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Reactive Balance Control in Walking based on a Bipedal Linear
Inverted Pendulum Model
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Abstract— Dynamic balance depends on proper foot place-
ment in legged locomotion and corresponding placement strate-
gies have mainly been developed using the linear inverted
pendulum model as theoretical framework. While this model
can identify single leg strategies for balance control, it does
not consider the double support that is common to bipedal
locomotion, indicating that current strategies do not fully
exploit the theoretical potential of balance control in bipedal
systems. Here we extend the linear inverted pendulum model to
a bipedal system which includes double support dynamics, and
derive a reactive balance controller based on foot placement
and double stance length. We show that this controller enables
the model to stand and walk at user-defined target speeds,
to transition between these behaviors by acceleration and
deceleration, and to react to intermittent disturbances and
compensate for permanent ones, as long as they are compatible
with the swing leg dynamics placing the feet. Finally, we
discuss how the versatility of this balance controller depends on
including double support and suggest further steps to improve
dynamic balance control in bipedal systems.

I. INTRODUCTION

Balance is critical to legged locomotion. Without balance,
legged systems cannot hold their body upright and fall after
a trip, slip, push or a similar dynamic disturbance. For
example, falls connected to the loss of balance are a major
cause of injury or death in the elderly population [1]. As a
consequence, understanding dynamic balance has developed
into a very active field of research in biomechanics, neuro-
science and robotics [1] [2] [3] [4].

Three main balancing strategies have been identified for
humans, comprising the ankle, hip and foot placement strate-
gies. The first strategy uses ankle torques to counteract a
lateral push in stance [2] [5] [6]. As long as the center of
pressure remains within the base of support, the area between
the feet on the ground, this strategy suffices. Otherwise,
humans add the hip strategy, which combines fast rotations of
the torso and arms to create a net torque around the center of
mass (COM) that temporarily increases the horizontal force
resisting a lateral push [6] [7] [8] [9]. For large disturbances,
however, the two strategies do not compensate enough and
the only option left to maintain balance is to take one or more
corrective steps, entering locomotion [9] [10]. In locomotion,
the ankle strategy looses importance [1] and the hip strategy
is confined to scenarios with constrained foot placements like
rope walking, as the torso is preferably kept upright [3] [9];
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thus, dynamic balance in human locomotion mainly relies on
proper foot placement [11] [12] [13] [14].

The main conceptual model used to understand foot place-
ment strategies in bipedal locomotion is the linear inverted
pendulum model (LIPM) [15]. This model contracts the body
to a point mass that travels on a single massless leg, which
provides a vertical force equal to one body weight (Figure
1A). For very small excursions from the upright position,
the LIPM approximates an inverted pendulum; for larger
excursions the leg compresses and extends to accommodate
the geometric constraint of a horizontal motion of the point
mass at a constant height.

The LIPM has primarily been used to identify capture
points for stopping locomotion (also referred to as extrap-
olated center of mass [13]). A capture point is the foot
placement of the LIPM in response to the current speed
vo which allows to dissipate during the subsequent leg
compression the kinetic energy given by that speed and to
stop in the upright position [3] [16]. If the model cannot
stop within one step, it can be used to find capture points
recursively, planning for several steps [10]. In addition, the
model has been extended by a flywheel that resembles the hip
strategy, which, by imposing an optimized torque profile on
the flywheel, improves the model’s stopping capabilities [3].

Other models that have been developed to derive foot
placements for dynamic balance in locomotion share similar
strategies with those developed for LIPM. For instance, to
eventually stop, the foot placement estimator [17] places the
feet in inverted pendulum locomotion to adjust impact losses
to the required energy dissipation. For another example, in
complex humanoid models [18] [19], foot placements are
implemented as feedback control that depends on the current
horizontal position and speed of the COM.

Common to these balance strategies based on the LIPM
is that they derive from considering only the single leg
stance. Double support is either neglected or considered as
a kinematic constraint on successive single stances without
control authority [20] [21] [22]. However, double support
constitutes about 20 percent of the normal gait cycle in
human walking [23], and it is the phase in which humans
actually come to a stop. While the latter suggests that the
unstable upright position in single stance may not be the
control reference point in humans, the former indicates that
currently proposed foot placement strategies do not fully
exploit the theoretical potential of dynamic balance control
in bipedal locomotion.

