
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2017 1

A Sample-Efficient Black-Box Optimizer to Train
Policies for Human-in-the-Loop Systems with User

Preferences
Nitish Thatte1, Helei Duan2, and Hartmut Geyer1

Abstract—We present a new algorithm for optimizing control
policies for human-in-the-loop systems based on qualitative pref-
erence feedback. This method is especially applicable to systems
such as lower-limb prostheses and exoskeletons for which it
is difficult to define an objective function, hard to identify a
model, and costly to repeat hardware experiments. To solve these
problems, we combine and extend an algorithm for learning
from preferences and the Predictive Entropy Search Bayesian
optimization method. The resulting algorithm, Predictive Entropy
Search with Preferences (PES-P), solicits preferences between
pairs of control parameter sets that optimally reduce the un-
certainty in the distribution of objective function optima with
the least number of experiments. We find that this algorithm
outperforms the expected improvement method (EI), and random
comparisons via Latin hypercubes (LH) in three simulation tests
that range from optimizing randomly generated functions to
tuning control parameters of linear systems and of a walking
model. Furthermore, we find in a pilot study on the control
of a robotic transfemoral prosthesis that PES-P finds good
control parameters quickly and more consistently than EI or
LH given real user preferences. The results suggest the proposed
algorithm can help engineers optimize certain robotic systems
more accurately, efficiently, and consistently.

Index Terms—Learning and Adaptive Systems; Human Factors
and Human-in-the-Loop; Optimization and Optimal Control

I. Introduction

OPTIMIZING control policies for human-in-the-loop
robotic systems, such as lower-limb prostheses and

exoskeletons, is a challenging task due to two key issues.
First, to optimize these systems it is currently necessary
to define an objective function that includes and correctly
assigns importance to all characteristics that determine system
performance. For instance, consider an amputee trying to
optimize the control parameters of her robotic leg prosthesis.
The amputee could evaluate the prosthesis performance via an
objective function that trades off important gait characteristics
in order to guide the optimization. However, gait features, such
as metabolic energy consumption, speed, and gait symmetry,
require a high level of technical expertise and equipment to

Manuscript received: Sep 8, 2016; Revised Dec 7, 2016; Accepted Jan 5,
2017.

This paper was recommended for publication by Editor Dongheui Lee upon
evaluation of the Associate Editor and Reviewers’ comments. This material is
based upon work supported by the National Science Foundation under Grant
No. 1527140.

1Nitish Thatte nitisht@cs.cmu.edu and Hartmut Geyer
hgeyer@cs.cmu.edu are with The Robotics Institute and 2Helei
Duan hduan@cmu.edu is with Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, PA 15213.

Digital Object Identifier (DOI): see top of this page.

measure. Moreover, other aspects of gait may also be important
but difficult to quantify, such as the amputee’s comfort and
sense of stability. Even if the amputee could measure all these
characteristics, the objective function would still need to assign
weights to each feature that reflect the amputee’s individual
needs.
To solve the problem of defining objective functions for

robotic systems that human operators can directly control, re-
searchers have proposed learning from demonstration (LfD) [1].
In this paradigm, we can either circumvent learning the
objective function by directly learning a policy that matches
the distribution of state-action pairs recorded during human
demonstrations of the desired behavior [2, 3], or we can learn a
reward function consistent with the demonstrator’s actions and
visited states and use it to derive an optimal control [4–6]. LfD
methods are attractive because they allow non-experts to specify
both the quantifiable and qualitative aspects of the desired robot
behavior via the non-technical language of demonstration.

For robot behavior that people cannot demonstrate, such as
the optimal behavior of an amputee’s prosthesis, or the desired
behavior of complex, dynamic robots, we can alternatively
query human users for qualitative feedback in order to shape
the robot policy. For example, the TAMER framework [7, 8]
utilizes good/bad assessments of a robot’s recent actions to
optimize its policy. Pilarski et al. use this method to allow
subjects to optimize the policy of an EMG-controlled prosthesis
arm via their positive and negative feedback signals [9].
Another paradigm in qualitative feedback is to obtain preference
feedback between two or more policies or sequences of actions,
which may provide more nuanced feedback than absolute
ratings. For example, Jain et al. and Akrour et al. propose
methods that learn a user’s trajectory scoring function based
on his rankings of possible policies [10, 11]. Similarly, Wilson
et al. provide a method to directly identify a user’s preferred
policy based on her preferences between pairs of demonstrated
trajectories [12]. These prior works demonstrate that we can
successfully use qualitative feedback, such as preferences, from
non-expert users to program robot behavior, without prescribing
an objective function.
A drawback of the aforementioned methods that learn

from preference feedback is their reliance on simulators to
predict system behavior. Human-in-the-loop systems, such
as lower-limb prostheses and exoskeletons, are challenging
to simulate accurately, making these methods difficult to
apply. If the control is governed by a fixed set of parameters,
as is often the case for these kinds of systems, we can

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2017

instead employ model-free black-box optimization methods.
These methods have gained traction in the related field of
control optimization for dynamic locomotion, where it can be
difficult to model the nonlinear, discontinuous dynamics of
these systems. Specifically, many have applied stochastic or
“evolutionary” optimization methods, which repeatedly sample
and mix control parameters that perform well, to locomotion
control problems [13].

