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Abstract
Several recent studies on the control of legged locomotion in animal and robot running focus
on the influence of different leg parameters on gait stability. In a preceding investigation
self-stability controls showing deadbeat behavior could be obtained by studying the dynamics
of the system in dependence of the leg orientation carefully adjusted during the flight phase.
Such controls allow to accommodate disturbances of the ground level without having to detect
them. Here we further this method in two ways. Besides the leg orientation, we allow changes
in leg stiffness during flight and show that this extension substantially improves the rejection
of ground disturbances. In a human like example the tolerance of random variation in ground
level over many steps increased from 3.5% to 35% of leg length. In single steps changes of
about 70% leg length (either up or down) could be negotiated. The variable leg stiffness not
only allows to start with flat leg orientations maximizing step tolerances but also increase the
control subspace. This allows to customize self-stability controls and to consider physical and
technical limitations found in animals and robots.

1. Introduction

Many legged animals and robots use compliant leg behavior
in stance (McMahon 1985, Raibert 1986, Alexander 1990,
Papadopoulos and Buehler 2000, Altendorfer et al 2001,
Hosoda et al 2008, Radkhah et al 2010, Park et al 2011).
For these systems, the spring-mass model (Blickhan 1989,
McMahon and Cheng 1990) has evolved into a standard
template to study locomotion control (Full and Koditschek
1999). While early work focused on using the spring-mass
model in the development of feedback controllers for hopping
and running machines (Raibert 1986), more recent studies
emphasize its use in identifying feedforward controls that take
advantage of this model’s self-stability in running.

Self-stability in running has first been demonstrated by
Ringrose (1997) who showed that, like passive dynamic
walkers (McGeer 1990a, 1990b, Collins et al 2005), running
robots require no feedback about the ground level to enter
and maintain steady-state locomotion. This observation has

been confirmed in theoretical studies. Investigating cockroach
running, Schmitt and Holmes (2000a, 2000b) and Seipel et
al (2004) identified parameters of the spring-mass model
that produce self-stable locomotion in the horizontal plane.
Likewise, Seyfarth et al (2002) demonstrated self-stability
for running in the sagittal plane. In addition, they found that
human runners seem to explore this self-stable behavior as they
choose leg parameters required for it. More recent studies have
analyzed the influence of several flight and stance phase model
parameters on self-stability, including the stiffness, orientation
and length of the leg in flight (Blum et al 2007, 2010, Ernst
et al 2009), and the leg rest length and nonlinear leg stiffness
behavior in stance (Owaki and Ishiguro 2006, Rummel and
Seyfarth 2008, Schmitt and Clark 2009, Karssen and Wisse
2011).

In general, however, these studies first propose particular
control strategies (in parameter space) and then investigate
their influence on self-stability (Seyfarth et al 2002, Geyer
et al 2006, Owaki and Ishiguro 2006, Schmitt 2006, Seipel
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and Holmes 2007, Rummel and Seyfarth 2008, Ankarali
and Saranli 2010, Blum et al 2007, 2010). The reverse
approach, we followed up in this study, of deriving controls
from carefully studying parameter influences on self-stability
is seldom pursued, although it promises a more complete
understanding of the theoretical potential and limits of self-
stability control. For example, Sugimoto and Osuka (2005)
and Owaki et al (2009) captured the underlying stabilization
mechanism of passive dynamic walking and running with an
approximate linearized Poincaré map which they reformulated
as a negative feedback system. This reformulation allowed
the authors to identify explicit model parameter combinations
as feedback gains which guarantee self-stability if they are
smaller than one. In another example, Seyfarth and Geyer
(2002) studied how the leg orientation in swing manipulates
the resulting Poincaré map of the spring mass model in
running and derived a deadbeat control that guarantees running
stability for comparably large disturbances in the ground level.
Recently, Ankarali and Saranli (2010) extended the deadbeat
control to also compensate for damping losses during stance.

Although the manipulation of the Poincaré map by
parameter adaptations has been shown to yield controllers
that largely increase the robustness and stability of spring-
mass running (Seyfarth and Geyer 2002), this method has
not been explored to its full potential. In the previous studies
only one parameter, the swing leg angle, has been considered
for the manipulation, and the extent to which gait stability
and robustness can be improved by including other model
parameters remains unclear.

Here we further this method in two ways. First, we include
the spring stiffness and the system energy as two important
parameters in the Poincaré map manipulation and show that
they largely extend the theoretical limit of self-stability and
robustness with respect to ground disturbances and locomotion
speed. In addition we demonstrate how physical and technical
limitations found in animals and robots can be taken into
account in a rigorous way to customize self-stability control
for individual legged systems, maximizing their use of self-
stability control.