Here we extend the LIPM to a bipedal system which
includes double support and derive a dynamic balance con-
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troller based on foot placement and double stance length.
We show that this controller enables the model to stand
and walk at user-defined target speeds, to transition between
these behaviors by acceleration and deceleration, and to react
to intermittent disturbances and compensate for permanent
ones, as long as they are compatible with the swing-leg
dynamics placing the feet. Finally, we discuss how the
versatility of this balance controller depends on including
double support and suggest further steps to improve dynamic
balance control in bipedal systems.

II. BIPEDAL LINEAR INVERTED PENDULUM MODEL

Like the one-legged LIPM, our bipedal extension bLIPM
represents the body as a point mass moving along the
horizontal axis at height yy. In single support (Fig. 1A),
the stance leg (red solid line) produces a total force whose
vertical component is mg maintaining the constant height yq.
As a result, the horizontal leg force F,, = ’;Tgxnow changes
with the current position z,,,, of the point mass, resulting
in the equation of motion

MTpow = — Tnow - (D
Yo

Because the legs are massless, the swing leg (blue solid
line in Fig. 1A) does not influence the dynamics of the point
mass. To approximate realistic swing timings, however, we
model the swing leg rotation about the hip as a damped
oscillator that asymptotically converges to a target orientation
(blue dashed line),

J¢+r§b+k§0:¢ref’ (2)

where J = 2.4kgm? is the assumed swing leg inertia,
k = T26Nm/rad is the rotational stiffness, b = 0.5 is
the damping coefficient (values for J, k and b chosen to
mimic human swing dynamics in walking [23] [24], with
wo = v/k/J and r = 2Jwgb), ¢ is the swing leg angle with
respect to the vertical, and ¢,y = arctan (”;1) is its target
value corresponding to a foot placement zp. The target xp
is set by the dynamic balance controller (section III-A). The
swing leg touches down if |¢ — ¢,.f| < 1deg, subject to
three conditions: the leg length does not exceed /4., = 1m,
the point mass has moved past the upright position, and the
swing leg steps in front of the stance leg in the direction of
movement.

Once in double support (Fig. 1B), both legs develop forces
to support the point mass. We model the load sharing in
the vertical force component as two linear functions in x
whose endpoints are defined by the leg length constraint
(Fig. 2). This ensures symmetric dynamics with respect to
the mid-stance %, = Lstep/2 of double support, allowing
the model to reverse its motion without creating dynamic
inconsistencies. (Note that the force jumps are much smaller
if compared to the force jumps implied by the traditional
LIPM changing from one stance to the other.) The corre-
sponding horizontal forces are F' = mg¥mez—Tnow Tnow

Lot Yo
and Ff = mg(1 — ””’"“_””"0”)I"““’_OLS“” for the hind and
front leg, respectively, where Liot = 2Zmqs

Ltot .
— Lgtep is the

Yo

Xnow —>
Xnow Xt X p——
Fig. 1. Bipedal linear inverted pendulum model (bLIPM). (A) In single

support, one leg is in stance (thick red) while the other (thin blue) swings
to a commanded target z7 (dotted blue). (B) Once the swing leg lands,
the model stays in double support until the commanded length D of the
remaining double support goes to zero. (C) At that instant, the hind leg
takes off and the model reenters single support. Additional parameters:
m = 50kg: mass, g = 9.81ms~2: gravitational acceleration, yo = 0.8m:
COM height, vp0w: current speed.

feasible range of double support with Zpa0 = /12,4, — Y3
(Fig. 2). The resulting equation of motion simplifies to
. mg Lstep
MIpow = — (1 — Lnow — Tmid)- (3)
Yo ( Liot ) )

Similar to single support, the double support has the ge-
ometric midpoint x,,;4 as equilibrium position at which the
net horizontal force vanishes. In contrast to single support,
however, the model remains in double support for small
deviations from this position if Lgiep, > Ly, in which
case the net horizontal force is a restoring one (Eq. 3). The
equilibrium is not asymptotically stable as the model does not
include damping and, following a deviation, it sways about
Tmiq in perpetuity. We avoid adding a damping controller to
remedy this effect, and consider swaying in double support
as standing in our model.

0

v

Fig. 2. Load sharing in double support. Over an interval that is defined
by the maximum leg length [, and can be larger than the step length
Lstep, weight support Fyy = myg shifts linearly between the legs with equal
support at mid-stance 4.