The second issue an operator tasked with optimizing control
policies for human-in-the-loop systems faces is the expense,
in terms of time and effort, of repeatedly executing policies.
Consequently, stochastic sampling approaches may be less
applicable in this domain. To minimize the number of tri-
als needed, researchers have proposed black-box Bayesian
Optimization (BO) methods that model both the objective
function and its uncertainty. In these methods, the uncertainty
informs an acquisition function that speeds up the optimization
by exploiting regions of the parameter space with believed
high objective value while still exploring regions where the
objective function is uncertain. For example, researchers have
successfully employed BO methods to efficiently optimize the
gait parameters of a robotic snake [14] and a dynamic bipedal
robot [15].

This paper is motivated by the observation that prior research
has not thoroughly explored solutions that address both the
difficulty of defining objective functions and the expense of
running repeated experiments for systems that are difficult to
model and for which qualitative characteristics are important.
We present a new optimization algorithm, Predictive Entropy
Search with Preferences (PES-P), that addresses these issues.
The algorithm uses preference queries between pairs of control
parameters to avoid the a priori definition of features and to
consider unquantifiable qualities of the desired behavior. The
algorithm further incorporates black-box Bayesian optimization
to ensure its preference queries gather information efficiently
without relying on a system model.

In developing the algorithm, we make three main contri-
butions. First, we adapt an acquisition function previously
proposed for interval scale feedback to the preference feedback
case. This acquisition function seeks a pair of parameters for
which a preference will maximally reduce the entropy of the
distribution of objective function optima. Second, we compare
in simulation the performance of the proposed optimization
method against the expected improvement method (EI) and
uniform random sampling via Latin hypercubes (LH) for two
classes of examples: optimizing randomly generated objective
functions and tuning the control parameters of simulated
dynamical systems. Finally, we compare the performance of the
three methods for the task of optimizing the control parameters
of a robotic prosthesis given real user feedback.

II. Preliminaries

A. Learning from Preferences
To learn latent objective functions from preferences, we rely

on the method developed by Chu and Ghahramani [16], briefly
reviewed here. The method considers a training dataset Dn

of n preferences between pairs of points, {xa
1 � xb

1, . . . , xa
k
�

xb
k
, . . . , xa

n � xb
n}. For instance, in a prosthesis tuning task, we

would ask an amputee to walk with two control parameter sets
(xa

k
, xb

k
) and provide a preference between them. Dn aggregates

these responses over n repetitions of this task. From the dataset,
the method finds a posterior distribution of latent objective
functions f , which in our case describe the user’s overall
assessment of controller performance,

P(f |Dn) =
P(Dn | f) P(f)

P(Dn)
. (1)

The method assumes that the prior distribution of objective func-
tions is a zero-mean Gaussian process (GP), P(f) = N (0, Σ).
(See [17] for a full description of GPs.) In eq. (1), P(Dn | f)
is the overall likelihood of preferences in the dataset given
specific objective function values. The likelihood model for
preferences proposed by Chu and Ghahramani increases the
certainty of a preference between xa

k
and xb

k
as the difference

between f (xa
k
) and f (xb

k
) widens.

To obtain the posterior distribution P(f |Dn) the method
approximates eq. (1) with a Gaussian distribution. As a result,
the predictive distribution (subscript p) of the objective function
at test points, ft, is also Gaussian, P(ft |Dn) = N

(
µp, Σp

)
.

Finally, the predictive distribution of a preference between two
points xa and xb is

P
(
xa � xb |Dn

)
=

∫
P
(
xa � xb | ft, Dn

)
P(ft |Dn)d ft (2)

= Φ

(
µa − µb

σp

)
, (3)

σ2
p = 2σ2 + Σaa

p + Σ
bb
p − Σ

ab
p − Σ

ba
p , (4)

where Φ(·) is the cumulative density function of the standard
normal distribution.

Figure 1a provides an example of how the method estimates a
ground-truth objective function shown in purple. The blue line
and shaded area show the mean and standard deviation of the
posterior distribution of objective functions, P(ft |Dn), after two
preference queries between pairs of parameters (orange, higher
is preferred over lower value). The queries have the effect of
lifting the estimated objective function close to preferred points
and pushing it down close to unpreferred points, approximating
the true objective function over time.

B. Active Learning for Optimization
Learning from preferences describes how to find a distribu-

tion of objective functions given a dataset of comparisons. The
question now becomes how to efficiently solicit preferences
from the user. As our main goal is to find the optimal prosthesis
control parameters x∗, we need not accurately model the
user’s objective function in all parameter regions. Instead,
we should focus on regions where the objective might be
high. Bayesian optimization addresses this problem with an
acquisition function that helps to efficiently sample training
data.