2. Self-stability control

The spring-mass model (figure 1) reduces the body to a point
mass that moves on a ballistic trajectory in flight and rebounds
on a massless spring leg (stiffness k, rest length !0) in stance.
The transition between stance and flight is defined by the spring
leg extending to !0 during rebound, and the transition between
flight and stance is given by a landing condition

y! = !0 sin(α), (1)

where α is the leg orientation during flight with respect to
gravity (gravitational acceleration g = 9.81 m s−2; figure 1).
Because of this landing condition, for a fixed system energy
Esys, periodic locomotion and its stability can be investigated
by mapping only one variable, the apex height yi, from
one apex, i, to the next, i + 1 (Seyfarth et al 2002). In
the picture of the apex return map, running is periodic if
yi+1 = yi = y∗, where y∗ is the steady state solution, and
stable if |(∂yi+1/∂yi)| < 1 within a neighborhood of y∗.

flight stance flight

apex i

apex i+1
vx,i

yi

vx,i+1

yi+1

TD TO

g
m

Figure 1. Spring-mass model. The model consists of a point mass
m, which in stance rebounds on a massless spring with stiffness k
and rest length !0. TD with angle αTD occurs when the model hits
the ground. The model takes off when the spring relaxes to !0 in
stance (TO). The pairs (y, vx)i and (y, vx)i+1 denote the system state
at two consecutive apices. α(t) and k(t) describe control strategies
executed from apex to TD. g: gravitational acceleration
(g = 9.81 m s−1).
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Figure 2. Example return map. The return map yi+1(yi) is shown for
different TD leg orientations αTD. Black arrows indicate a deadbeat
return map which projects different start heights yi (gray arrows)
into a desired apex height ydes = 1 m within one step. A1, A2 and C
describe the limits of the return map. A1 indicates where yi is below
the landing height (compare (1), figure 3(A)). At A2, the model
stumbles after take off (y(tTO) > y(t > tTO), figure 3(D)). At C, the
potential energy Epot = yimg equals the system energy Esys.
Parameters: k = 30 kN m−1, !0 = 1 m, Esys = 1.78 kJ.

The basin of attraction of y∗ defines how robust the
system is against disturbances in initial conditions. To enlarge
this basin of attraction, Seyfarth and Geyer (2002) used the
influence of the parameter α on the shape of the return map.
For any given initial height yi, they adapted α such that
the corresponding return map projects into a desired height
yi+1 = ydes within one step (note that ydes is given with respect
to the ground level of step i and not to a global level), generating
a deadbeat control α(yi) (figure 2). Although this control can be
embedded as a feedback control which continuously measures
the distance to the ground after the apex event, the authors
used the coupling between falling time and ground distance

tfall =

√
2
g

[y − !0 sin(α)] (2)
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(A) (B) (C) (D)

Figure 3. Failure conditions. (A) The upward step is too high giving an example of the stumbling edge (A1 in figure 2 and A in figure 4).
(B) The downward step is too large demonstrating the collision edge (B in figure 4). (C) If the spring is too stiff or the leg orientation is too
flat, the model reverses direction. (D) If the spring is too soft or the leg orientation too steep the model overruns a step (A2 in figure 2).

to derive a feedforward control α(t) that enforces the deadbeat
behavior without having to measure the actual ground distance.

The self-stability control α(t) introduced by Seyfarth and
Geyer (2002) largely increases the basin of attraction for
steady-state solutions in spring-mass running. But it also has
limitations. First, the tolerated upward steps in locomotion are
restricted by the landing condition (1), see also figure 3(A).
For self-stability control the maximum tolerance for upward
steps is

ymax,up = ydes − !0 sin(αmin), (3)

where αmin is given by the dynamics of the system and depends
on the desired apex height ydes, as well as the model parameters.
For instance, to generate deadbeat behavior (yi+1 = ydes)
in human-like running with parameters ydes = 1 m, k =
30 kN m−1, !0 = 1 m, and Esys = 1.78 kJ (corresponding to
a horizontal speed of 5 m s−1, an apex height yi = 1 m which
equals the rest leg length !0 and a body weight of m = 80 kg;
for typical parameters see Arampatzis et al (1999), Seyfarth
et al (2002), Grimmer et al (2008)), a minimum leg orientation
αmin = 68.15 deg is required, and upward steps of only 7 cm
are tolerated (left gray arrow in figure 2). In contrast, downward
steps show a much larger tolerance, dominated by the spring
stiffness k. If the spring is too soft, the center of mass crashes
into the ground during stance (figure 3(B)). An upper bound
for the maximum tolerance is given by

ymax,dn =
k/2 · !2

0 − Esys

mg
(4)

corresponding to the energy Esys + Edn that can be stored in
the fully compressed spring, where Edn = ymax,dn · mg is the
potential energy of the maximum downward step ymax,dn. For
the same human-like parameters, this analytically estimated
tolerance amounts to 16.84 m (in simulation we confirmed this
approximated limit by finding solutions with 16.8 m drops and
αTD = 74.85 deg). Although it is an unrealistic scenario for
human running, it indicates that downward steps are uncritical
if the leg stiffness and orientation is chosen properly (see also
large yi and corresponding range of α for a successful contact
in figure 2). A mismatch of these two parameters not only can
result in a crash but also in a reverse of direction (α exceeding
the upper boundary C in figure 2, figure 3(C)) or to overrunning
steps (α exceeding A2 in figure 2, figure 3(D)) for steps down
as well as for steps up.

