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Experimental Evaluation of Deadbeat Running
on the ATRIAS Biped

William C. Martin!, Albert Wu', and Hartmut Geyer]

Abstract—Theoretical spring mass models with deadbeat foot
placement policies reveal very robust running in the presence of
large and frequent, unexpected gait disturbances. Although this
performance goes beyond what has been demonstrated on run-
ning machines, a transfer of this theory has only been investigated
for simplified monopod systems. Here we investigate how well the
control strategies developed for the spring mass model transfer
to more complex and human-like robots. We use a model-based
control framework to implement the spring mass behavior on a
bipedal robot of human scale and weight with articulated legs and
an actively stabilized trunk. Evaluating the tracking performance
in robot experiments on undisturbed and disturbed running, we
find that our controller achieves tracking consistent with the
underlying model for velocity changes of +0.2m -s~'. For larger
velocity changes and ground height disturbances up to +15cm,
the controller performance degrades but the robot maintains
running. Based on perturbed simulations of the simplified model,
we conclude that the degradation is largely related to force
disturbances not considered in the underlying spring mass control
theory. The results highlight both limitations of the existing
spring mass theory for control of more complex machines and an
SMM-based control that generates robust and versatile behavior
in running robots.

Index Terms—Humanoid and Bipedal Locomotion, Humanoid
Robots, Underactuated Robots

I. INTRODUCTION

HE simple spring mass model (SMM) describes a point
mass rebounding on massless spring legs. Research on
this model has led to deadbeat foot placement strategies
that produce highly robust SMM running in the presence
of large and frequent, unexpected gait disturbances [1]-[4].
This theoretical performance goes far beyond what has been
demonstrated in running robots [5]-[8]. However, these robots
are clearly more complex systems than the conceptual SMM.
They possess more degrees of freedom leading to additional
dynamics, are limited by actuator saturation, and experience
sensory noise that produces uncertainty about the actual state
of the system. As a result, the utility of SMM theories for the
control of complex running robots remains largely unclear.
Addressing this gap in understanding, several researchers
have investigated the foot placement strategies of the SMM
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on more simplified hopping robots. For an early example,
Zeglin [9] investigated state space planning algorithms based
on the SMM for a bow-legged hopper with a compressible
spring and passively stabilized trunk. More recently, Shemer
and Degani [10] investigated deadbeat hopping policies for
a similar monopod robot with a gyroscopically stabilized
trunk in a low gravity environment. They used an analytical
approximation of the SMM to compare the effect of constant
deadbeat impact angles to swing leg retraction policies. Fi-
nally, Uyanik and colleagues [11] quantified the predictive
performance of analytical approximations of the SMM in
achieving deadbeat behavior using a monopedal spring leg
with no attached trunk. All these studies have in common that
they were performed with small and specialized one-legged
platforms, characterized by prismatic legs, passively stabilized
trunk motion in stance, and external sensor measurements. In
contrast, we are interested in understanding if the SMM leg
placement theories can be transferred to more humanoid robots
and attempt the transfer on ATRIAS, a bipedal machine of
human scale and weight with an actively controlled trunk and
without external sensing (Fig. 1).

For the transfer, we focus on rendering the best possible
behavior match between the SMM and ATRIAS. To achieve
this goal, we use a model-based force control approach during
the stance phase of running. Controllers of this type have
been implemented successfully on legged robots for tracking
desired forces during locomotion [12]-[14]. Combined with
tracking the deadbeat foot placements of the SMM in flight,
ATRIAS should match the behavior and robustness observed in
the simplified model. However, we expect deviations from this
ideal behavior due to the real world challenges faced by the
machine. We perform planar running experiments to quantify
these deviations, and thus, the utility of the SMM theories for
more complex robots.

The remainder of this paper is organized in four parts. We
first provide a general overview of our control approach in sec-
tion II before detailing its implementation on ATRIAS in sec-
tion III. We then present the results of the running experiments
in section IV, which show that the resulting controller achieves
velocity tracking that is consistent with deadbeat behavior of
the underlying model for velocity changes of +0.2m-s!.
For larger velocity changes and ground height disturbances
up to =15cm, the controller performance degrades, although
the robot maintains running. We discuss the reasons for this
degradation and highlight in section V directions to improve on
these initial results about SMM-based control for generating
robust and versatile behavior in running robots.
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Fig. 1. CMU’s ATRIAS biped shown in the boom testbed during the ground
disturbance experiments with unexpected height changes of +15 cm (discussed
in section IV-C).