One such acquisition function is the expected improvement,
which has been used both in the context of preference
feedback [18] and interval scale feedback [19],

EI(x) = (µ∗ − µ(x))Φ(d) + s(x)φ(d), (5)

THATTE et al.: A SAMPLE-EFFICIENT BLACK-BOX OPTIMIZER TO TRAIN POLICIES WITH USER PREFERENCES 3

axa1

xb1

xa2

xb2

f

b

xb3

xa3 x∗
1x∗

2
f

x
Fig. 1: Learning from preferences. (a) Mean and standard
deviation of P(ft |Dn) (blue) after two preferences queries
(orange) from the true objective function (purple). (b) Mean
of P(ft |Dn) (blue) and means of P

(
ft |Dn, x∗m

)
(green) for two

samples of x∗m. PES-P queries a new comparison (orange) for
which the preference is currently uncertain, but on average is
certain after conditioning on all x∗m.

where d = (µ∗ − µ(x))/s(x), µ∗ is the mean of the current
estimate of the optimum, and µ(x) and s(x) are the mean
and standard deviation of the objective of a new point x,
respectively. As an alternative, for interval scale feedback, [20]
and [21] proposed acquisition functions that seek to reduce
the uncertainty in the distribution of objective function optima,
measured in terms of the differential entropy. For example, the
Predictive Entropy Search acquisition function [21] seeks a
point x that is expected to reduce the entropy of the distribution
of optima x∗ after observing its value y,

αn(x) =H
[
P
(
x∗ |Dn

)]
− EP(y |x,Dn)

[
H

[
P
(
x∗ |y, x, Dn

)]]
, (6)

where H[P(x)] = −
∫

P(x) log P(x)dx is the differential en-
tropy. The authors of these methods have shown they can
outperform EI.

III. Methods
Our goal is to simultaneously address both the difficulty of

defining objective functions when an expert cannot demon-
strate the desired robot behavior and the expense of running
experiments on hardware. To this end, we adapt the Predictive
Entropy Search acquisition function (eq. (6)) to the preference
learning case.

A. Acquisition Function
To obtain the optimal parameters x∗ with the smallest number

of preference queries, we solicit preferences that maximize the
expected information gain about the distribution of objective
function optima P(x∗ |Dn). Adapting eq. (6) to preference
feedback yields

αn

(
xa, xb

)
= H

[
P
(
x∗ |Dn

)]
− EP(y |xa,xb,Dn)

[
H
[
P
(
x∗ |y, xa, xb, Dn

)]]
, (7)

where y is a binary random variable that represents the
preference between xa and xb. The first term in this function is

the current entropy of objective function optima and the second
term is the entropy of optima after observing the preference
y. As we have not yet observed the preference, we take the
second term in expectation over the two possible preference
outcomes.

As discussed in [21], this acquisition function is intractable
to compute. However, following the approach used for the
original PES algorithm, we can rewrite eq. (7) in terms of
the entropies of the predictive distribution of the preference
between xa and xb,

αn

(
xa, xb

)
= H

[
P
(
y |xa, xb, Dn

)]
− EP(x∗ |Dn)

[
H
[
P
(
y |x∗, xa, xb, Dn

)]]
(8)

≈ H
[
P
(
y |xa, xb, Dn

)]
−

1
M

M∑
x∗m∼P(x∗m |Dn)

H
[
P
(
y |x∗m, xa, xb, Dn

)]
. (9)

This reformulation improves computability for several reasons.
First, the new acquisition function computes the entropies of
probabilities of preferences, given by eq. (3). Second, instead of
computing the entropy of P(x∗ |Dn), we now take an expectation
over this distribution, which we can perform by sampling M
functions from P(ft |Dn) and optimizing each one to get M
samples of x∗ (see Appendix for details). Finally, the second
term no longer requires conditioning the GP on every pair of
xa and xb considered during optimization of the acquisition
function. Instead, we only have to condition the Gaussian
process M times on (x∗m, Dn).

For the experiments in section IV we choose M = 12, which
allows us to construct and optimize αn(xa, xb) in about five
seconds, which is fast enough for our prosthesis application.
Although 12 samples of x∗ is not enough to compute an
accurate expectation over P(x∗ |Dn), interpreting the algorithm
as an example of active learning by disagreement may explain
why it still works well. As shown in fig. 1b, optimizing the
acquisition function chooses a pair xa and xb for which the
preference is currently uncertain, but certain on average after
conditioning on all x∗m. The sampled x∗m do not necessarily
agree on which point is preferred; hence, after observing
the preference, the algorithm can rule out x∗m that made the
model certain but wrong about the preference. This intuition
is similar to that provided by [22] for Bayesian active learning
by disagreement for GP classifiers.

B. Conditioning the Gaussian Process on x∗

The second term on the right side of eq. (9) requires us to
compute the distribution of the preference given the location
of the optimum,

P
(
y |x∗m, xa, xb, Dn

)
=∫

P
(
xa � xb | ft, x∗m, Dn

)
P
(
ft |x∗m, Dn

)
d ft. (10)

It is not directly feasible to condition the predictive distribution
on x∗, so instead we turn to approximating this condition with
three constraints (see appendix for details):

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2017

Algorithm 1 Predictive Entropy Search with Preferences
1: procedure PES-P
2: Dn = ∅
3: for n ← 0 to N − 1 do . N iterations
4: F ← { fm ∼ P(ft |Dn) |m ∈ [1, M]}
5: X∗ ← {arg maxx (fm) | fm ∈ F}
6: (xa

n+1, xb
n+1) ← arg max(xa,xb) αn(xa, xb; X∗)

7: yn+1 ← QueryUserPref(xa
n+1, xb

n+1)
8: Dn+1←Dn ∪ (xa

n+1, xb
n+1, yn+1)

9: end for
10: return x∗ ← arg maxx mode(P(ft(x) |DN))
11: end procedure

12: function αn(xa, xb; X∗) . acquisition function
13: h ←

{
H
[
P
(
y |xa, xb, Dn,C1,C2,C3

)]
|x∗m ∈ X∗

}

14: return H
[
P
(
y |xa, xb, Dn

)]
−mean(h)