Nevertheless, the tolerance to an upward step largely
limits the robustness of spring-mass running. This critical
limitation becomes even more apparent if, instead of a single

Table 1. Numerical parameters of the simulations.

Parameter Value Examples in

g 9.81 m s−2 General
m 80 kg
!0 1 m
ydes 1 m General, except figures 6 and 8
Esys 1.78 kJ General, except section 3.2,

figures 6 and 8
k 30 kN m−1 Section 2
α α = α(tfall)
k k = k(tfall) Sections 3 and 4
α α = α(tfall)
Esys Esys = Esys(vx, y, $y) Section 3.2

step, the average change in ground level over many steps is
considered. Because the step tolerance is limited to 7 cm in
the upward direction, average changes in ground level of only
about ytol = ±3.5 cm are guaranteed to be tolerated when
running over rough terrain in which up and down steps vary
randomly (this human-like self-stability control is referred to
as self-stability control in the remainder of this paper). Even
if the stiffness is optimized to increase ytol (kopt ≈ 7 kN m−1),
the maximum guaranteed tolerance does not exceed ±9 cm
(compare table 2).

Another limitation of the self-stability control computed
by Seyfarth and Geyer (2002) is that it does not take into
account changes in system energy introduced by changing
ground levels from step to step. The self-stability control
is computed for a fixed system energy Esys. However, with
changing ground levels from step to step, the system energy
changes as well, and the deadbeat behavior gets imprecise
(what in general decreases the guaranteed tolerance, ytol <

1/2 min(ymax,dn, ymax,up)). Although the authors found that the
control is quite robust against such changes in Esys, it is strictly
valid only for $Esys/Esys $ 1.

3. Extending self-stability control

In this section we expand the theoretical limits of self-
stability control. We largely improve its tolerance against
ground disturbances (tenfold in our human-like example),
and precision its enforcement of deadbeat behavior. We
achieve the first by introducing another parameter variation
in flight besides the leg orientation α(t), and the second by
incorporating changes in system energy into the return map
analysis.
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Table 2. Tolerances to ground level changes (for a single step up ymax,up or down ymax,dn and random changes ytol) for the different controls
presented in this study (desired apex height ydes = 1m, apex height yi = 1 m and velocity vx,i = 5 m s−1 at start corresponding to a system
energy Esys = 1.78 kJ). The indices (A, B, C, D) on the single step tolerances refer to the cause of failure when exceeding it, see figure 3.

Control ymax,up and ymax,dn ytol Notes

Self-stability controls α(tfall) (Seyfarth et al 2002), examples section 2

Human example 7 cmA and > 1 mC 3.5 cm Fixed k (k = 30 kN m−1)
kopt examplea 33 cmA and 53 cmD/> 1 me 9 cm Fixed and optimized k

(k = 7 kN m−1); exceed
limits (µ, $!) of section 4

Extended self-stability controls [α, k](tfall), examples sections 3 and 4
[α, k]bal(yi = 1 m)
Balanced control 32 cmA and 32 cmC 0 cm Fixed [α, k]; unstable

fixed point
[α, k]bal(tfall)
Balanced control 33 cmC and 47 cmD/> 1 me 10 cm Exceed limits (µ, $!)

of section 4
[α, k]stiff(tfall)

Stiff control 70 cmC and 67 cmD/> 1 me 32 cm kmax = 50 kN m−1; exceed
limits (tc, GRF )

Stiff controlb 77 cmA and % 1 mB 33 cm kmax = 50 kN m−1; exceed
limits (tc, GRF )

Stiff control 29 cmA and 49 cmD/> 1 me 13 cm Include limits of
section 4

Extended stability controls [α, k](tfall) with vx feedback
Control examplec 77 cmA and % 1 mB 37 cm kmax = 50 kN m−1; for

different strategies
(e.g. soft or stiff)

a Fixed stiffness—optimized control with respect to ytol, see section 2.
b Control estimated with one Esys &= const. hypersurface (vx = 5m s−1), see section 3.2.
c Controls estimated with different Esys &= const. hypersurfaces, example of section 3.2.

