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Abstract— The analysis of the conceptual spring mass model
for running reveals swing-leg placement policies that gener-
ate very robust locomotion in unobserved terrain with large
changes in ground height. However, while this theoretical result
suggests a potential for large improvements on the robustness
of running machines, it has so far not been demonstrated on
a physical robot. Here we address this implementation and
verification step for a human-sized bipedal robot platform
confined to a boom. We detail challenges and solutions for
the implementation of the control approach and show that it
leads to very robust running (ground changes ±20% of leg
length) over unobserved ground in a high fidelity simulation of
the robot platform. We also present initial tests on the actual
robot hardware, which indicate the feasibility of the approach.
If it can be generalized to 3D running, it could trigger running
machines with largely improved robustness.

I. INTRODUCTION

The spring mass model (SMM) is a common starting
point for developing legged running controls. This concep-
tual model produces center of mass (COM) dynamics that
closely match the whole body dynamics found in human
and animal running experiments [1], [2]. Many legged robot
platforms were inspired by this fact and either embed or
emulate spring-like behavior in stance [3], [4], [5], [6].
Several control strategies have been combined with this
stance behavior in mind, ranging from the regulation of fun-
damental locomotion goals (trunk orientation, total energy,
and forward speed) with intuitive feedback laws [3], [7] to
formal controller development of a spring-legged limit cycle
gait within the hybrid zero dynamics framework [8].

Although these control strategies have led to successful
locomotion in robots, the theory of the spring mass model
suggests an alternative control strategy that should greatly
improve the robustness of running robots in rough terrain.
The analysis of the spring mass model’s full behavior within
the framework of optimal control has led to swing leg
placement policies that render the model deadbeat stable [9],
[10], [11], [12], [13], [14]. In particular, some of the control
strategies can be embedded in a time-based swing leg policy,
which leads to very robust running in unobserved terrain with
frequent and large ground height changes [9], [14]. However,
this theoretical result on the spring mass model has so far
not been demonstrated on physical running robots.

Our goal is to implement the time-based swing-leg policy
on a bipedal robot and to transfer and verify the running
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robustness predicted by the theory. To this end we have
developed in previous work a control mapping approach
that embeds the spring mass behavior in articulated bipeds
with more degrees of freedom than the abstract model [15].
Here we address the hardware implementation of this biped
control on a human-sized bipedal robot platform. We first
review the general control approach from the spring mass
model’s swing leg policies to the mapping control and its
additional requirements for articulated robots (section II). We
then detail challenges and solutions for the implementation
of the control approach on CMU’s ATRIAS biped platform
(section III), and show that in a high fidelity simulation of
the robot platform the control approach leads to highly robust
running capable of terrain height changes ±20% leg length
(section IV). Section IV also presents our initial tests on
the actual robot hardware, which indicate that the simulation
performance will translate to the physical robot once the
system gets upgraded with larger power amplifiers. Finally,
we discuss this limitation and future plans to generalize the
approach to 3D running (section V).

II. REVIEW OF CONTROL APPROACH

The spring mass model describes essential mechanics of
legged running. The model includes a point mass m attached
to a massless spring with stiffness k0 and rest length l0.
During flight, the point mass moves on a purely ballistic
trajectory. Once the spring leg hits the ground, the model
enters stance assuming perfect ground contact. In stance, the
model behaves like an inverted pendulum with an embedded
spring. The resulting ground reaction forces (GRFs) are[

Fx

Fy

]
= k0(l0 − l)

[
− cos(α)
sin(α)

]
, (1)

where α is the angle the spring leg forms with the ground,
and l is the current leg length. The model returns to flight
when the leg is fully extended during rebound. The analysis
of the model’s apex return map, the stride map between
apex events of two consecutive flight phases, leads to swing
leg policies α∗(t) that commence after the apex event and
generate robust running of the SMM over rough terrain
without prior knowledge of the upcoming ground height [14].
The swing leg policies are unique and depend on the model’s
spring stiffness k0, system energy Esys, and the desired height
ydes of the COM at apex.