15: end function

C1: First we impose that x∗ is a local maximum by ensuring
that the gradient of f (x∗) is zero and its Hessian is negative
definite. We further simplify the Hessian constraint to only
require that the Hessian’s off-diagonal elements are zero and its
diagonal elements are less than zero. We implement the gradient
and off-diagonal constraints by conditioning the prior, P(f),
on derivative observations as outlined in [23]. To constrain the
diagonal elements of the Hessian, we amend the likelihood
term in eq. (1) by adding terms that penalize Hessians with
positive diagonal elements.
C2: Second, we try to ensure that x∗ is also a global

maximum by enforcing that f (x∗) is greater than the function
values of all training points sampled so far. We impose
this constraint by adding more preference relations into the
likelihood term in eq. (1) between x∗ and all training points.

C3: Finally, to further ensure that f (x∗) is a global maximum,
we require that it is also larger than the function values of the
two new test points, f (xa) and f (xb). Whereas C2 ensures
f (x∗) exceeds function values in areas explored so far, C3
ensures that f (x∗) also exceeds function values in unexplored
regions. We approximate this constraint analytically by con-
ditioning on the single constraint f (x∗) > (f (xa) + f (xb))/2
using the method detailed in [24].

C. Algorithm Summary
With constraints C1 to C3, at each iteration we can efficiently

compute the acquisition function, eq. (9). We summarize the
resulting Predictive Entropy Search with Preferences (PES-P)
algorithm as follows (algorithm 1): At each iteration n, first,
the algorithm samples M objective functions from the current
distribution, P(ft |Dn), and optimizes each one to generate M
samples of x∗ (lines 4 and 5). Next, using the set of sampled
optimums X∗, we maximize the acquisition function to obtain
the next two points to present to the user xa

n+1 and xb
n+1 (lines

6 and 12–15). Note: we can precompute the effect of C1 and
C2 before evaluating αn(xa, xb) as these two constraints do
not depend on xa

n+1 and xb
n+1. On the other hand, C3 depends

directly on xa
n+1 and xb

n+1 and therefore is computed within

the acquisition function for every pair of points considered
during the optimization of αn(xa, xb). We then query the user
to obtain her preference yn+1 between these two points and
add it to the dataset of preferences (lines 7 and 8). In our
prosthesis optimization case, this involves having the amputee
walk with both control parameters in succession and provide a
preference between them. Finally, at the end of the N iterations
of the algorithm, we return the optimum x∗ of the most likely
function, mode(P(ft(x) |DN)), which is equal to the posterior
mean function in the Gaussian process case (line 10). While
it may be more correct to return mode(P(x∗ |DN)), we do not
do this as the PES algorithm seeks to avoid approximating this
distribution.

IV. Results
We test the ability of PES-P to solve optimization problems

in four cases with increasing realism from the optimization of
randomly generated objective functions drawn from a GP, to
the tuning of feedback gains of random linear systems and a
neuromuscular walking model, to the optimization of control
parameters for a powered transfemoral prosthesis given real user
feedback. In all four cases, we compare the performance of the
proposed algorithm to the expected improvement criterion (EI)
(eq. (5)) and random sampling via Latin hypercubes (LH)1 [25].
For the three simulated cases, we show results over 20 trials
and measure performance in terms of the immediate regret,
defined as IR = | f (x̃∗n) − f (x∗) |, versus the number iterations.
Here, f (x̃∗n) is the objective value of the current estimate
of the optimum at this iteration, f (x∗) is the value of the
true optimum, and an iteration consists of a single preference
query between two points. Additionally, we also check the
statistical significance of the reduction in IR obtained by PES-
P compared to both EI and LH via one-sided Mann-Whitney
U tests (p < 0.05).

A. Optimizing Randomly Generated Objective Functions
To avoid inducing bias by hand-engineering test functions,

we first evaluate the algorithm on random synthetic objective
functions. We generate objective functions on the domain x ∈
[−1, 1]D by sampling a vector of 500 function values from a
GP prior with a quadratic mean, µ(x) = −xTx, and isometric
squared exponential covariance k(xi, x j) = exp

(
−1
2λ xTi x j

)
. We

use a quadratic mean function to bias the function distribution
away from those that have their optimum on a boundary of
the domain, as these functions are easier to optimize. We
continue to generate the rest of the function as it is optimized
by conditioning the GP on the 500 seed values and all function
values sampled during the optimization. We assume the mean
of the final function distribution is the true objective function.
To simulate more realistic situations, we provide the algorithms
with noisy preferences by corrupting sampled function values
with Gaussian noise (σ2 = 0.1).

1LH sampling divides the parameter space into (2N)D hypercubes, where
D is the dimensionality of the space. 2N samples are placed such that each
hypercube has at most one sample and there is at most one filled hypercube
along any row of hypercubes when viewed along any direction. This method
ensures that the samples are roughly uniformly distributed in the entire space.
At each iteration we choose two of these samples to query users.