3.1. Stiffness adaptation k = k(t)

Equations (3) and (4) show that the tolerance against ground
disturbances depends on the parameters ydes, !0, m, g, and
k (note that αmin in (3) itself depends on ydes, k and Esys).
While Esys, m and g are constant system parameters, and
ydes is a given target value, the leg parameters k and !0

can be accessed in addition to α(t) to manipulate the return
map of spring-mass running during flight. The influence of
these two parameters is not equal, however. Whereas changes
in k and !0 shape the system dynamics, changes in !0

also affect leg geometry. Because it is subject to additional
technical limitations (compare section 4), we avoid changing
leg geometry, and focus on the spring stiffness k as the
parameter for influencing the return map. Such a variation
in k before touchdown (TD) can be achieved in robots, for
instance, by using actuators in series or parallel with the leg
spring (Raibert 1986, Hosoda et al 2008, Hurst and Rizzi 2008,
Vanderborght et al 2009), and in humans by the level of the
pre-activation of antagonistic muscle groups (Hortobágyi and
DeVita 2000, Müller et al 2010).

Allowing k to adapt in flight in addition to α, we
obtain by brute-force mapping many pairs [α, k](yi, ydes) that
project from an initial apex height yi to a desired height
ydes in spring-mass running. Figure 4 shows these many
solutions as a hypersurface Sy in the parameter space [k,α, yi]
for the same desired height ydes = 1 m and human-like
system parameters Esys, !0, m and g as in the example of
section 2. The yellow line in Sy marks the deadbeat control

α(yi) shown in figure 2 for the constant spring stiffness k =
30 kN m−1. The borders A and C again mark the upward
stumbling border, corresponding to the landing condition (1),
and the energy limit y = Esys/mg, respectively. The dashed
line shows the parameter combinations that correspond to start
heights yi = ydes. The intersection of this line with the yellow
solid line identifies the parameter α that corresponds to the
fixed point solution yi = yi+1. Another border of Sy occurs for
low stiffness values. At this border B the leg is too soft and the
system crashes during stance (figure 3(B)). Thus, B is related
to the tolerance against downward steps.

A and B help to understand strategies and constraints for
changing k and α in flight to maximize tolerances against
ground disturbances. Consider the parameter combinations
that belong to the apex height yi = ydes shown by the dashed
line in figure 4. The maximum tolerance against upward steps
(3) is obtained for the smallest possible α corresponding
to the left edge of this line. At this edge, however, the
tolerance against downward steps is near zero as k approaches
kmin = 2Esys/!

2
0, which describes zero tolerance against

downward steps (4). Moving along the dashed line toward
large k, the stiffness k(α, yi) that produces equal tolerances
for up and down steps (ymax,up = ymax,dn) can be estimated
by equating and rewriting (3) and (4) (ydes − !0 sin(αmin) =
(k/2 · !2

0 − Esys)/mg) with ydes = yi to

k(α, yi) = 2
!2

0

{[yi − !0 sin(α)]mg + Esys}. (5)
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Figure 4. Parameter combinations enforcing deadbeat control. The
hypersurface Sy (gray) shows all parameter combinations [k, α](yi)
that enforce yi+1(yi) = ydes with ydes = 1m. The edges of the surface
describe the stumbling edge (A), the collision edge for which the
mass collides with the ground during spring compression (B), and
the energy limit yimg = Esys (C) (Sy is not limited for increasing k).
The yellow, blue and red lines (right/light gray, left/dark gray and
middle/gray lines, respectively) show alternative deadbeat control
strategies [k, α](yi), including the previous deadbeat control α(yi)
(compare section 2 and figure 2) (yellow/light gray), and the
balanced control as approximated by equation (5) (blue/dark gray)
and as computed numerically (red/gray). The dashed black curve
indicates fix-point solutions yi = yi+1 = ydes and the dashed-dotted
curve shows the relation k(α, yi = ydes) of the balanced control
approximation (5). Note that for large yi the red and blue controls
merge at one point when the spring fully compresses. Above this
point the tolerance to downward steps (ydn) is limited by the
constraint y(tTO) > y(t > tTO) (figure 3(D), A2 in figure 2), and
below this point, by backward movement (vx,i+1 < 0, figure 3(C))
(rather than by the full compression constraint (4)).

A balanced, maximized tolerance in both directions
ymax,dn(yi) = ymax,up(yi) is achieved when this k(α, yi)
relationship intersects the dashed line yi = ydes. This estimated
parameter combination [k,α]bal(yi) is depicted in figure 4 as
a blue line for all possible initial heights yi along with its
computed and more exact counterpart (red line, referred to as
balanced control in the remainder of this paper).

If the spring-mass model can adjust its parameters to
the measured ground level only once at apex, the choice
[k,α]bal(yi) will maximize the tolerance against unexpected
disturbances in ground level after the apex event. For instance,
for the desired apex height ydes = 1 m and for starting in
steady-state, the balanced control tolerance ydn(yi) = yup(yi)
is about 32 cm for one step (as compared to only 7 cm for the
deadbeat control α(t), compare section 2 and table 2 ). Larger
tolerances can be achieved if the parameters k and α can be
continuously adapted after the apex event within the surface
Sy to apex heights ŷi that correspond to the altered ground
level. If this ground level needs to be continuously sensed
for adaptation, [k,α]bal(ŷi) maximizes the tolerance against
sensor noise.