To translate the robust behavior to bipedal robots, we have
developed a control mapping approach in previous work that
takes the additional degrees of freedom of physical robots
into account [15]. The main idea of this control mapping is
to produce spring-mass dynamics with the robot in stance



and to follow a given policy α∗(t) with the leg that is about
to land in swing. Several other control goals are handled in
parallel. These additional goals include the regulation of a
robot’s system energy and trunk orientation, and the behavior
of the swing leg that is not about to land.
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Fig. 1. The running controller implements different high-level control goals
for the primary and secondary legs. These objectives change depending on
whether the primary leg is in stance or swing.

Figure 1 sketches the relationship of the control goals. The
goals are divided between a primary leg and a secondary leg.
The primary leg is the leg whose control tracks the behavior
of the spring mass model. In swing, this leg’s control tries
to reach the initial configuration α∗(0) before apex has been
reached in flight and, after this event, to track the policy
α∗(t). In stance, the control attempts to generate GRFs that
match the simplified SMM, computed from (1) assuming a
virtual spring between the foot point and the COM of the
robot. However, energy and trunk regulation alter this GRF
profile. The stiffness of the virtual leg spring is modulated
throughout stance,

k = k0 + c∆E l̇, (2)

based on an energy error ∆E, an energy correction gain c,
and the leg lengthening velocity l̇. This allows the control
to add or remove energy from the system. In addition, the
desired GRF vector is rotated by an angle θrot about the foot,

[F∗x F∗y ]ᵀ = Rθrot [Fx Fy]T , (3)

where Rθrot is the rotation matrix. This generates corrective
torques about the COM and stabilizes the trunk at a desired
angle θ∗. The resulting GRF profile is mapped into joint
torques of the robot using inverse dynamics,

z =

[
M5× 5 −S5× 2
J2× 5 02× 2

]−1 ( [
h5× 1

−(J̇q̇)2× 1

]
+

[
JT

5× 2
02× 2

] [
F∗x
F∗y

] )
, (4)

where z = [ẍ ÿ l̈ γ̈l θ̈ τ f τb]T specifies commanded
joint torques and accelerations (compare Fig. 3), q is the
coordinate vector, M is the mass matrix, J is the Jacobian
mapping GRFs to joint torques, S is the selection matrix, and
h accounts for Coriolis, centrifugal, and gravitational forces.

The secondary leg control is only active in swing. During
the swing of the primary leg (flight phase as both legs are in
swing), the secondary leg mirrors the primary leg’s angular
position and velocity to diminish trunk pitching. When the
primary leg enters stance, the secondary leg tracks the initial
apex configuration α∗(0), preparing for a switch of roles of
the two legs. The switch occurs when the primary leg leaves
stance.

Fig. 2. Top: Carnegie Mellon’s ATRIAS robot testbed for planar running.
Bottom: Simulation of the ATRIAS testbed used to pre-tune control and
provide performance benchmarks for the hardware implementations.

III. IMPLEMENTATION ON ATRIAS
The realization of the control goals on specific robot

hardware poses challenges that revolve around joint torque
distribution, force and position control of desired behaviors,
contact detection, and estimation of system energy. We detail
how we address these challenges for the implementation on
CMU’s ATRIAS biped (Fig. 2).