The double support phase ends when the commanded
length D (section III-B) of the remaining double support
goes to zero. Depending on the direction in which the point
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Fig. 3. Control strategy in single support. (A) Control inputs are the speed vy0w and position x 0. of the COM, and the desired speed v*. The controller
determines the swing leg target x7, assuming that the touch down occurs immediately and that v* is to be reached by the end of double support. (B)
The resulting change in energy AFEpg during double support is shown for an example value 1,0, = 0.25 and all possible swing targets z7 and double
support lengths D. The black dotted lines mark zero energy change. The maximum (i) and the minimum (iii) of AEpg occur at D = Dy, gz, defining
the control strategy (red line). (C) The control law adapts with progression 0w Of the COM.

mass is moving at that time, the respective hind leg switches
to swing, the other leg takes over the whole body weight,
and the model reenters single support (Fig. 1C).

Although the bLIPM is confined to horizontal motions, it
can fail to balance the point mass during single support. If
the stance leg extends to [,,,, before the swing leg reaches
its target position, the model gets airborne. While for general
biped locomotion this can mean either a transition to running
or a fall, we assume the latter for the bLIPM as it does not
model flight.

III. DYNAMIC BALANCE CONTROLLER

Similar to the original LIPM controller developed by
[15], our dynamic balance controller uses three key inputs.
The first two inputs are the horizontal position x,., and
speed vy Of the COM. The third input is the target
speed v*. In contrast to previous approaches that set the
target speed for the geometric midpoint in single support,
we aim for this speed at the end of double support. We
shift to double support because bLIPM can stand in this
phase while tolerating disturbances. We focus on the end
of double support because it maximizes the performance of
the dynamic balance controller.

Although we aim for v* at the end of double support,
we do not pre-plan trajectories. At any time, the dynamic
balance controller seeks the immediate action required to
accomplish the target speed goal without considering future
interventions. This approach allows to react to unexpected
perturbations; it requires however that the control strategy
changes between single and double support.

A. Single support strategy

In single support, the dynamic balance controller tries to
achieve the target speed v* by the end of double support
assuming that the swing leg touches down immediately.
Figure 3A shows the biped model in single support with
the COM position Z,.,, and speed v,q. The left leg (red)

is in stance and the right leg (blue) is in swing, tracking the
reference position 27 (dashed) that is defined by the dynamic
balance controller. To reach the speed v*, a net change

AEr = %m(j:v*2 -2, ) 4)

in energy is required between now and the end of double
support (+ or — if v* points in the direction of vy, Or
the opposite one). This net energy change has to be realized
entirely in double support if the swing leg touches down
immediately.

The change AEpg in energy that can be realized in double
support for different combinations of target positions z7 and
double support lengths D is

AE‘D,S’(xnoun T, D)

Trnow+D
= / F.dx
Tnow
_ @ D(xmax — Tnow — xT)(D + Tnow — l'T) (5)
Yo meaw — Tpow — TT .

Figure 3B shows an example contour plot of this function
at a particular COM position T, = 0.42,4, for the value
ranges of 0 < xp < Tyq, and 0 < D < D4, that respect
the leg length constraint [ < [,,,.. AFEpg reaches both its
maximum and its minimum (denoted by i and iii in Fig. 3B)
for the maximum double support length D00 = gz —
Tnow- 10 maximize its performance, the dynamic balance
controller assumes D = D,,,, in double support when
providing target positions xp for the swing leg (red thick
line in Fig. 3B). (Note that the minimum of AFEpg switches
to small D/D,, 4, for small x,,,. But because dissipation
can be re-adjusted in the subsequent double support while
propulsion cannot, our controller provides placement targets
based on the assumption D = D,,,4:.)

The target z is calculated from AEpgs(Znow, z7, D) =
AFE7, leading to a quadratic equation with only one solution,

zp(AET) = (=by — \/b? —4a1c1)/2ay, in the permitted
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Fig. 4. Control strategy in double support. (A) Control inputs are the speed vnow and position Znow of the COM, the step length Lstep, and the target
speed v*. The controller determines the remaining length D to be covered in double support, assuming that the remainder until D, Will be covered
in single support. (B) The resulting change in energy AE7 o7 is shown as a contour plot for all possible values of D and xy,0y,. The maximum (i) and
minimum (iii) change in energy are always achieved for D = D4, and D = 0, respectively.(C) Control laws adapt with progression Zyow-

parameter range. The constants are a1 = Mmg(Tmaz — Tnow)s
bl = mg(xmam - Inow)(*meam + mnow) + AEWTyO7 and
1 = mgmmam(mmax - l'now)Q - AETyO(2xmar - xnow)~

The solution forms a monotonic relationship between
AFEpgs and zp. The dynamic balance controller uses this
solution to provide target positions,

0, AEr>AEpR

zp =4 ar(AEr), AERE < AEr < AERE  (6)

where target values zp are clipped if the required energy
change A E7 falls outside of the range of achievable changes
AFEpg. The control authority decreases with increasing x,, 4.,
(Fig. 3C), making immediate stepping a valuable strategy.