II. CONTROL APPROACH

The SMM consists of a point mass m rebounding on a
massless spring leg of stiffness k and rest length /y. This system
behaves as a purely ballistic projectile during flight and as a
spring-loaded inverted pendulum during stance with

mi = k[l (2 + )7 1] x,

mZ = k[lo P+ - 1] 7—mg,

D

where (x, z) are the coordinates of the point mass in the hori-
zontal and vertical dimensions. The model does not consider
sliding during stance. Stance occurs when the foot point strikes
the ground and flight resumes once the leg length reaches
lp during rebound. The model’s trajectory in flight is fully
determined by the horizontal speed x and the system energy
E;, which is a constant parameter of the model. Given the
speed in one flight phase, the model behavior in the ensuing
stance and flight phases is controlled by the leg angle arp
at touchdown [2]. This influence of the landing angle on the
model behavior can be captured with the apex return map,
Xiv1 = f(%, arp,), which relates the state of the model between
the apexes of two subsequent flight phases (i and i + 1).
Inverting this function yields a deadbeat touchdown angle that
takes the system from the current forward velocity X; to a
desired forward velocity X;.; = X, in a single step,

Prp, = 7 (i £). )

Deadbeat controllers based on this theory have been identified
that provide robustness to unobserved rough terrain for the
SMM in simulation [2]-[4].

Our target platform for translating this theory is CMU’s
ATRIAS (Fig. 1), one of three identical copies of a human-
sized bipedal robot developed by the Dynamic Robotics
Laboratory at Oregon State University [15]. The centroidal
dynamics of ATRIAS has inertial properties similar to that
of human locomotion. The robot weighs about 64 kg with
its mass concentrated in the trunk, 0.19 m above the pelvis.
The trunk’s rotational inertia is about 2.2kg-m?. Each leg
of this bipedal robot is constructed from four lightweight

carbon fiber segments. The proximal segments are driven in
the sagittal plane by series elastic actuators (SEA) composed
of a fiberglass leaf spring and a geared electric DC motor.
The reflected inertia of these hip-anchored motors is about
3.75kg - m? after gearing. With a power supply stabilized by
a 0.12F electrolytic capacitor, these motors can draw peak
currents of 165 A each, which translates into peak torques of
about 600N - m per actuator at the joint level. In addition,
frontal plane abduction and adduction of each hip is provided
by a third DC motor mounted on the trunk. Although ATRIAS
is capable of untethered 3-D locomotion, this paper focuses on
planar control theory of the SMM; hence, the trunk is attached
to a boom but is free to pitch in the sagittal plane. The boom
constrains the robot to move in a sphere and has negligible
mass and inertia. The boom pivot point moves freely with the
robot, and thus does not transmit any significant forces in the
sagittal plane that could stabilize the trunk’s pitch.

A. Implicit regulation of system energy

Two points complicate the transfer of control theories devel-
oped for the SMM onto legged robots such as ATRIAS. The
first point is that the system energy is constant in the model
but will change in a robot due to the desire to accelerate and
brake as well as internal friction. One way of changing energy
in the SMM is to introduce another control input, such as a
variable leg stiffness during stance [16]. However, we adopt
a different approach. We approximate the SMM dynamics (1)
around the vertical pose (x,z) = (0, z;) with z; < Iy by

« X
mit = k(5 -2) . 3)
mi = k(zg - z) - mg. “4)

This approximate SMM is similar to the one used in [17]; it
has decoupled vertical dynamics, which enables independent
control of apex height and horizontal speed achieved during
flight, implicitly regulating system energy with more natural
gait variables. Specifically, we use (4) to prescribe a desired
vertical motion z*(f) for ATRIAS with apex height 7z}, and
landing and takeoff height zj (Fig. 2). Given this reference,
we compute the corresponding return map of the horizontal
motion from (3). Thus, the updated deadbeat control law for
leg placement in flight becomes

@ip; = fapprox (i i 2 (D), (5)

which regulates running speed on ATRIAS.