Because apex height yi and falling time tfall after apex
are uniquely coupled (2), the ground level does not need to
be measured for continuous adaptation, and many alternative
control strategies for k and α exist. Figure 5 shows the
transformed hypersurface Sy → St in the [k,α, tfall] space.

Figure 5. Parameter combinations for extended self-stability
controls. The hypersurface St shows all time-transformed parameter
combinations [k, α](tfall) for ydes = 1 m. The borders A, B, C
correspond to the same borders of Sy (figure 4). The yellow, red and
green curves (center/light gray, left/gray and bottom-right/light
gray curves on the hypersurface, respectively) show the time
evolutions of the self-stability control α(tfall), the calculated
balanced control [k, α]bal(tfall), and the stiff control [k, α]stiff(tfall),
respectively. The dashed curve indicates parameter combinations for
the fixed point solutions yi = yi+1 = ydes. The black line on
tfall = 0.32 s indicates the slice plane used in figures 6(A) and (C).

As long as parameter combinations [k,α] evolve in time tfall

on St (indicated by the arrows for depicted controls), ydes will
for $Esys $ Esys (compare section 2) be reached in the next
apex independent of the actual change in ground level that the
model experiences during the step. For example, the yellow
solid line evolution shows the self-stability control α(t), which
is the transformed deadbeat control α(yi) for k = 30 kN m−1.
Figure 5 also shows the balanced control that remains close to
the border B (red line). A third example is a ‘stiff’ control that
follows the border A nearly instantaneously, and then evolves
on the surface for k = 50 kN m−1 (referred to as stiff control
in the remainder of this paper). If the system energy Esys is not
adapted from step to step to accommodate changes in potential
energy due to ground level changes in previous steps, these
three control alternatives show different, guaranteed ground
tolerances ytol in locomotion, ranging from 3.5 cm for the
self-stability control (section 2), to 10 cm for the balanced
control, and to 32 cm for the stiff control (see table 2). (If k
increases further, for the stiff control the guaranteed tolerance
approaches the numerically estimated limit of about 40 cm
given by αmin = 10.6 deg, (3).)

3.2. Energy variations

The performance of the different control strategies differs only
because Esys is assumed to be constant. Figure 6 shows as
contour plots for two different falling times (panels (B) and
(C)) the parameter combinations α and k which correspond
for a constant system Esys to different desired apex heights.
The parameter combinations for ydes = 1 m are highlighted
as a white solid line. In both panels (B) and (C), neighboring
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Figure 6. Influence of system energy Esys on the desired apex height ydes and corresponding parameter combinations [k, α] for two different
falling times, tfall = 0s (B, falling height $y = 0 m) and tfall = 0.32 s (A and C, falling height $y = 0.5 m). (A) The panels describe
qualitatively how the slice plane tfall = 0.32 s of figure 5 changes for different ydes and for different Esys. (B) and (C) For the two different
falling times the white curve (gray in A) shows [k, α] combinations for ydes = 1 m. The contour plots show the parameter combinations for
different desired apex heights ydes ranging from 0.15 to 2.27 m. The black solid curves show [k, α] combinations for the same ydes = 1 m but
modified system energies E ± $E, equivalent to encountered steps of $y = 0.5 m. The dashed curve indicates parameter configurations
leading to ydes = 1 m if the system energy is adapted to account for up and down steps (only shown in A and C).

solutions ydes = 1m ± $ are farther apart for large α and
k than for small ones, showing that the tolerance against
parameter errors increases with increased parameter values,
independent of the falling time. For comparison, the same
parameter relationship for ydes = 1 m is shown as black solid
lines for changed system energies Esys ± $E equivalent to
encountered steps of $y = ±50 cm. While these relationships
lie close to the same relationship for Esys initially (panel (B)),
they clearly drift apart with increasing falling time (panel
(C)), showing that errors in estimating Esys are tolerated more
for short falling times than for long ones. As a consequence,
controls that are developed assuming a constant system energy
will tolerate large steps if they approach large values of α and k
in the shortest time possible. Thus, of the two controls derived
in the previous section, the stiff control performs better than the
balanced control (ytol = 32 cm versus 10 cm, respectively).