THATTE et al.: A SAMPLE-EFFICIENT BLACK-BOX OPTIMIZER TO TRAIN POLICIES WITH USER PREFERENCES 5

1 20 40 60 80 100
0.01
0.1
1

10

Im
m
ed

iat
eR

eg
re
t

1 20 40 60 80 100
0.001
0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et PES-P EI LH

(a) 2 dimensions, λ = 0.1
1 20 40 60 80 100

0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et

(b) 3 dimensions, λ = 0.2
1 20 40 60 80 100

0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et

(c) 4 dimensions, λ = 0.3
1 20 40 60 80 100

0.1

1

10

Im
m
ed

iat
e
Re

gr
et

(d) 5 dimensions, λ = 0.4

1 20 40 60 80 100
Number of Queries

0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et

(e) LQR 3 dim

1 20 40 60 80 100
Number of Queries

0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et

(f) LQR 4 dim

1 10 20 30 40 50
Number of Queries

0.01
0.1
1

10

Im
m
ed

iat
e
Re

gr
et

(g) Biped Walking 2 dim

1 10 20 30 40 50
Number of Queries

0.1

1

10

Im
m
ed

iat
e
Re

gr
et

(h) Biped Walking 3 dim

Fig. 2: Performance of predictive entropy search with preferences (PES-P), expected improvement (EI), and Latin hypercube
random sampling (LH) for optimizing random objective functions sampled from a GP (a-d), and tuning feedback control
parameters of random linear systems (e-f) and a biped walking model (g-h). Shown are the median and interquartile range over
20 trials of the immediate regret (IR) against the number of preference queries. Black stars indicate iterations for which PES-P
achieves statistically significant stochastic reductions in IR compared to both EI and LH according to one-sided Mann-Whitney
U tests (p < 0.05).

Figures 2a to 2d show the immediate regret for two to
five dimensional problems with λ, the length scale of the
kernel, scaling from 0.1 to 0.4 as the dimensionality of the
problem increases. On two to four dimensional problems, PES-
P outperforms EI and LH by achieving statistically significant
reductions in IR. However, as the dimensionality increases, it
takes more iterations for this advantage to become apparent.
In the five dimensional case, there is no significant difference
between PES-P and LH, likely due to M = 12 samples of x∗m
being insufficient and the difficulty of accurately sampling x∗m
in higher dimensions.

B. Tuning Controllers for Random Linear Systems
Next, we test the ability of PES-P to optimize simple control

systems by optimizing the feedback gains K for D-dimensional
single-input linear systems ξ̇ = Aξ + Bu with feedback u = Kξ.
We sample the elements of the A matrix from the standard
normal distribution while B = [01×(D−1), 1]T. We assume a
quadratic instantaneous cost resulting in the objective function

f (K) = −
∫ t f

0
ξT
K (t)(Q + KT RK)ξK (t)dt, (11)

where ξK (t) is the evolution of the state under the control
policy K and a fixed initial condition ξ0, Q = ID×D and R = 1.
To obtain a finite search domain, we find the stable range of
parameters by varying the elements of the true optimal control
parameters K∗ one at a time while keeping other elements
constant. We scale and shift this region to map to the domain
[−1, 1]D . Finally, we use the Automatic Relevance Determi-
nation Gaussian Kernel and optimize the hyperparameters at
each iteration by maximizing the posterior probability of the
hyperparameters under a gamma hyperprior [16, 17]. In order

to apply a consistent noisy preference model (σ2 = 0.1) across
all sampled systems, we transform all objective values by first
mapping them through − log(− f (K)) and then shifting and
scaling the values by the mean and range of the values of 10D
randomly sampled controllers.
Figures 2e and 2f show the resulting optimization per-

formance on three and four dimensional systems. In the 3
dimensional case, PES-P achieves a lower median IR than LH
after 30 iterations. This difference becomes significant after
60 iterations. In the 4 dimensional case, PES-P significantly
outperforms LH after 50 iterations, but the significance of this
improvement is sporadic as the iterations continue. A possible
reason for the reduced performance difference between PES-
P and LH in the LQR problem as compared to the random
objective function problems is the existence of hard-to-optimize
flat regions in the LQR objective functions. This suggests that
PES-P may be more well suited for problems that have clear
optimum.

C. Tuning Control Parameters of a Walking Model

In the third case, we test the ability of PES-P to optimize
the feedback gains for a neuromuscular model of walking [26],
a system with a complex non-linear controller addressing the
specific application domain of human locomotion. We perform
two and three dimensional optimizations, in which we tune the
feedback gains for a subset of the model’s muscle actuators.
We use the negative cost of transport plus the distance walked
over a 20 second time span as the objective function. As in the
previous linear systems example, we obtain noisy preferences
between parameters and optimize the hyperparameters at every
iteration.

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2017

PES-P EI LH

1
2
3
4
5

Us
er

Sc
or
es

1 10 20 30 40 50
Number of Queries

0.001
0.01
0.1
1

10

x
co

nv
er
ge

nc
e PES-P EI LHa b

Fig. 3: Optimization of prosthesis control with user preferences. (a) Median and interquartile range of user scores achieved
by PES-P, EI and LH after 50 iterations (total of 42 scores per algorithm: seven users times six scorings). (b) Median and
interquartile range of convergence achieved by the three algorithms as measured by the Euclidean distance between the current
and final estimates of the optimum. Black stars indicate iterations for which PES-P achieves statistically significant stochastic
improvements in convergence compared LH according to one-sided Mann-Whitney U tests (p < 0.10). PES-P and LH achieve
the same median score of 4 across all users but PES-P converges faster and more consistently. EI converges fastest but to a
lower median score of 3.

