
Touch-down angle control for spring-mass walking

Hamid Reza Vejdani1, Albert Wu2, Hartmut Geyer2, and Jonathan W Hurst1

Abstract— In this paper we propose the fastest converging
control policy (also known as deadbeat control) for walking with
the bipedal spring-mass model, which serves as an abstraction
of a robot on compliant legs. To fully leverage the passive
dynamics of the system, the touchdown angle of the swing-leg
is assigned as the only control input of the system. We show
that two steps (or one stride) are necessary and sufficient to
converge to target walking gaits.

We first analyze the dynamics of the system to identify the
limit cycles as well as the limitations of the control authority
within the definition of walking. Then, we present the two-step
deadbeat control policy that guarantees stability with the fastest
possible convergence rate for the system. For each equilibrium
gait, the basin of attraction in which this two-step control exists
is a measure of the robustness of the system. The simulation
results show that human-like walking gaits (double hump
ground reaction force profile) have relatively large basins of
attraction. Finally, we extend the policy to various energy levels
to accommodate walking on uneven ground that has height
changes. We show in simulation that the system indeed rejects
various disturbances and converges to the desired equilibrium
gait in two steps.

I. INTRODUCTION

We use the bipedal spring-mass model as the template for
control and design of walking and running robots [1], [2] and
in this paper we derive the control strategy from the dynam-
ics of the model. The bipedal spring-mass model represents
the system as a lumped mass attached to two massless elastic
legs (Figure 1). Inspired by human locomotion, it captures
key characteristics from the dynamics of human walking [3],
[4] including the shape of the ground reaction force profile
and the center of mass (CoM) oscillation. This model is a
natural extension of the spring loaded inverted pendulum
model (SLIP) which has been widely used in literature for
modeling and controlling running systems [5], [6], [7], [8],
[9].

Using the bipedal spring-mass model, researchers have
identified limit cycles for walking, analyzed the stability of
these gaits, and investigated the transitions between them.
They have applied the resulting insights towards robot con-
trol and understanding animal locomotion. However, these
existing techniques do not take full advantage of the behavior
that can be theoretically achieved through manipulating the
landing angle by investigating the whole state space in
finding the appropriate angle of attack at each step.
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Fig. 1. The bipedal spring-mass model with single support phase and
double support phase. The Poincare section is defined during the single
support phase where the stance leg has vertical orientation. The states of
the system at the Poincare section are y and ψ. One step is defined from
one Poincare section to the next Poincare section and the touchdown angle
of the swing leg is shown by θ1 in the first step and θ2 in the second step.

Rummel et al [10] investigated the role of the leg param-
eters of the bipedal spring-mass model for robustness and
efficiency. Using a constant angle of attack control policy,
in their analysis of the system they found five types of
equilibrium gaits with different basins of attraction and local
convergence properties.

Through defining the concepts of finite stability and via-
bility, Salazar et al [11] analyzed the model under constant
angle of attack policies to demonstrate stability of certain
gaits and the ability to transition between gaits across many
steps.

The spring-mass model has also been used as a template
for controlling full body model of robots [12], and Garofalo
et al [13] applied this model to control a fully actuated robot
in simulation.

Andrada et al. [14] showed that keeping the angle between
the two legs constant leads to robust and finite stable ground
running gaits, which may explain how quails walk; while
Maus et al [15] extended the model to 3D and walking in a
circle to potentially explain how blindfolded or disoriented
people walk.

In this paper, we systematically map out the dynamics of
the bipedal spring-mass model as state to state transitions
using leg placement as a control input. From this mapping,
we identify deadbeat control that converges to target gaits
in the minimum number of steps, and the control is defined
over explicit regions of attraction. First, by defining Poincare
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sections and tabulating the transitions in an appropriate
state space, we identify a workspace that captures all pos-
sible walking behaviors allowed by the model. Within this
workspace, any state has a non-zero region of attraction from
which the state can be reached in two steps. Specifically,
we deadbeat stabilize the equilibrium gaits with a two-step
policy in their regions of attraction, thus achieving the fastest
possible convergence. The size of the region of attraction
and the relative location of the equilibrium state describes
the robustness of each gait. Finally, while the workspace is
defined for a constant system energy, we extend the control
across different energy levels to demonstrate robust walking
on simulated uneven ground.

II. DYNAMICS OF THE BIPEDAL SPRING-MASS MODEL

In the bipedal spring-mass model two massless elastic legs
are attached to a point mass body [3], [4], [11], and when
only one leg is on the ground, the system is equivalent to
a spring loaded inverted pendulum (Figure 1). The springs
store and return energy, rendering the system theoretically
conservative with no energy losses. While in this model
there are no impact losses like in other hybrid walking
models [16], [17], [18], [19], [20], this model still has
hybrid dynamics due to the distinct single support and double
support phases in which respectively only one or both legs
are on the ground. In each phase, the dynamics are as
follows:

single support:{
ẍ
ÿ

}
=

{
F1(x−xt1)

m.l1
F1(y−yt1)

m.l1
− g

}
(1)

double support:{
ẍ
ÿ

}
=

{
F1(x−xt1)

m.l1
+ F2(x−xt2)

m.l2
F1(y−yt1)

m.l1
+ F2(y−yt2)

m.l2
− g

}
(2)

where the spring compression force Fi and length li of each
leg are given by

Fi = k(l0 − li) ≥ 0 i = 1, 2 (3)

li =
√
(x− xti)2 + (y − yti)2 i = 1, 2 (4)

In these equations, [x, y] are the coordinates of the center
of mass (CoM), [xti, yti] are the coordinates of each toe,
and the parameters m, k, l0, and g are respectively the mass,
spring stiffness, rest length, and gravitational acceleration.