A. Robot System

ATRIAS is a human-size bipedal robot developed by the
Dynamic Robotics Laboratory at Oregon State University
[16]. The robot’s legs are composed of lightweight four-
bar mechanisms. The proximal segments of each four-bar
mechanism are actuated through series fiberglass springs by
geared electric DC motors. The torques generated by these
series elastic actuators (SEAs) effectively produce leg length
l and leg angle θl actuation. Each leg is further actuated
by a geared DC motor housed in the trunk that provides
leg abduction and adduction. To transfer the planar control
of the spring mass model, the trunk is constrained by a
boom, although it remains free to pitch in the sagittal plane.
The lightweight leg construction with four-bar mechanisms
concentrates the robot’s mass distribution. It approximates a
spring mass model with a leg length of about 1m and a mass
of about 60kg. Key differences to the spring mass model are
the robot’s COM location about 0.1m above the hips, the
trunk’s rotational inertia of about 2.2 kg·m2, and the four-
bar motors’ reflected inertia of about 3.75 kg·m2 when the
robot is in stance.

We have developed a detailed simulator of the ATRIAS
testbed in Matlab SimMechanics (Mathworks, Natick, MA)
for pre-tuning the control and providing performance bench-
marks for the hardware implementations (Fig. 2). The sim-
ulated environment contains 13 degrees of freedom (4 for



the four-bar mechanisms, 4 for the SEA motor positions,
2 for the frontal plane motors, 1 for the trunk pitch, and
2 for the boom constraining roll and yaw) and models
the main mechanical components (segmented chain, gear
stages, springs, motor dynamics) and electrical components
(electrical motor dynamics, discrete time control) of the
robot testbed. In addition, the simulation includes contact
points on the robot’s feet, modeling the dissipative ground
reaction dynamics as nonlinear spring-dampers with stick-
slip transitions [17]. Gaussian sensor noise and joint friction
are also included to create a realistic system.

B. Torque Limitations

Each four-bar motor of ATRIAS develops about 300Nm
peak torque at joint level (gear ratio 50:1). Running on rough
terrain forces the robot to operate at motor torque limits,
leading to implementation challenges with torque saturation.

1) Optimal Force-Torque Distributions: Torque saturation
occurs mainly in stance when trading off leg force generation
and trunk pitch stabilization. We use optimal control to find
the best compromise. A combination of desired leg force,
Fl, and hip torque, τH , translates into desired torques for the
front and back segments of the four-bar leg,

τ f /b = τH/2 ± Flls sin (ρ/2) ,

where ls is the four-bar segment length and ρ is the splay
angle (Fig. 3). The optimal torque distribution problem is
formulated with objectives x1 = τH/2 and x2 = Flls sin (ρ/2)
and the cost function f (x1, x2) = −λ1(x1− x∗1)2−λ2(x2− x∗2)2,
where the positive parameters λ1 and λ2 shift the control
emphasis between leg force and trunk pitch. The pair x∗1 and
x∗2 describes objective values computed from the desired leg
force and hip torque. Combining the resulting first-order and
complementary slackness conditions produces a system of
equations with nine possible solutions. Based on x∗1, x

∗
2, λ1, λ2

and the specified torque limits, we select the solution which
maximizes the objective function.

Fig. 3. Inverse dynamics control during stance computes front and back
torques τ f and τb that produce leg force Fl and accelerations for COM
position (ẍ, ÿ), leg length l̈, primary leg angle γ̈l, and torso acceleration θ̈.
Leg placement during the flight phase controls virtual spring angle α with
rest length l0.

2) Feasible SMM Control: Motor saturations also limit
the peak values of leg force and hip torque that can be
achieved. The maximum leg force, Fmax, decreases in propor-
tion to the four-bar splay ρ. The splay can be limited during
rebound in stance by commanding a large virtual spring
stiffness k0 that reduces leg compression. However, a large
spring stiffness reduces the apex height or ground clearance
that the robot can achieve. This relationship between virtual
spring stiffness, ground clearance, and peak motor torque is
shown in Fig. 4 for vertical hopping of the robot. The contour
line at 80% peak motor torque highlights stiffness-clearance
combinations that the robot can safely achieve. For imple-
mentation on the robot, we select the virtual stiffness (k0
= 8820N·m−1) that maximizes ground clearance (4.7cm), in
order to avoid motor saturations when encountering ground
height changes in rough terrain locomotion.