Besides implicit regulation of system energy, the approx-
imation of the SMM with (3) and (4) allows us to easily
generalize this model from a point mass to a rigid body, which
we address in the next section.

B. Explicit stabilization of trunk orientation

A second point complicating the transfer of SMM theories
on to bipedal robots is that they require stabilization of trunk
orientation, which is ignored in the SMM. This is a common
problem in humanoid walking control based on the linear
inverted pendulum model. It is often solved using a nonlinear
quadratic program for a full order dynamics model of the
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Fig. 2. Prescribed vertical motion z*(f) between two apexes. The motion
is derived from (4) assuming m = 64kg and k = 16kN-m™! (details on
the choice of k provided in Sec. IV-A). The motion is used by the ATRIAS
controller as a target behavior and re-initiated in every flight phase.

robot [12]-[14]. This optimization balances different goals,
such as the center of mass (CoM) behavior, trunk orientation,
and other constraints on the robot motion. Due to compu-
tational costs, the optimization typically applies to only the
current time step without taking advantage of future dynamics.
In contrast to this approach, we introduce an intermediate
model of reduced order (Fig. 3b) that allows us to consider
the future dynamics of a floating rigid body with orientation
0, inertia I, and dynamics

mx = F\,
mZ = F;—mg, (6)
10 = —zF, + xF,

using finite-horizon linear quadratic regulation (LQR), as
detailed in section III-B. Here F, and F, are the ground
reaction forces of the approximate SMM model modified by
a stabilizing control for the trunk orientation (detailed in sec-
tion III-B below, equation 9). We assume that the centralized
inertia I on ATRIAS is constant, rather than configuration-
dependent, because the robot’s legs are light relative to its
body.

C. Overview of control flow

Given the approximate spring mass model, the intermediate
complexity model distributes translational and rotational mo-
tion. However, a third layer of model complexity is required
to translate this centroidal motion into robot control. Overall
this leads to a three layer control structure.

Figure 3 summarizes the flow of this control structure for
the transfer of SMM control theory onto the ATRIAS biped.
At the highest level, we define a spring mass gait based on
desired speed and desired apex height. The corresponding
approximate SMM provides the desired CoM trajectory in
stance and the desired deadbeat angle in flight (Fig. 3a). In
stance, the intermediate implementation level then generates
GRFs that optimally trade off the desired CoM behavior
against the desired trunk orientation (Fig. 3b). These GRFs
are mapped in the next level by a dynamics model of the
ATRIAS robot (detailed in [16]),

Mi+h=St+J"F, @)

to the required joint torques (Fig. 3c), which are finally
converted into desired motor velocities for the torque control
of ATRIAS’s SEAs (Fig. 3d).
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Fig. 3. Overview of implemented control. See section II-C for details.

In flight, the deadbeat angle from the approximate SMM
is used to generate a foot point trajectory for the leg that
achieves the target angle at a designated touchdown time
(Fig. 2). This foot trajectory is converted into joint trajectories
using a kinematics model of ATRIAS (Fig. 3c). The joints are
then position-controlled by sending a velocity command to the
robot SEAs (Fig. 3d).

III. IMPLEMENTATION

The control implementation on the ATRIAS biped requires
more consideration. Besides detailing the individual layers of
the control flow presented in the last section, this section ex-
plains how we address state estimation, external disturbances,
and model inaccuracies. All described control is implemented
onboard ATRIAS using MATLAB Simulink Realtime software
with an update rate of 1kHz.

A. Estimation of CoM and contact states

Tracking the CoM of ATRIAS and knowledge about its
ground contact state are prerequisites for implementing the
SMM control. For the first, we use two independent but
identically structured Kalman filters estimating the horizontal
and vertical CoM states. In both filters, the underlying model is
a point mass m influenced by an applied force F. For instance,
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the resulting discrete time process equation of the filter for the
horizontal states is

Xeel 1 At O][x] [0 0
S| =10 1 Atf|x |+ [0 (FF = FX )+ 0w,
] 100 1][x%] |L L

where Ar = 1ms is the time step and w is Gaussian white
process noise with covariance Q = 25N2. The force F* is
estimated from the measured torques of the hip SEAs and
the commanded torques of the lateral motors (ATRIAS has
no torque sensing for its lateral motors). This is accomplished
by solving for F in equation 7 with the constraint J§ = —J 4,
which assumes a static point of contact, yielding the dynamics,