In self-stability controls the assumed constant Esys
including inherent errors in the parameter adjustment not
only influence the guaranteed tolerances to multiple random
changes in the ground level ytol within the different controls
but also the tolerance to single step perturbations ymax,up and
ymax,dn. Table 2 shows these estimated tolerances and the
causes of failure. For example, the limiting factor for steps
up in the stiff control (ymax,up = 70 cm) and the balanced
control (ymax,up = 33 cm) is not the stumbling edge but the
reverse in direction (compare figures 3(A) and (C)). As a result
of the error propagation over many perturbed steps ytol is in
general less than half of the limiting step, e.g. for the balanced
control is ytol < 1/3ymax,up.

The different performances can be equalized and
maximized by including in the derivation of the control
strategies the energy fluctuations $E = mg$y that occur
from step to step due to changes in potential energy. We
achieve this by computing the apex return map yi+1 = R(yi)

for different yi without adapting the initial forward speed
vx,i to a constant system energy Esys (similar to Ernst et al
(2009)) (figure 1). As a result, the balanced and stiff control
strategies, which start with the minimum possible angle αmin,
now achieve the same, improved guaranteed tolerance of about
37 cm (apart from small deviations between the strategies due
to limited numerical accuracy; note also that with this method
first the single step tolerances can be maximized (table 2,
stiff controlb) and second the guaranteed tolerance (table 2,
control examplec)). However, including the energy variation
requires to adapt the return map R(yi) and therefore the
control [k,α](tfall) from step to step to altered system energies.
This can be achieved for instance, through an additional
feedback of the horizontal velocity vx at apex or of the value
of the previous contact time tc (Raibert 1986, Hutter et al
2010). Thus, although including an energy control improves
the guaranteed tolerance, it cannot be formulated as a pure
self-stability control. A self-stability control only requires a
feedback of discrete bits triggering an event (in our case the
reset of the leg parameters in the apex event) and does not
need continuous or discontinuous feedback about the amount
of the system energy or the ground level error (Ringrose 1997,
Grimmer et al 2008).
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Figure 7. Influence of technical limitations on self-stability control. Panels (A)–(E) show the hypersurface St for ydes = 1m. The small
panels (B)–(E) depict the resulting peak ground reaction force GRF (B), peak friction coefficient µ (C), peak leg compression $! (D), and
ground contact time tc (E). The solid curves in the small panels correspond to specific values for these technical limitations (GRF = 6.5 bw,
µ = 1, $! = 0.5!0, tc = 125 ms). Panel (A) shows how the technical limitations constrain the available parameter combinations [k, α, tfall]
for self-stability control (note that the limitation of the maximum angular velocity ωmax = 900 deg s−1 is included as the lower border of the
available range). Different time evolutions of [k, α] within the available range (white area) result in different guaranteed tolerances ytol
ranging from 9 to 13 cm (dashed curves). The dotted curve indicates a self-stability control that maximizes the distance to the borders of the
available parameter range, resulting in the largest, combined tolerance against ground level and parameter mismatches.

4. Incorporating technical limitations in defining the
control strategy

So far we have concentrated on the theoretical extensions
of the self-stability control leading to substantially improved
tolerances against ground disturbances. The practical use of
these extensions is constrained by technical limitations and
we show how incorporating these limitations distinguishes
particular control strategies. For this part, we focus on pure
self-stability controls that do not require feedback.

Several major technical limitations of self-stability
controls exist. One is the dynamics of real actuators. The
maximum angular velocity α̇max(t) = ωmax(t) cannot exceed
the speed limits of the hip actuators. In addition, leg actuators
can only generate ranges of stiffness k due to constraints
imposed by maximum torque production (maximum stiffness),
reflected inertia (minimum stiffness), and maximum torque-
speed relationship (maximum stiffness). Mechanical design
imposes further limitations, for instance, on the allowable
ground-reaction force GRFmax to prevent damage, on the
available maximum leg compression $!max, and on the
maximum lift αapex,min of the leg in swing. Finally, robots do
not have feet hinged to the ground as the spring mass model
does, and a secure foothold requires the horizontal GRF to lie
within the friction cone, GRFx < µ · GRFy.

We map these limitations onto five parameters and
demonstrate with an example how they influence the
identification of self-stability controls. Besides a friction
coefficient µ = 1, the dynamic parameters include a maximum
angular velocity ωmax = 900 deg s−1 and a minimum contact
time tc,min = 125 ms. Rather than a stiffness limit, the one on
the contact time eases the comparison to technical actuators.
Combined with the mechanical parameters of an assumed

maximum ground reaction force, GRFmax = 6.5 body weights,
and a maximum leg compression, $!max = 0.5!0, it translates
into a torque-speed relationship for electrical actuators. (We do
not limit the minimum leg angle αmin in our example, because
it will be automatically constrained by µmax and $!max.) The
parameter values do not describe a specific human or robot.
They represent reasonable estimates motivated by literature
(e.g. (Miller and Nissinen 1987, Minetti et al 1998)). Note that
the described method of customizing the self-stability control
is independent of these specific values.