Single support transitions to double support when the CoM
has negative vertical velocity and the condition y = l

0
sin(θ)

is fulfilled where θ is the touchdown angle of the swing leg
and we use this value, which parameterizes leg placement,
as the single control input of the system. Double support
transitions to single support when the spring deflection l0−li
of one leg returns to zero.

A. State space and discrete dynamics

The state space of the bipedal spring-mass model for
walking is the set of all the independent states that the system
can take in the process of walking. The state space of a
system can be parameterized by any set of values that are
sufficient to resolve the dynamics, and the representation can
be further simplified by defining a Poincare section to convert
the system into a series of discrete states [21], [22].

Similar to [10], [23], we define the Poincare section at the
vertical leg orientation (VLO) in single support (illustrated
in Figure 1). At this condition, the system dynamics and
subsequent states can be computed from the height yn of
the CoM and the orientation ψn of the velocity vector of the
CoM, assuming a control input θn for the landing angle of
the free leg (subscript n is used to denote the indexing of the
now-discretized system). This holds true because the system
has constant energy E, so magnitude |vn| of the velocity is
known given the height yn and are related through

E =
k(l0 − yn)2

2
+mgyn +

mv2n
2

. (5)

Therefore, we define the discrete states at the Poincare
sections as

Xn =

{
yn
ψn

}
(6)

and express the state-to-state transitions as the following
discrete mapping:

Xn+1 = A(Xn, θn), (7)

since Xn and θn provide sufficient information to integrate
the equations of motion between Poincare sections.

Using a feedback controller for the control input (θn =
H(Xn)) and substituting it to the dynamics of the system,
we will obtain the return map (f : χ→ χ)

Xn+1 = A(Xn, H(Xn)) = f(Xn), (8)

where manifold χ contains all possible Poincare states Xn.

III. WORKSPACE OF WALKING AND EQUILIBRIUM GAITS

We start by defining the workspace as all the VLO states
that the model can encounter while continuously walking. To
find the workspace, we look for two different sets in the state
space: the start states, which are all the initial conditions Xn

from which a subsequent Poincare section (Xn+1) can be
successfully reached for at least one value of θn; and the
reachable states, which are all the subsequent states Xn+1.
Here, we take “successfully reach” to mean entering the next
Poincare section without falling or entering the flight phase.
In the [y, ψ] plane of states, these two sets are reflections of
each other across the ψ = 0 axis, since any trajectory from
Xn to Xn+1 is also a legitimate trajectory from Xn+1 to
Xn if played in reverse (i.e, Figure 1 from right to left),
which effectively changes the sign of ψ. By definition, the
workspace is simply the intersection of the start states and
the reachable states.

To find the aforementioned sets, we mesh the [y, ψ] plane
of possible VLO states (as was mentioned in [11]) into grids
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of size (δy = 2.5mm, δψ = 1◦), scan over touchdown
angles with an increment of δθ = 0.1◦, and integrate the
dynamics from each set of initial conditions. Equilibrium
points Xn, corresponding to a periodic limit cycle repeated
between sequential single support phases, exist wherever

X∗ = A(X∗, θ∗) (9)

for some landing angle θ∗. Similar to [10], we use Newton-
Raphson iteration to interpolate equilibrium points between
sampled grid points.

To accomplish the simulations, the model was imple-
mented in Matlab (R2012a, Mathworks Inc., Natick, MA,
USA) and the following properties for the robot (table I)
were assumed. To solve the differential equations, ode45 (a
Matlab function that solves ordinary differential equations
based on the explicit 4/5-order Runge-Kutta method) was
used with relative and absolute tolerances equal to 1e-11.

TABLE I
PROPERTIES OF THE SPRING-MASS ROBOT

Parameter Description Value
m robot mass 58.0kg

k leg spring stiffness 12000N
m

l0 initial leg length 0.85m

A. Workspace in one energy level

To find the workspace of the system, first all the states that
can start and complete at least one walking gait are found
(start states). After that, we find the reachable states that can
be reached at the end of walking gaits. The intersection of
these two sets is the workspace of the system and includes
all the states that come from a walking gait and can continue
the process of walking.

In Figure 2 the aforementioned sets are shown in different
colors (green for start states, blue for reachable states and
gray to represent the workspace). The workspace has an
elliptical shape and represents all the states that are useful for
sequential walking. The equilibrium points are distinguished
separately by the red color. There are both symmetric and
asymmetric equilibrium points in the state space in one
energy level. The force profiles for the various types of
equilibrium gaits are shown along with their center of mass
trajectories from grounded running type of gait to double
hump human walking behavior.