F = fun(?.4.9). ®)
The measurement equation of the filter is

0 O0]]x
=11 0 0% |+ v
b 0 0 1f|i&

R
X 1

where £//R are estimates of the horizontal distances from the
left and right feet to the CoM, respectively, ¥ is an estimate of
the horizontal acceleration of the CoM, and v is measurement
noise. The distances are computed from the kinematics model
of ATRIAS using the robot’s measured joint angles and trunk
orientation. The acceleration is calculated using acceleration
measurements from an IMU attached to ATRIAS’s trunk. The
horizontal filter is initialized using these measurements on
every touchdown to account for a changing foot point. The
vertical filter is only initialized once on the first touchdown.
The covariance matrix

1 Rmx - ,UR(Rmx - Rmn) 0 0
R, = K 0 Rinx — pr(Rinx — Ripn) 0
! 0 0 Ra

of the measurement noise is adaptive. Specifically, the co-
variance for the distance measurement noise is inversely
proportional to the estimated load on each leg in units of body
weight, ugyr, = 10 F%,, /(mg) (ug/ clamped to [0, 1], Ry, =
5% 107 m?, Ry = 1 m?, and Ry = 4m?/s*).

The contact state of each leg is determined from the
estimated vertical GRF, £ .. ATRIAS has no explicit contact or
force sensing at its feet; instead, the force estimate (8) is used
to determine if a leg is in stance. An F, exceeding 50% of body
weight triggers the touchdown event and causes the control
to enter the stance phase. Conversely, once the vertical CoM
velocity Z crosses from negative to positive values, indicating
rebound, a drop in £, below the 50% threshold triggers take off
and the exit from stance control. This threshold level creates
a small delay of approximately 15ms (about 5% of stance
duration) in contact detection.

B. Stance control

Upon transition of ATRIAS into the stance phase, the
approximate SMM layer of the control (Fig. 3a) generates
a desired CoM trajectory [x*(¢), z"(¢)] based on the previous
takeoff velocity x;, the next desired takeoff velocity Xi,,, the
prescribed vertical motion z*(f), and equation (3) (Sec. II-A).

Note, although x*(¢) describes the horizontal motion in stance,
it is chosen along with the foot placement based on the
system state at the previous takeoff. The layer also generates
a corresponding force input u*(r) = [Fy(?), F;(¢)] from the
GREFs of the approximate SMM with F7(f) = k(z;—z"(1)) and
Fi@®) = F;@0) x*®)/z*(®).

In the second control layer (Fig. 3b), the force input is modi-
fied to account for trunk stabilization. The desired CoM trajec-
tory is combined with a desired trunk orientation 6*(¢) = 0 into
a reference motion £*(¢) = [x*(?), X*(?), 0°(1), * (1), Z* (), Z* (D]
for a floating rigid body (Sec. II-B). We convert the floating
rigid body dynamics (equation 6) to state space form and
linearize the error dynamics around this reference trajectory,
which yields,

0O 1 00 0 0 0 0
0 0 0 0 0 0 I/m 0
AZ 0 0 0 1 0 0 A 0 0 A
&= EO g g o B0 g &+ =0 10 u,
0O 0 0O 0 1 0 0
0 0 0 O 0 0 0 1/m
where Aé = & — € and Au = u — u*. We approximate
Fy(t) = 0 and x*(f) = 0, which decouples the vertical

state error dynamics. As this approximate model is linear,
finite horizon LQR yields the optimal force control input
u(?) = w*(t)—K@)(&(t)—£" (1)) for trading off tracking the SMM
behavior against balancing the trunk, with the feedback gain
K(7) = [K,(?), K,]. Thus, the second control layer generates the
modified desired GRF u(?) = [F,(¢), F.(¢)] with components

