual model control then becomes the choice
of coordinate system on which the controls act. While this
coordinate system is intuitive in virtual model control (Eq. 1),
the resulting LQR gain matrix is dense and combines several
configuration space variables in a non-intuitive way. This
difference is sufficient to generate a stabilizing controller
or not, and humans do not seem to be able to identify the
non-intuitive coordinate system. It may be important to take
these limitations into account when designing human-like
controllers for humanoid robots.

We plan to extend this work in three ways. First, we plan
to use the proposed control strategy for other challenging
balancing tasks such as bongo boarding. The successful
interpretation of human balance on a bongo-board would
further solidify the evidence for task space control in humans.
As a final step towards confirming our hypotheses, we plan
to interpret the proposed control with muscle reflexes and
compare resultant EMG responses to humans as in [20].
While task space control may be preferred by humans, it
remains open how they learn the actual controller including
the specific task goals. We are interested in this fundamental
question and plan to use the developed control framework to
better understand motor learning in humans. Finally, we seek

861

to transfer the proposed control to applications in graphics
and entertainment robotics for the generation of human-
like behavior during artistic performances on challenging
surfaces.
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