B. Double Support Strategy

Once in double support, the dynamic balance controller
adapts the target distance D of the remaining double support
to accommodate required energy changes AFEp. Figure 4A
shows the model in double support. Both legs contact the
ground and the biped weight shifts between the two legs
with the position z,,, (compare section II and Fig. 2).
As in single support, the change in energy AFErp required
to reach v* is given by Eq. 4, and the dynamic balance
controller tries to achieve this change at the maximum re-
maining distance D, of double support. If AEpg = AEr
assuming maximum double-support length, no intervention
occurs. However, if the two values differ, for instance when
an unexpected push slows down the biped, the controller
adapts the target distance D of the remaining double support,
assuming that the distance D,,q, — D will be covered in a
subsequent single support. (Keeping D, as reference point
ensures consistent control policies in the alternating support
phases.)

The total change in energy AFEror = AEps + AEsrs

until reaching D4, 1 given by

AETOT (l'now, Lstepv D) =
Ltep)(D = Ltep + 2Tnow)
Yo Ltot

m
279[(xmam - Lstep)2 - (D - Lstep + m71011))2] > (7)
Yo

@ D(xmaw -

_|_

where AFEpg is the actual double-support contribution and
AFEgrg is the remaining single-support contribution. Figure
4B shows an example contour plot of this function for
a particular step length Ly, = 0.8%y4,, an additional
input to the dynamic balance controller in double sup-
port. At any position ., of the point mass, AFEror
reaches its minimum for D = 0, which corresponds to
immediately shifting to single support and putting all the
body weight onto the front leg to maximize horizontal
braking. Similarly, A Eror always reaches its maximum for
D = D4z, allowing the back leg to maximize horizontal
pushing. These results hold for any step length L., (Eq.
7). The actual remaining distance D is computed from
AEror(Tnow, Lstep, D) = AEp, which again leads to a
quadratic equation with the solution D(AET) = (—by +

\/b3 — 4ascy)/2ay in the permitted parameter range and

—mgLstep MmgLstep(Tmazr—Tnow)
constants = =
?nzg 2y0(2$m,az_Lstep)’ 2 yU(anLam_Lstep) ’
and Cy = 2v0 (xmaz _xnow)(xmax +1'now - 2Lstep) - A-ET

The resulting output of the dynamic balance controller is

0, AEr < AEpRS:.

D =<{ D(AEr), AERS. > AEp>AERSE . (8)
Dgmaz, ABEr > AERSE

The model switches to single support when this output
reaches zero, which happens if either the model progresses
until 0, = Tmae or an earlier event causes D(AET) =0
(Fig. 40).
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C. Reversal of Motion

The single and double support control strategies are in-
vertible. The model’s single support dynamics are symmetric
with respect to 0, = 0. The same applies to the double
support since the hind leg changes with respect to the
direction of motion, v,.,. In effect, the dynamic balance
controller equally performs in forward and backward motion
and the same equations and solutions hold assuming that
positions and distances are positive in the current direction
of motion.

IV. CONTROLLER PERFORMANCE

The dynamic balance controller seamlessly integrates gen-
erating steady-state gait patterns with reacting to distur-
bances. These behaviors emerge from the choices of step
length and double support length that the controller makes to
maintain balance. The gait patterns result in definite average
speeds. Figure SA shows a representative example. The biped
model initially walks at v* = 1.25ms™! (blue solid line).
At 1.5s, v* is set to zero (orange dashed line) and the
controller brings the model within two steps to a stable
double support (shaded background). The model remains
standing until, at 4.5s, a strong 350ms push of -60%bw (body
weight) forces the biped out of balance into a backward
motion that would reach COM speeds in excess of -2ms™!
(green dashed line). The controller reacts and, after reaching
a maximum backward speed of -1 Sms~1!, the model recovers
with three corrective steps standing in double support. At 9s,
both the target speed is set to 1.5ms~! and a 150ms forward
push of 160%bw occurs that would cause a total speed
of about 4ms~'. The controller corrects this overshoot and
ensures that the model converges to steady-state walking at
the target speed. The controller thus integrates the generation
of walking gaits at user-defined speeds with the reaction to
unexpected external and internal disturbances to the COM
motion (see also supplementary video).