x—x"
. X —x* . 72—z
F,=F;-K, o_ol Fz:Fz_KZ[Z_Z*]' 9)
0—6

The third control layer (Fig. 3c) converts the desired GRFs
(9) into motor commands of the robot’s SEAs in three steps.
First, the forces are passed through a safety check to ensure
that the foot does not slip on the ground. This requires the
vertical force to remain positive, F; > 0, and the horizontal
force F, to be inside a friction cone with stiction coefficient
of 0.5. It is important to note that these two constraints are
almost never active on ATRIAS because stance begins when F,
exceeds 50% of body weight (Sec. III-A) and the stance leg is
typically near the vertical. Second, the control compensates for
the vertical constraint forces caused by the boom (Fig. 1), F' j =
F.F_/(mZ), where % is provided by the CoM state estimator
(Sec. III-A). Third, the modified desired forces, Fi and FZT s
are then mapped based on the dynamics model of ATRIAS
(7) into joint torques using

poue | R e
022 —[@@2x1|  [02x2]|F]

with { = [¥ 2 6 [ % 7, 75]7 specifying accelerations as
well as joint torques, and [ and ¥; being the leg length and
angle accelerations, respectively (detailed in [16]). Although
the solution vector ¢ contains both accelerations and torques,

the accelerations are not used by the controller. Furthermore,
because the swing leg is light, we do not account for its

_ [Msxs
Joxs

4
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Fig. 4. State-machine of ATRIAS biped control. While the left (L) or right
(R) leg cycles through an SMM flight and stance phase, the other leg remains
in the transitory mirror phase. Both legs switch roles when take off occurs.
TD/TO: touchdown/takeoff.
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Fig. 5. Desired foot point trajectory in the flight control phase. The horizontal
trajectory is a quadratic function. The vertical trajectory is composed of a
quadratic function, which increases zgjgnt to encourage leg retraction, and a
cosine function to approach the landing condition.

accelerations and control it independently as described in the
next section. Finally, the resulting joint torques, 7, and 75, are
tracked on ATRIAS using the velocity-based SEA controller
described in [18].

C. Flight control

Once ATRIAS transitions out of stance, the SMM prescribes
only a desired landing angle ayp; (5). The model does not
specify which of the robot’s two legs is to land or how it shall
reach the target. We solve the first problem by introducing a
transitory control phase and the second by defining a kinematic
trajectory for the foot point.

Figure 4 summarizes the state machine of the ATRIAS
controller. While one leg follows the SMM stance and flight
behaviors, the other leg remains in a mirror control phase.
For instance, when the right leg takes off (RTO), it enters this
mirror phase and the left leg simultaneously transitions from
it into the flight control phase. The right leg remains in the
mirror phase while the left leg cycles through an entire step
until it takes off (LTO), at which point both legs switch roles.

When a leg is in the mirror control phase, its motion
reflects that of the other leg. Raibert [5] introduced this
concept of symmetric leg motion, which reduces trunk pitching
and prepares the leg for landing. Specifically on ATRIAS,
we reflect the foot-to-CoM reference [x*(¢),z*(¢)] from the
simplified model (Sec. III-B) across the line x = 0. We
then negate this reflection to transform it into a CoM-to-foot
trajectory,

rmirror(t) = [ X*(t) s T (Z*(t) - P) ] B

where p = 0.2 m ensures leg retraction for ground clearance.
When a leg switches into the flight control phase at takeoff
time f1o, a new CoM-to-foot trajectory is engaged,

Fiigh(f) = [xﬂighl(t)» Zﬂigm(f)],

where xgion:(f) and zgign(?) are analytic functions that guide the
foot to the desired landing condition at a predicted touchdown
time 7rp (Fig. 5). These functions begin at the takeoff mirror
position, Fmiror(fT0), and end at the desired deadbeat landing
position, Fgign(frp) = —[z5/ tan(aqy ), 7] The velocity at the
expected touchdown time is chosen to match the ground speed,
i'ﬁight(fTD) = [-%r0,0], based on the estimated horizontal
velocity at takeoff. The predicted touchdown time

frp = ZT?O + él) \/2%0 - 2g(z5 — Z10)
is calculated from the expected touchdown state (Sec. II-A)
and from the estimated (Sec. I1I-A) vertical CoM position Zto
and velocity %10 at takeoff.

Both the mirror and flight foot trajectories are mapped
through the kinematics model of ATRIAS into leg joint
trajectories (¢) that are tracked with position control (Fig. 3c).
Here the compliance of the SEAs is ignored by assuming the
motor output shafts are rigidly connected to the joints.