The maximum hip torque limits how well the robot can
track swing-leg angle policies α∗(t) provided by the spring
mass model. The leg angle policies require large hip speeds
when system energy Esys decreases. Thus, we select a system
energy Esys ≥ 445J that is large enough to produce leg angle
policies within the tracking capabilities of the robot.

In consequence, we target the behavior of a spring mass
system with mass m = 60kg, leg rest length l0 = 1.04m,
leg stiffness k0 = 8820N·m−1, system energy Esys = 445J,
and target apex height ydes = 1.06m. With these parameters,
the swing leg policy for robust running on unobserved rough
terrain can be approximated to α∗(t) = 12.835t3 − 2.9736t2 +

1.9343t + 1.1389 [9].

Fig. 4. Contour lines for stiffness-clearance combinations that can be
achieved at 75%, 80%, 85%, and 90% of peak motor torque.

C. Torque and Position Tracking

ATRIAS’ four-bar motors act through carbon fiber leaf
springs on the proximal leg segments. The switch between
stance and swing phases produces very different load envi-
ronments, with high load inertia in stance and very low load
inertia in swing, leading to implementation challenges with
series elastic actuator control. We address these challenges by
gain-scheduling and switching between torque and position
control based on the experienced load.
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Fig. 5. Torque control for series elastic actuators includes friction
compensation and antiresonance terms. Feedback gains, kp and kd , are
scheduled based on measured torque. Load acceleration θ̈l along with motor
inertia Im provide a feedforward term that is scaled by the constant K f f .

1) Torque Tracking: The last two rows of equation (4) are
solved to provide desired joint torques τ∗ for the SEAs. To
track these torques in stance, the SEA control uses classic
design [18] with modifications (Fig. 5). The desired torque is
tracked combining PD feedback on torque error e = τ∗−τmea

with feedforward compensation of the SEA dynamics. The
measured torque τmea = ksea(θm − θl) is obtained from motor
and joint position encoders and the leaf spring stiffness ksea.
The feedback gains are scheduled based on this measured
torque,

kp =
kmax

p

1 + exp(τth − |τmea|)
, kd =

kmax
d

1 + exp(τth − |τmea|)
, (5)

where τth=80N·m is a torque threshold for switching from
low to high gains, and kmax

p and kmax
d are maximum gains.

This gain scheduling prevents large spring vibrations for
small loads. In addition, Coulomb friction torque is compen-
sated assuming τc f = a + b tanh(k θ̇m) with identified friction
constants a and b, a sensitivity gain k, and the motor velocity
θ̇m. Viscous friction is negligible and ignored. Finally, the
commanded motor torque is passed through a notch filter
at 27Hz to further prevent resonance in the leaf spring.
ATRIAS’ motor controllers convert the commanded motor
torque into appropriate current at the lowest control level.

2) Position Tracking: The very low load inertia provided
by ATRIAS’ carbon fiber four-bar mechanism (total weight
about 1kg) in combination with random, unmodeled friction
torques of the actuators make it difficult to implement torque
tracking in swing. Thus, we use position tracking for swing
leg control goals. For both, the primary and secondary leg,
these goals require to track desired hip angle φ∗h(t) and leg
length l∗(t). The corresponding joint targets for the front and
back segment of the four-bar mechanism are given by

[θ∗f θ
∗
b]T = φ∗h ± arccos

(
l∗

2ls

)
. (6)

The joint targets are tracked with PD control and the feed-
forward compensation term Ir θ̈

∗
f /b, where Ir is the reflected

motor inertia (Fig. 6). In addition, friction compensation and
notch filtering are preserved from the SEA torque control.

The desired hip angle and leg length are simplest for the
secondary leg mirroring the primary leg. In this case, l∗(t) =

0.7m is set to a constant retraction value and φ∗sh (t) = 2π −
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Fig. 6. Position control during leg swing is performed using a PD law
along with feedforward compensation for desired accelerations. Friction and
resonance compensations are also included.