Two factors limit the performance of the balance con-
troller. The first one is the maximum speed with which
the legs can move in swing (Eq. 2). Figure 5B shows for
different maximum torques 7,,,, of the swing leg motion
the maximum push the model can tolerate without falling
down. The result in general confirms the notion that the
push tolerance increases with faster swing legs. However,
it also suggests that push recovery can benefit from properly
coupling the dynamics of swing and stance leg. The result
shows that very slow swing legs (Tyhqr < 270Nm) have a
better push recovery than moderately faster ones (270m <
Tmaz < DTONm). This trend reversal occurs, because faster
swing legs protract to their target position xzp before the
COM reaches the upright position in single support (Zpo <
0), suppressing the touch down. In effect, they overshoot and
then retract to x7. By this time the COM has reached an
excessive forward lean for the moderately faster swing legs,
which in subsequent single supports results in a continued
net acceleration, and eventual fall. Thus, the proper coupling
between the swing and stance leg dynamics as induced by a

push can be as important for dynamic balance as swing leg
speed.

The second factor that limits our controller performance
is an asymmetry in the double-support control strategy.
Although the dynamic balance controller compensates for
constant push and pull forces while moving forward, it
compensates clearly less pull than push (Fig. 5C). The
reason for this asymmetry is an asymmetry in the available
strategies to resist push or pull. Pushes can be maximally
resisted by putting the swing leg far out in single support
(T = Tmay) and transition in the subsequent double support
immediately back to single support of the front leg, where
the leg maximally brakes until it reaches the upright position
Tnow = 0. By contrast, the model cannot use the dual
strategy of putting the swing leg to z7 = 0 in single support
and then immediately transitioning in the ensuing double
support back to single support of the hind leg for maximum
acceleration until x,,,,, = Zma, because the double support
strategy does not consider going back into the single support
phase of the hind leg.

V. CONCLUSION

We have extended the linear inverted pendulum model
into a bipedal system (Figs. 1 and 2) and derived for it
a gait controller (Figs. 3 and 4) that dynamically balances
standing, walking at user-defined speeds, and the transition
between these behaviors, while countering intermittent and
compensating for permanent disturbances as long as they
are compatible with the swing-leg dynamics placing the feet
(Fig. 5).

Our dynamic balance controller combines the advantages
of two alternative stepping strategies that have previously
been identified with the LIPM. Kajita and colleagues use
the LIPM to plan footholds for required accelerations and
decelerations [20], and a ZMP controller to execute these
footholds on complex humanoids [25]. Although known
disturbances can in part be countered while maintaining
these footholds by injecting a desired momentum about
the COM of the humanoids [26], unknown disturbances
cannot be dealt with in this approach if they push the ZMP
outside of the polygon of support. For that case, capture
points have been identified with the LIPM as an alternative
stepping strategy that absorbs the disturbance and stops the
robot [3]. Our results show that such a distinction between
stepping strategies is not required for a bipedal system. Our
controller seamlessly combines stepping to accelerate and
decelerate with stepping to react to disturbances, including
external (ground irregularities, pushes) and internal ones
(robot inertias and other parameter mismatches). This perfor-
mance is realized because lift-off decisions in double support
are integrated into the control, which contrasts to previous
attempts extending the LIPM into a bipedal system [20]
[22], yet reflects human strategies of balance control in
locomotion. In addition, because double support dynamics
are part of bLIPM, the controller automatically generates
walking patterns with biologically plausible step lengths and
step times.
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Fig. 5. Balance Controller Performance. (A) Example of intentional shifts
between walking at target speeds and standing including push perturbations.
Time traces show intended (dashed orange) and achieved COM speed (blue
solid), and, for comparison, equivalent speed progression without controller
intervention (green dashed). Shaded areas mark double supports. Pushes
occur at 4.5s (F=-60%bw, At = 350ms) and 9s (F=160%bw, At = 150ms).
(B) Relationships between maximum swing-leg torque and maximum push
recovery in stance (circles, v*= Oms~1!, force applied for 100ms) and
maximum steady state speed (squares) are shown. (C) Maximum constant
push (positive) and pull forces (negative) that the controller can compensate
while walking at 1.25 ms~1.

Despite its versatility, our balance controller also reveals
limitations, which we seek to overcome in future work. We
plan to generalize the double support strategy to include
transitions back into single support of the hind leg without
compromising the consistency of the control algorithm, and
to extend the resulting controller to slope and 3D gait,
exploring and exploiting the full theoretical potential of
dynamic gait balance control based on the bLIPM.
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