D. Online adaptation of return map

The final piece of control implementation is the online
adaptation of the deadbeat control (5) derived from the ap-
proximate SMM. To counter small systematic modeling errors
and imperfect torque tracking of ATRIAS, the observed error
in the return map behavior of ATRIAS is approximated by a
linear model

(10)

A ok ok
Xiy1 — X, = €1X, + €p,

where X;,; is the observed speed in the flight phase i + 1 and
€ and € are obtained online through linear regression,

[fl} _ (XTX)—leY,
€0

with X; = [} 1] and Y; = %;,; — . This error is compensated
for by adapting the landing angle. For small deviations, the
return map of the approximate SMM generates an error

Xi1 — X, = 0uf" (X — X3) + 0o f" (arpi — @pp,)

with the partial derivatives pre-computed from the SMM return
map. Hence, the observed error (10) is compensated for by the
adapted landing angle,

;= App, — (€15 + € + O f* (i — 1)) / D"

IV. HARDWARE EXPERIMENTS

To evaluate the planar running control developed in sections
II and III, we perform several experiments on undisturbed and
disturbed locomotion using the ATRIAS biped attached to the
boom (Fig. 1 and supplementary video). In this setup, power
is supplied to the robot externally; however, all sensing and
computation is performed on-board. Each experiment starts
with ATRIAS standing still in a reference pose on one leg.
A human operator then holds the boom to stabilize the robot
while it follows a reference chirp signal for its CoM height.
When takeoff occurs, the actual controller engages and the
operator releases the boom. Besides the constant apex height
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Fig. 6. Tracking performance of implemented controller for ATRIAS running
at 1m-s~! over flat ground without gait disturbances. Shown are the desired
(red dashed) and observed trajectories (black solid) of key control variables
(Fig. 3) for two consecutive steps. The asymmetry between the left (L) and
right leg (R) occurs due to the boom constraint.

target z, (Fig. 2), the input provided in each trial by the
operator to the ATRIAS controller is a profile of apex velocity
targets X, indexed by step number. The first and last velocity
targets are always zero, and each experiment ends once the
robot reaches the last step.

A. Undisturbed running

First, we evaluate the performance of the proposed con-
troller in undisturbed running over level ground at a speed
of 1m-s7!. In this gait, about 80% of the available torque
of ATRIAS’s SEAs is consumed for generating the desired
spring mass rebound behavior (eqs. 3 and 4) with a stiffness
k =16kN-m~!. This stiffness optimally trades off longer
stance phases (larger vertical impulses) against the reduced
mechanical advantage of ATRIAS’s legs with increasing com-
pression [19]. As a result, it enables the largest hopping heights
of about 3 cm with appreciable flight times of about 150 ms
(Fig. 2). The remaining 20% of torque capacity is available for
error compensation. ATRIAS utilizes a large amount of torque
to achieve this gait due to the low mechanical advantage in
its legs. Other similarly sized robots with different geometries
would require different torques, but the ground reaction forces
for this spring mass behavior would remain the same.

The tracking performance of the controller is summarized
in figure 6. At the SMM level, the controller tracks the desired
CoM trajectory [x*(#), z*(#)] in stance with an error (mean and
standard deviation) of 4.5 + 4.7 cmin x and 2.6 + 2.0 cm in z,
and tracks the target leg angle at touchdown with an error of
0.99 + 0.80 ° (Fig. 6a). The model deviations originate from
two primary sources. The first source is the GRF tracking
error due to ground impacts, delayed contact detection, and
limited actuator bandwidth. These force errors are reflected in
the tracking of the desired SEA torques (53 + 68 N - m error,
Fig. 6d), which is limited by a 20Hz closed-loop bandwidth
of ATRIAS’s SEAs. The second source is the stance feedback