Figures 2g and 2h show the performance of PES-P, EI, and
LH. In this example, PES-P achieves a significant reduction
in IR in just 10 iterations in the 2-dimensional case and in 25
iterations in the 3 dimensional case. Furthermore, in the 3D
case the PES-P’s median solution is approximately 10 times
better than those found by EI or LH.

D. Tuning a Transfemoral Prosthesis from User Preferences
In the last test case, we applied the three algorithms to

optimize the control parameters for a powered transfemoral
prosthesis given real user preferences. Specifically, a neuromus-
cular model similar to the one used in section IV-C controls
the prosthesis and we optimize the strengths of three virtual
knee muscles of this control [26].
We performed this test in a pilot study with seven healthy

users. They walked on a treadmill and wore the powered
prosthesis with a modified knee brace (compare [26]). We
allowed all users an hour-long session to acclimate to the device,
during which they experienced a variety of controller conditions.
On a second day, we optimized the prosthesis parameters using
the three algorithms (PES-P, EI, and LH) in a random order, for
50 iterations each. During an iteration, the users walked with
two parameter settings chosen by the algorithm (each for 10
seconds) and then indicated which setting they preferred. After
completing the three optimizations, the users walked with the
optimum parameters identified by each algorithm (in a random
order) for fifteen seconds and then rated each optimum on a 1
(bad) to 5 (good) scale. We repeated the scoring procedure six
times to cover all possible orderings of the three optima.

Figure 3 summarizes the results from the optimizations with
user preferences. PES-P and LH achieved median user scores of
4 while EI achieved a median score of 3 (Fig. 3a). In addition,
PES-P, LH, and EI achieved mean scores of 4.0, 3.5, and
3.1, respectively (not shown). The gap between the mean and
median scores for LH implies that LH does not achieve high
scores as consistently as PES-P. A second observation is that
PES-P converged faster than LH to the optimum as measured by
the distance between its current and final estimates, ‖ x̃∗n − x̃∗N ‖
(Fig. 3b). Meanwhile, EI tended to converge fastest, but to
lower scoring parameters on average (Fig. 3a).

V. Discussion and Conclusion
We presented a new optimization algorithm (PES-P) that

extends Predictive Entropy Search to preference feedback. The
algorithm addresses two key problems frequently encountered
in system optimization. First, it circumvents the often difficult
process of parameterizing and learning an objective function
by directly querying users for preferences between pairs of
parameters. Second, the algorithm minimizes the required
number of hardware experiments by employing Bayesian
optimization techniques that ensure the queries maximize
the information gained about the location of the optimum.
Moreover, unlike previous approaches for preference learning
on robotic systems [10, 12], PES-P does not require a model
of the system.
Our experiments show that the proposed algorithm out-

performs baseline algorithms. In most of the simulation
experiments PES-P found optima that achieved higher objective
values than those found by the expected improvement method
(EI) or by random comparisons via Latin hypercubes (LH)
(fig. 2). In the prosthesis experiment, PES-P outperformed EI
and achieved final scores similar to LH with faster convergence
(fig. 3). These results suggest the proposed algorithm can help
engineers optimize some types of human-in-the-loop robotic
systems more accurately, efficiently, and consistently.
The reason why PES-P outperformed EI is likely due

to the former’s explicit consideration of how the limited,
noisy information obtained from a preference query will
affect the knowledge about potential objective function optima.
The acquisition function (eq. (7)) recognizes that preferences
become more uncertain the closer two sample points are to
each other. EI, on the other hand, does not reason about noisy
preferences and, instead, still assumes it can sample values
(eq. (5)). Consequently, EI ignores the distance between sample
points, which often leads to a greedy strategy that solicits
preferences between adjacent points. While this strategy can
resemble gradient ascent with convergence to local optima
in a noise-free optimization, it often failed in our simulated
and real experiments characterized by noisy observations. Note,
however, that such limitations were not observed by Brochu and
colleagues [18], who successfully used EI with preferences to

THATTE et al.: A SAMPLE-EFFICIENT BLACK-BOX OPTIMIZER TO TRAIN POLICIES WITH USER PREFERENCES 7

optimize parameters for a graphics application, possibly because
the associated visual task produced less noisy responses than
did our simulations or prosthesis walking task.
Several modifications could improve the PES-P algorithm.

First, using a non-zero prior mean function governed by a
set of hyperparameters could embed specific knowledge about
the problem to speed up optimization. To improve efficiency
in this way, [27] details an approach for learning hyperpriors
that could be integrated with PES-P. Second, integrating more
varied user feedback may also help improve the algorithm.
For example, “I don’t know” responses could imply that the
function values at two points are similar, absolute good and bad
ratings could encourage the algorithm to more quickly explore
promising control polices and avoid bad ones, and derivative
observations could indicate the user prefers more or less of a
parameter. With these two changes, the algorithm may be able
to tackle higher dimensional problems. Finally, including time
as a dimension in the GP could account for user adaptation to
the robotic system.

Acknowledgement
We would like to thank the reviewers for their many helpful

comments that substantially improved the manuscript.

Appendix
To obtain X∗ (line 5, algorithm 1), we sample M functions

from the posterior by approximating P(ft |Dn) using Bayesian
linear regression with Fourier features (as outlined in [21]) and
sampling M feature weight vectors. As the Fourier features
have analytic derivatives, we can optimize each linear function
using a second order method with multiple restarts.