Figure 7 shows how the technical limitations constrain
the parameter choices in the hypersurface St for self-stability
control. Panels (B)–(E) show the individual trends of GRF,
µ, $!, and tc. The peak ground reaction force increases
from low to high stiffness values and with rising falling
times (figure 7(B)). The ratio GRFx/GRFy decreases from
flat to steep angles of attack, but shows a trend reversal in
the time evolution (figure 7(C)). The trend reversal occurs
at falling times that result in steady-state stance phases with
symmetric GRF patterns (take-off angle equals TD angle).
For shorter falling times, the model hits with flatter angles
and GRFx/GRFy increases. For larger falling times, it pushes
off with flatter angles and a similar increase in GRFx/GRFy

occurs. Finally, the maximum leg compression and contact
time show similar behaviors decreasing from low to high
stiffness values and from flat to steep angles of attack
(figures 7(D) and (E)). The example limitations are plotted
as lines in the individual panels (figures 7(B)–(E)), restricting
the available combinations of k and α for self-stability control
in St (figure 7(A)).

Although the parameter combinations available for self-
stability control are reduced, a substantial variety remains
(figure 7(A)). In general, the static friction µ (as in our
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example) and the maximum leg compression $!max shift the
smallest possible angle of attack toward larger values (from
10.6 deg to 45.0 deg), reducing the tolerance against upward
steps for all possible control strategies. In particular, the
balanced control introduced in section 3 cannot be followed
anymore since it lies outside of the feasible parameter range.
On the other hand, the minimum contact time tc,min or
the maximum ground reaction force (GRFmax) reduce the
maximum leg stiffness that can be achieved in contact (from
50 to 41 kN m−1 and clearly less for increasing falling times),
reducing the tolerance against downward steps. Although the
stiff control is still available, it requires to follow the borders
defined by GRFmax and tc,min as well as by the maximum
angular velocity ωmax (indicated by arrows following the
borders). (Note that the ωmax border is not fixed but depends
on the start value of αmin. In the stiff control example, it limits
how fast the leg angle can shift from the smallest possible
value to the maximum value defined by the tc border.) As a
result the guaranteed tolerance reduces from 32 to 13 cm. A
control that follows the parameter combinations defined by the
borders, however, is at risk of exceeding the technical limits if
errors in the parameter adaptation occur. In realistic situations
such errors cannot be excluded. A control that maximizes the
distance to these parameter borders provides a compromise,
which results in robustness not only against ground level
changes but also against parameter mismatches (dotted line,
figure 7(A)).

5. Conclusion and discussion

Our goal was to better understand fundamental limits
of self-stability control, and to use this knowledge to
optimize this control method with respect to unknown and
unexpected ground disturbances. Previously derived versions
of self-stability control in running tolerate large unexpected
downward steps (up to 35% of leg length, (Schmitt and
Clark 2009)), but cannot accommodate similarly large steps
in the upward direction (less than 5% of leg length, (Seyfarth
et al 2002, Rummel and Seyfarth 2008)) unless very bouncy
gaits with large apex heights are selected ((Seyfarth and Geyer
2002, Ankarali and Saranli 2010), figure 2). By contrast, we
show that self-stability control tolerates large steps in both
directions if variations of leg stiffness k(t) before TD are
introduced in addition to changes in the leg orientation α(t),
resulting in an increase of ground tolerance from 3.5% (to
9% for an optimized stiffness) to about 35% of leg length for
our human-like example. Key to this substantial increase is
that, unlike a fixed leg stiffness, the variable stiffness allows
to start with flat leg orientations (αmin → 0 deg) after the
apex event, maximizing upward step tolerances (about 70%
of leg length for single steps up, table 2). Such an improved
ground level tolerance in running can help robots or animals to
prevent falls if reliable informations about the ground level are
missing e.g. while running in the dark or across meadows with
high grass camouflaging drops and bumps. In addition, we
also demonstrate how technical limitations can be accounted
for in the derivation of self-stability control. We achieve this
by generalizing the return map manipulation for deadbeat

behavior introduced in Seyfarth and Geyer (2002) to the two
parameters α and k.

Flight phase controls which, besides α(t), adapt leg
parameters before TD have been proposed in literature;
however, these controls do not explore the theoretical limit of
gait stability as measured by step tolerance. For instance, Blum
et al (2007, 2010) explore simultaneous changes p = ṗ0t + p0

after the apex event for the three parameters leg stiffness,
orientation and length (p = k,α, !). The authors demonstrate
with their controls that previously unstable fixed point
solutions yi = yi+1 can be stabilized, but they do not explore
if these controls maximize the guaranteed tolerance ytol. Our
extended self-stability control achieves this maximization as
long as the control hyper-surface St (Esys) exists, distinguishing
this approach from other control approaches that do not
actively exploit the return map manipulation. Although we
have focused in this paper on one particular example using
model parameters equivalent to human running at 5 m s−1

with a desired apex height of 1 m, figure 8 shows that St exists
for a large range of human running speeds and desired apex
heights.