(a) reference velocities
1649 e
‘y‘, adaptation e ool
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=0 aunnss’o. ®ge000®  xmxxx 00000
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1 20 step number 67 7
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Fig. 7. Tracking of SMM deadbeat velocity targets. (a) Profile of desired apex
velocities X7, for changes of 0.2m - s™1 (circles) and 0.4 m - s~ (crosses). The
first 20 steps are used in each trial for the online adaptation of the return
map (Sec. III-D) and do not count toward the experiments. (b) Root-mean-
square error between the target velocity and the robot’s velocity in flight over
the number of consecutive steps taken after a change in the velocity target.
Averages over all five trials are shown for the entire experiment (black) and
separated out based on the different trials (gray). The dashed line indicates
the average tracking error in undisturbed locomotion at 1m-s™! (Sec. TV-A).

control, which creates deviations from the simplified model
in order to stabilize the trunk orientation (error of 7.6 + 6.2
°, Fig. 6b) as shown by the deviation in the GRF from the
reference GRF of the SMM (error 110 + 130 N, Fig. 6c).

B. Tracking SMM deadbeat velocity targets

In a second series of experiments we quantify how closely
the implemented controller can realize the deadbeat behavior
of the theoretical SMM model when the desired velocity X,
changes. We perform two sets of five repeated trials, in which
ATRIAS runs over flat ground with desired apex velocities that
change every five steps (Fig. 7a). In the first set, the change
is 0.2m-s™! with a maximum base velocity of 1.0m-s™'.
In the second set, the change and maximum base velocity
are 0.4m-s™' and 1.6m-s~!, respectively. Larger step sizes
require deadbeat foot targets beyond the mechanical limits of
ATRIAS at high velocities. These limits impose a maximum
possible velocity of 2.6 m - s™! for the chosen spring mass gait.

The observed velocity tracking performance is summarized
in figure 7b. ATRIAS tracks desired velocity changes of
0.2m-s~! (circles) with the average error observed in undis-
turbed running (0.05m - s~!, dashed line; compare Sec. IV-A)
after one step, indicating spring-mass-like deadbeat behavior
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Fig. 8. Ground disturbance rejection. Shown are the averages over three trials
for the root-mean-square error between the desired velocity x;; = 1.0m - s
and the velocity achieved by the robot during flight over the number of
consecutive steps taken after experiencing an unexpected ground height
change Az.

within the performance bounds of undisturbed gait. However,
the robot requires more steps for tracking 0.4m -s~! changes
(crosses), caused mainly by increased ground impacts at the
higher horizontal velocities. We measure a peak horizontal im-
pact force of approximately 200 N when running at 1.0m - s~!.
This impact force increases to nearly 300 N when running at
1.6m-s7!.

As described in section IV-A, the deviations from the simpli-
fied model are due to force tracking errors and trunk stabiliza-
tion. For comparison to the hardware results, we quantify these
two sources of deviation in simulation. When the simplified
model is simulated with the same force errors measured on
hardware, we observe similar velocity tracking errors of up to
0.15m-s™" at 1.6m-s~'. When the intermediate complexity
model (Fig. 3b) is simulated with an initial orientation error
of 10°, we observe a velocity error of 0.05m - s~! after
one step. The system completely recovers after three steps.
Thus, errors in force tracking and trunk orientation lead to a
substantial performance deterioration compared to the SMM
deadbeat control theory. This suggests that performance could
be improved by extending the simplified model to account for
ground impacts and rotational dynamics of the center body in
legged locomotion.

C. Rejecting unexpected ground changes

With the third series of experiments, we explore how closely
the implemented controller follows the deadbeat behavior of
the SMM when the robot encounters unexpected changes
in ground height. We perform experiments for six different
ground height changes of +6cm, +11cm and +15cm, each

repeated for three trials. In all trials, ATRIAS encounters
the ground disturbance while running at 1.0m-s~! with its
reference gait. (Sec. IV-A).

Figure 8 shows the velocity tracking performance of
ATRIAS after encountering a ground height change measured
as the error in velocity over the steps taken. Deadbeat behavior
would result in an error no larger than the average error
of 0.05m -s~! observed in undisturbed running at 1.0m - s~}
from the first step on. However, each of the ground height
changes results in a substantial velocity error in the first step
of about the same size (0.2m-s~! to 0.4m -s~!), which only
gradually diminishes in the next steps.