We approximate conditioning the predictive distribution on
x∗ via three constraints:
C1 x∗ is a local maximum. ∇ f |x∗ = 0 and the Hessian of

the objective function is negative definite by imposing
diag(∇∇ f |x∗) < 0 and upper(∇∇ f |x∗) = 0. We group
∇ f |x∗ = 0 and upper(∇∇ f |x∗) = 0 into constraint
C1.1 and diag(∇∇ f |x∗) < 0 into constraint C1.2.

C2 x∗ is preferred to current training points, f (x∗) >
f (xa

k
) and f (x∗) > f (xb

k
), ∀k ∈ [1, n].

C3 x∗ is preferred to new training points, f (x∗) >
f (xa

n+1) and f (x∗) > f (xb
n+1).

We precompute the effects of contraints C1 and
C2 before evaluation of αn(xa, xb). To impose C1
and C2, we first divide their components into two
groups: c = [∇ f |Tx∗, upper(∇∇ f |x∗)T]T and f ′ =

[f T, diag(∇∇ f |x∗)T, f (x∗)]T. Note C1.1 =⇒ c = 0. We
write the predictive distribution of the objective function at
test points ft given constraints C1 and C2 as

P(ft |Dn,C1,C2) =
∫

P
(
ft | f

′,C1.1
)

P
(
f ′ |Dn,C1,C2

)
d f ′.

(12)

We use Bayes rule to evaluate the second term in the
integral, P(f ′ |Dn,C1,C2) = P(Dn,C1.2,C2 | f ′) P(f ′ |C1.1)

P(Dn,C1.2,C2 |C1.1) . We
form the prior term P(f ′ |C1.1) by conditioning the joint
distribution, P(c, f ′) on C1.1 given by c = 0. P(f ′ |c) =

N
(
f ′ |ΣT

cf′Σ
−1
cc c, Σf′f′ − Σ

T
cf′Σ

−1
cc Σcf′

)
implies P(f ′ |c = 0) =

N (f ′ |0, Σf′ |c).
We implement the likelihood term by adding extra factors

to the likelihood in eq. (1) that impose soft constraints
representing C1.2 and C2. For C1.2 we use the penalty term
P([∇∇ f |x∗]dd < 0|∇∇ f |x∗) = Φ(−[∇∇ f |x∗]dd/σh) and for C2
we add more preference relations between x∗ and all training
points.

P
(
Dn,C1.2,C2, | f ′

)
=

n∏
k=1

P
(
xa
k � xb

k | f (xa
k), f (xb

k)
)

×

D∏
d=1

P
(
[∇∇ f |x∗]dd < 0|[∇∇ f |x∗]dd

)
×

n∏
k=1

P
(
x∗ � xa

k | f (x∗), f (xa
k)

)
×

n∏
k=1

P
(
x∗ � xb

k | f (x∗), f (xb
k)

)
=

n∏
k=1
Φ(qk)

D∏
d=1
Φ(qh

d)
n∏

k=1
Φ(qa∗

k)
n∏

k=1
Φ(qb∗

k) (13)

Where qh
d
=

−[∇∇ f |x∗]dd

σh
, qa∗

k
=

f (x∗)− f (xa
k

)
√

2σ
and qb∗

k
=

f (x∗)− f (xb
k

)
√

2σ
. We use Laplace’s approximation to approximate

P(f ′ |Dn,C1,C2) as Gaussian,

P
(
f ′ |Dn,C1,C2

)
≈ N

(
f ′ | f ′MAP,

(
Σ
−1
f′ |c + Λ f ′MAP

)−1)
, (14)

where f ′MAP = arg minf ′ − log P(f ′ |Dn,C1,C2) and Λf′MAP
is

the Hessian of − log P(Dn,C1.2,C2| f ′) evaluated at f ′MAP.
We compute the first term in eq. (12), P(ft | f ′,C1.1) by

conditioning the joint distribution P(c, f ′, ft) on f ′ and c = 0,

P
(
ft | f

′, c = 0
)
= N

(
ft |

(
Σ

T
ctB + Σ

T
f′tD

)
f ′,

Σtt −
[
ΣT

ct Σ
T
f′t

] [A B
C D

] [
Σct
Σf′t

])
, (15)

where,
[
A B
C D

]
=

[
Σcc Σcf′

ΣT
cf′ Σf′f′

]−1
. We can substitute eq. (15)

and eq. (14) into eq. (12) to yield the predictive distribution
subject to constraints C1 and C2.

P(ft |Dn,C1,C2) = N
(
ft |(ΣT

ctB + Σ
T
f′tD) f ′MAP,

Σtt −
[
ΣT

ct Σ
T
f′t

] [A B
C D

] [
Σct
Σf′t

]

+
(
Σ

T
ctB + Σ

T
f′tD

) (
Σ
−1
f′ |c + Λf′MAP

)−1 (
Σ

T
ctB + Σ

T
f′tD

)T)
. (16)

We obtain P(ft |Dn,C1,C2,C3) by analytically conditioning
eq. (16) on the single inequality f (x∗m) > (f (xa) + f (xb))/2
using the method detailed in [24]. Finally, using eq. (10) we
can compute the predictive distributions of preferences given
the locations of x∗m.
To optimize αn(xa, xb) (line 7, algorithm 1) we construct

its gradient by evaluating P(ft |Dn) and P(ft |Dn,C1,C2,C3)
at test points xa and xb as well as points offset by δx = ±0.001
along each dimension. We then optimize αn(xa, xb) via gradient
ascent.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JAN, 2017

References

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning,
“A survey of robot learning from demonstration,” Robotics
and autonomous systems, vol. 57, no. 5, pp. 469–483,
2009.