φ
∗p
h (t) mirrors the hip angle of the primary leg about the

robot’s symmetry axis (Fig. 7A).

Fig. 7. A: The secondary leg mirrors the primary leg during robot flight
by reflecting primary leg angle φp

h across the trunk centerline. B: Leg length
l∗ can be calculated for a given α∗ using the law of cosines. C: Relative
leg angle φ∗h can be resolved from a given α∗ by solving for the hip point
coordinates (xcom + ∆xhip, ycom − ∆yhip).

In the case of the primary leg following the swing leg
policy α∗(t) after apex, the desired hip angle and leg length
resolve to

φ∗h = (π/2 − θ) + atan(∆y/∆x), (7)

l∗ =

√
d2

com + l20 − 2dcoml0 cos(θ − α∗ + π/2), (8)

where dcom is the distance between COM and hip, ∆x =

l0 cosα∗ + dcom sin θ, and ∆y = l0 sinα∗ − dcom cos θ
(Fig. 7B, 7C).

Finally, if either the primary or the secondary leg try to
reach the initial configuration α∗(0), the desired trajectories
of the leg length and hip angle are generated as cubic polyno-
mials l∗(t) = alt3+blt2+clt+dl and φ∗(t) = aφt3+bφt2+cφt+dφ,
where t ∈ [0 ta] and ta is the anticipated time until the apex
event. The coefficients of the polynomials are solved for to
match the initial and final positions and velocities, with the
final values generated from (7) and (8) using α∗ = α∗(0). The
resulting trajectories diminish discontinuities in the desired
velocities and improve the tracking accuracy of the swing
target policy α∗(t) after the apex event.

D. Event Detection and Parameter Estimation

The final implementation challenges exist for the contact
detection and the estimation of the system energy and the
apex event time.

1) Ground Contact Detection: In the current version, the
ATRIAS robot does not have dedicated contact switches on
the feet. To detect contact and switch between stance and



swing control, we rely on a low-pass filtered estimate of the
vertical ground reaction force, GRFy = Fl cos(φh + θ), with
the leg force measured from the spring deflections of the
SEAs, Fl = (τ f

mea − τ
b
mea)/(2ls sin(ρ/2)).

Based on this estimate, reliable switches between stance
and swing are ensured with a state machine detecting key
events (Fig. 8). When GRFy exceeds a touch-down threshold
Fth1 (20% body weight), the leg switches from swing to
stance control. To prevent foot scuffing from triggering false
contact events, the leg remains locked in stance control only
if a second threshold Fth2 (50% body weight) is passed. To
exit this stance, the leg has to compress and rebound, during
which a drop of GRFy below the 50% threshold triggers
take-off.

Stance

Touch Down

Locked Contact

Rebound

Take Off

Swing
GRFy > Fth1

GRFy < Fth1

GRFy < Fth2

GRFy > Fth2

l̇t � 0 l̇t�1 < 0

wait(tw)

and

Fig. 8. Reliable switches between stance and swing control states.

2) System Energy: A swing leg policy α∗(t) for robust
locomotion is valid for a particular system energy Esys of
the spring mass model in flight. This energy is tracked for
ATRIAS in stance by adapting the virtual leg stiffness (2)
based on the energy error ∆E = Esys −E. E is the equivalent
spring-mass energy E = 1

2 m(ẋ2 + ẏ2)+mgy of the robot in the
preceding flight phase, where m is the total robot mass, g is
the gravitational acceleration, ẋ and ẏ are the horizontal and
vertical velocity of the center of mass at take off, and y is the
take off height. The values of ẋ, ẏ and y are estimated from
the robot kinematics at the take off event in stance (Fig. 8)
using 100ms moving average filters.

3) Time of Apex: The swing leg policy α∗(t) is triggered
at apex. Like system energy, we estimate the time of the apex
using the take off event. From this event, the time it takes to
reach apex is estimated as ∆t = ẏ/g.