The velocity error and its gradual decay are largely inde-
pendent of the direction and size of the ground height change,
which seems counterintuitive. For instance, a height drop of
15 cm results in an increase in speed to 2 m - s~! if maintaining
the same total system energy. Similarly, a height increase of
the same amount cannot be achieved without increasing system
energy, even with zero speed. Comparing the two cases, it
seems they should lead to very different behaviors, and thus
velocity errors, after the disturbance.

The reason why the errors behave similarly is because they
are due to the increased ground impacts and trunk orientation
errors that are common to all of the height changes. The
sudden ground height changes are implemented as sheer jumps
in the floor surface using concrete blocks (Fig. 1). This leads
to increased impact forces of nearly 500N and swing foot
impacts with the side of the elevated ground. Thus, most of
the observed performance degradation compared to the SMM
deadbeat control theory is again due to the increased ground
impacts and required trunk stabilization. The detrimental effect
of swing leg impacts suggests that hardware implementations
should focus on more compliant swing leg motions than stiff
kinematic control provides.

V. CONCLUSION

We investigated if the SMM leg placement theory can be
transferred to running robots beyond the simplified one-legged
test platforms used in previous studies. Specifically, we have
evaluated the utility of spring mass theory on a robot of human
scale and weight with an actively controlled trunk, articulated
legs, and without external sensing. To this end, we focused on
the ATRIAS biped platform and implemented on it a controller
that transfers the SMM behavior through model-based force
control in stance and kinematic control of foot placement
in flight. We found that the proposed controller achieves
on ATRIAS SMM-like deadbeat performance for velocity
changes up to +0.2m-s~!. For larger velocity changes and
for ground height changes ranging from +6.cm to +15 cm, the
controller performance degraded, albeit without compromising
gait robustness. The degradation was in large part due to
ground impacts and the incessant need to stabilize the robot’s
trunk, neither of which are considered in the SMM theory.
The results highlight the limited utility of this theory for the
control of more complex running machines; on the other hand,
they also point to the potential of such an SMM-based control
for generating robust and versatile behavior in running robots.
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The achieved performance mirrors the performance ob-
served for the implementation of SMM-based deadbeat control
strategies on the much simpler robot platforms. The velocity
tracking error of 5% on ATRIAS during undisturbed running is
in line with the results obtained by Zeglin, who demonstrated
deadbeat hopping with a mean velocity error of approximately
15% between steps [9]. The ability of the proposed controller
to tolerate unobserved rough terrain of at least 17% of the
nominal leg length (0.9m) is similar to the performance
described by Shemer and Degani [10], who demonstrated
deadbeat hopping over terrain height changes of about 15%
of leg length. In contrast to the previous results, however, the
demonstration of these capabilities on ATRIAS with similar
performance shows that they generalize to more complex and
human-like bipedal robots.

One key advantage of the model-based control framework
[12]-[14] also pursued in this work is that it is easier to
generalize behavior beyond scripted motions. For example, the
MABEL robot is capable of planar running using a control
framework based on hybrid zero dynamics. However, as the
robot encounters perturbations, its controller must adapt speed
to maintain stability leading to ‘“considerable variation” in
forward velocity [6]. Similarly, Hubicki and colleagues [8]
discovered that ATRIAS is capable of 3-D running (although
with very short flight phases of about 30 ms) when a heuris-
tic controller designed for walking was commanded higher
desired velocities. In contrast, our proposed controller can
(within the bounds provided by the torque capacity of the
actuators) freely choose the speed at which it runs from step
to step, whether on flat ground or after a disturbance, by taking
advantage of the underlying gait model and its deadbeat foot
placement strategies.

Several research directions will help to further the model-
based control framework for running robots. First, the SMM
theory remains to be evaluated on robots running in 3-D
environments. Second, performance degradation due to force
errors and trunk stabilization suggests that the utility of the
SMM theory could be increased by extending it to account
for ground impacts and the rotational dynamics of a trunk.
These force errors could also be mitigated by designing a
more compliant swing leg control. Third, the mechanical
limits of real robots prevent reaching certain target states in a
single step. Robustness could potentially be improved in this
case by considering these actuation limits [20], [21]. Finally,
the transfer of SMM-based control to walking robots could
substantially enlarge the range of robust behaviors that can be
addressed. It is our goal to pursue these research directions in
order to demonstrate highly robust 3-D running and walking
on ATRIAS over uncertain terrain.
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