[2] D. A. Pomerleau, “Efficient training of artificial neural net-
works for autonomous navigation,” Neural Computation,
vol. 3, no. 1, pp. 88–97, 1991.

[3] S. Schaal, “Is imitation learning the route to humanoid
robots?” Trends in cognitive sciences, vol. 3, no. 6, pp.
233–242, 1999.

[4] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse
reinforcement learning.” in ICML, 2000, pp. 663–670.

[5] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich,
“Maximum margin planning,” in Proceedings of the 23rd
international conference on Machine learning. ACM,
2006, pp. 729–736.

[6] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K.
Dey, “Human behavior modeling with maximum entropy
inverse optimal control.” in AAAI Spring Symposium:
Human Behavior Modeling, 2009, p. 92.

[7] W. B. Knox and P. Stone, “Interactively shaping agents
via human reinforcement: The tamer framework,” in
Proceedings of the fifth international conference on
Knowledge capture. ACM, 2009, pp. 9–16.

[8] W. B. Knox, P. Stone, and C. Breazeal, “Training a robot
via human feedback: A case study,” in Social Robotics.
Springer, 2013, pp. 460–470.

[9] P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi,
J. P. Carey, and R. S. Sutton, “Online human training
of a myoelectric prosthesis controller via actor-critic
reinforcement learning,” in 2011 IEEE International
Conference on Rehabilitation Robotics. IEEE, 2011,
pp. 1–7.

[10] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning
trajectory preferences for manipulators via iterative im-
provement,” in Advances in neural information processing
systems, 2013, pp. 575–583.

[11] R. Akrour, M. Schoenauer, M. Sebag, and J.-C. Souplet,
“Programming by feedback,” in International Conference
on Machine Learning, no. 32. JMLR. org, 2014, pp.
1503–1511.

[12] A. Wilson, A. Fern, and P. Tadepalli, “A bayesian
approach for policy learning from trajectory preference
queries,” in Advances in neural information processing
systems, 2012, pp. 1133–1141.

[13] D. Gong, J. Yan, and G. Zuo, “A review of gait opti-
mization based on evolutionary computation,” Applied
Computational Intelligence and Soft Computing, vol. 2010,
2010.

[14] M. Tesch, J. Schneider, and H. Choset, “Using response
surfaces and expected improvement to optimize snake
robot gait parameters,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE,
2011, pp. 1069–1074.

[15] R. Calandra, N. Gopalan, A. Seyfarth, J. Peters, and

M. P. Deisenroth, “Bayesian gait optimization for bipedal
locomotion,” in International Conference on Learning and
Intelligent Optimization. Springer, 2014, pp. 274–290.

[16] W. Chu and Z. Ghahramani, “Preference learning with
gaussian processes,” in Proceedings of the 22nd interna-
tional conference on Machine learning. ACM, 2005, pp.
137–144.

[17] C. K. Williams and C. E. Rasmussen, Gaussian processes
for machine learning, 2006, vol. 2, no. 3.

[18] E. Brochu, N. D. Freitas, and A. Ghosh, “Active preference
learning with discrete choice data,” in Advances in neural
information processing systems, 2008, pp. 409–416.

[19] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient
global optimization of expensive black-box functions,”
Journal of Global optimization, vol. 13, no. 4, pp. 455–
492, 1998.

[20] P. Hennig and C. J. Schuler, “Entropy search for
information-efficient global optimization,” The Journal
of Machine Learning Research, vol. 13, no. 1, pp. 1809–
1837, 2012.

[21] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahra-
mani, “Predictive entropy search for efficient global
optimization of black-box functions,” in Advances in
Neural Information Processing Systems, 2014, pp. 918–
926.

[22] N. Houlsby, F. Huszar, Z. Ghahramani, and J. M.
Hernández-lobato, “Collaborative gaussian processes for
preference learning,” in Advances in Neural Information
Processing Systems, 2012, pp. 2096–2104.

[23] E. Solak, R. Murray Smith, W. Leithead, D. Leith,
and C. Rasmussen, “Derivative observations in gaussian
process models of dynamic systems,” Advances in Neural
Information Processing Systems, pp. 1057–1064, 2003.

[24] L. Xu and X. R. Li, “Estimation and filtering of gaussian
variables with linear inequality constraints,” in Informa-
tion Fusion (FUSION), 2010 13th Conference on. IEEE,
2010, pp. 1–6.

[25] M. D. McKay, R. J. Beckman, and W. J. Conover, “A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code,”
Technometrics, vol. 42, no. 1, pp. 55–61, 2000.

[26] N. Thatte and H. Geyer, “Toward balance recovery with
leg prostheses using neuromuscular model control,” IEEE
Transactions on Biomedical Engineering, vol. 63, no. 5,
pp. 904–913, 2016.

[27] E. Brochu, T. Brochu, and N. de Freitas, “A bayesian
interactive optimization approach to procedural anima-
tion design,” in Proceedings of the 2010 ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion. Eurographics Association, 2010, pp. 103–112.