IV. RESULTS AND DISCUSSION

The implementation of robust running control based on the
theory of the spring mass model introduced a third control
layer to deal with the specific ATRIAS robot platform and
its limitations (1st: spring mass model [9], [14]; 2nd: control
mapping to articulated biped [15]; both reviewed in section
II). To provide a benchmark for what this physical platform
should be capable of with this layered control, we first
present results on level and rough terrain running for the high
fidelity ATRIAS simulation, and then discuss our preliminary
results on the actual hardware.

A. Simulation Benchmark Results

The current motor torque saturation of 300N·m limits
ATRIAS’s performance. Over flat ground, the simulated
robot can maintain a constant target apex height with a mean
and standard deviation error of 1.061 ± 0.005m at a running
speed of 2.091 ± 0.017m·s−1 (Fig. 9). The same controller
tolerates small terrain height variations up to ±4% of leg
length (not shown in Fig. 9).
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Fig. 9. The simulated system demonstrates steady state running over level
ground with constant apex height and forward velocity.

The ATRIAS platform will receive upgrades to its motor
controllers, however. This upgrade will increase the peak
motor torques to about 700N·m. Figure 10 shows the tracking
performance that the layered control should achieve with this
upgrade. The simulated robot is capable of robust running
over rough terrain up to 20% of maximum leg length at a
running speed of about 2.467±0.145m·s−1. The variation in
height and speed occur due to system energy corrections
applied during stance. Note that the COM apex height
relative to the ground height at take off is maintained at
1.146±0.102m. This performance is within 80% of the per-
formance observed for the theoretical spring mass model and
for the control mapping applied to an ideal biped model [15].
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Fig. 10. Increased motor torque saturations allow the simulated robot to
handle rough terrain approximately 20% of leg length. System energy errors
are corrected between strides as the ground rises and lowers, adjusting the
target apex heights.



B. ATRIAS Hardware Experiments

The transfer of the controller to the robot hardware is an
ongoing process, which we approach in incremental steps.
At the current stage, the embedded control includes the
virtual spring leg behavior in stance with trunk and energy
regulation, swing leg mirroring, and the contact detection
(section III). The swing leg placement policy α(t)∗ is not yet
implemented. Instead, we use a basic leg placement strategy
for evaluation purposes.

With this preliminary work, the robot shows virtual
spring hopping behavior over flat terrain with a consis-
tent apex height of 1.091±0.009m at a forward speed of
0.444±0.088m·s−1 (Fig 11). The achieved hopping perfor-
mance is close to what is observed in simulation when using
the same control implementation stage. Despite the current
torque limitations, the real system is capable of significant
ground clearance close to 8cm.
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Fig. 11. The real robot hardware is currently capable of spring-like hopping
over flat terrain with consistent apex heights.

V. CONCLUSIONS AND FUTURE WORK

Our goal is to demonstrate and verify with a human-sized
bipedal robot highly robust running based on the swing-leg
placement policies derived from the theoretical spring mass
model. In this paper, we addressed challenges and solutions
for this implementation step of the control approach and
showed that it leads to very robust running over unobserved
ground in a high fidelity simulation of the robot platform. In
addition, initial tests on the actual robot hardware indicate the
feasibility of the approach. However, more implementation
work is needed to confirm or refute the theoretical results in
robot experiments.

This work is currently ongoing. We are implementing on
the robot hardware the swing leg control policy for running
at about 2.0m·s−1, which in simulation was achievable within
the current motor performance limits of ATRIAS. In addition,
the robot platform is getting upgraded, which will more than
double the motor torque outputs and allow us to test the
running robustness of the robot on large ground variations.
Ultimately, we seek to generalize the control mapping [15]
and implementation to 3D, and to demonstrate highly robust
running over unobserved terrain outside of the laboratory
environment.
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