In contrast to the ideal spring-mass model, real
legged systems in engineering and biology are subject to
constraints on, for instance, mechanical design, actuation, and
ground friction. To understand how such realistic constraints
influence self-stability control, we introduced limits on
model parameters and variables that reflect technical and
physical limitations found in legged systems, and studied
their effect on the available control solutions. Our results
show that although realistic constraints reduce the parameter
combinations available for self-stability control, a substantial
variety remains and large tolerances can still be guaranteed
(13% leg length for the limit set $!max = 50% leg length,
µ = 1, GRFmax = 6.5 bw, tc,min = 125 ms, ωmax =
900 deg s−1 and an apex height that equals the leg length,
figure 7(A)). More generally, we find that embedding and
interpreting technical limitations within the surface St (Esys)

provides a design method to customize self-stability control
for individual legged systems.

Besides technical limitations, losses in energy and their
compensation form an integral part of locomotion systems
which are not captured by the conservative spring-mass
model. In deriving the control surface St , we included energy
variations that occur from step to step due to changes in
ground level (figure 6). We found that incorporating step-
to-step adaptations St → St (Esys) equalizes the guaranteed
tolerance for all control strategies within the surface St (Esys)

that start from the same angle αmin, increasing the control
design options. However, we required additional feedback to
include the adaptation, and could not integrate it into the self-
stability control. In addition, our energetically conservative
model does not describe energy changes due to, for example,
damping or ground friction, and their compensation. Model
extensions that consider such changes have been proposed in
literature (Geyer et al 2003, Schmitt and Clark 2009, Ankarali
and Saranli 2010, Koepl et al 2010) and were recently applied
to a one-legged planar hopper (Andrews et al 2011). If the
resulting Poincaré maps are unique, these extensions could
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(A) (B)

Figure 8. Existence of the hypersurface St for a large range of system energies Esys and desired apex heights ydes. Panel (A) shows St for one
apex height ydes = 1 m at two different system energies E1 = 0.83 kJ and E2 = 4.79 kJ. In steady-state running with yi = yi+1 = ydes, the
two energies correspond to forward speeds of 1 and 10 m s−1, respectively. The dashed curves show the parameter combinations that
describe these solutions. Panel (B) shows St for the same system energy E2 = 4.79 kJ and three different desired heights.

provide powerful tools for incorporating energy losses and
their compensation in self-stability control.

While stability is of major concern to legged systems,
other criteria such as energetic efficiency or comfort
likely shape locomotion control in predictable environments.
Humans and other animal bipeds adapt their leg parameters in
running when they encounter compliant surfaces (Ferris et al
1998, 1999, Kerdok et al 2002), or expected (Grimmer et al
2008, Müller and Blickhan 2010) and unexpected disturbances
(Daley and Biewener 2006, Daley et al 2007). In part this
adaptation seems related to self-stability control. For instance,
Daley and Biewener (2006) and Daley et al (2007) found
that running birds retract their legs before TD, and maintain
this retraction control α(t) even after they encounter large
unexpected drops in ground level. In addition, they found
that running birds change the leg length during flight, !0 =
!0(t), which correlated with net energy changes after the
disturbance, indicating a feedforward contribution to energy
control. On the other hand, in predictable environments such
as urban walkways humans tend to minimize foot clearance.
For instance, in walking, the foot ground clearance at mid-
swing reaches not more than about 1 cm (Winter 1992).
While this lack of lifting the leg improves energy efficiency,
it substantially increases the risk of tripping (section 2), and
thus requires reliable estimates about ground elevation. Similar
estimates are required for ground speed matching at TD
(Herr and McMahon 2001, Blum et al 2010), which improves
energy efficiency by reducing impacts. If such estimates are
available, using for instance visual feedback, energy efficiency
likely subordinates ground tolerance as locomotion criterion.
Another criterion could be locomotion comfort. It has been
observed that, for unexpected changes in ground stiffness as
well as anticipated changes in ground level, humans maintain
a smooth center of mass trajectory similar to undisturbed
running, independent of the actual ground stiffness (Ferris
et al 1999, 1998) or ground level (Grimmer et al 2008, Ernst
et al 2009).

Whether or not humans and animals use a feedforward
control strategy, they adapt their leg parameters to the terrain in
locomotion. Here we showed that the simultaneous adaptation
of these parameters before TD is key to robust locomotion
with largely increased tolerances to ground disturbances. In
addition, we demonstrated that a substantial part of this
adaptation can be embedded in feedforward, extended self-
stability control, taking advantage of the relationship between
ground distance and falling time in flight. And finally, we found
that the flexibility of extended self-stability control allows
to customize it for individual legged systems with defined
technical and physical constraints.
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