If due to some disturbances the states of the system
are located outside of the workspace, the system can not
continue walking. Therefore, the control authority of the
bipedal spring-mass model with the touchdown angle control
input is limited to the size of this region.

1) Characterization of the equilibrium gaits: The equi-
librium gaits in one energy level are shown in Figure 2 as
a continuum changing behavior of the system. The force
profiles of symmetric gaits evolve from a single hump in
the middle of the workspace to a flat shape as it goes to
the right and gradually to a double hump (like what we
observe from typical human walking [3]) and finally at
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Fig. 2. Three regions are shown in the state space. The blue region shows
the states that can be reached at the end of walking gaits. Green region shows
the states that can start walking gaits and gray region (the elliptical region) is
the workspace of the system which is the intersection of the reachable states
and start states. The equilibrium points are highlighted with the red color.
The behavior of the symmetric equilibrium gaits evolve from left to right
as a continuous change. For those equilibrium gaits with small CoM height,
the COM trajectory is like a straight line and as the CoM height increases
at the Poincare section, the behavior of the system becomes bouncier until
it evolves to hopping with two legs.

the far right side of the workspace it looks like hopping
with both legs. The shapes of the force profiles for the
equilibrium gaits are consistent with the results in [10].
The different behavior of equilibrium gaits provides various
choices for limit cycle walking gaits and can also be useful
to explain different locomotion gaits in nature. For example,
the schematic force profile of chimpanzee walking gait and
the corresponding CoM trajectory of that, is located in the
middle of the elliptical [24] while the behavior of human
walking gait can be explained by another gait in the right
side of the workspace [3], while for grounded running birds
like quail the equilibrium gaits are in the left side of the
ellipse [14]. We speculate that the differences between the
types of walking gaits that we observe from different animals
depend on the morphology and mechanism of their legs and
each gait is optimized for its mechanism.

B. Workspace in different energy levels

Since the bipedal spring mass model is a conservative
system, the workspace is defined assuming a constant system
energy. However, on rough terrain, the changing level of
the ground height changes the energy of the system, so we
identify the workspace and the equilibrium gaits within it
across a range of energy levels. The simulation example
in section V shows the behavior of the system when it is
disturbed by such a change in ground height.

IV. CONTROL POLICY

In this section, we introduce a deadbeat control policy
for walking that vanishes the perturbations in the minimal
number of steps.

Deadbeat control means a policy that exactly corrects the
perturbation in a finite amount of time (usually minimal)
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[25]. Mathematically, the return map f is called deadbeat on
domain χd for a specific target X∗ if there exists a K ∈ N
such that [26]:

K times︷ ︸︸ ︷
f ◦ f ◦ · · · ◦ f(X) = X∗ ∀X ∈ χd (10)

The existence of the deadbeat control for running was
shown for both 2D and 3D spring-mass models [25], [27].
In this section, we construct a deadbeat control policy for
walking that pinpoints the target gait in the minimal number
of steps.

As discussed in [25] using the implicit function theo-
rem, a single step would be insufficient for stabilizing an
equilibrium gait (X∗, θ∗) in the bipedal spring-mass model.
By varying the single control input θ from a given initial
condition Xn, the system can only reach a one-dimensional
set of states Xn+1 in the two dimensional [y, ψ] plane.
Likewise, only a one-dimensional set χd1 of states Xn can
be mapped to X∗ through the choice of θn (In figure 3,
each blue curve shows the states that can reach each target
equilibrium in red). For a hypothetical one-step controller,
this deadbeat domain χd1 has zero area; the single-step
deadbeat control cannot be properly defined on a meaningful
domain.

However, by increasing K to two steps, we can define a
two dimensional subset χd2 of the [y, ψ] plane as the region
of attraction. For any X∗, χd2 is the set of states Xn such
that

A(Xn, θn) = Xn+1 ∈ χd1 (11)

where
A(Xn+1 ∈ χd1, θn+1) = X∗ (12)

for some sequential pair of touchdown angles θn and θn+1.
Therefore, χd2 is the set of states that can transition to
some state in χd1, from which the target X∗ can then be
reached. This gives us the green regions in Figure 3. For any
Xn ∈ χd2, we solve for θn numerically, having tabulated
representations of state-to-state mapping A and intermediate
domain χd1(X

∗). In execution, we do not explicitly use
θn+1, though if no disturbances are encountered after the
first step, re-solving for θn at the next iteration yields the
previous θn+1 that satisfies A(Xn+1, θn+1) = X∗. Thus,
our feedback controller is expressed as

θn = H(Xn) = A−1|Xn(Xn+1 ∈ χd1), (13)

where the existence of a valid intermediate state Xn+1 is
guaranteed by construction of domain χd2. This policy yields
the Poincare map f = A(Xn, H(Xn)) : χ → χ deadbeat
stable on the two-dimensional subset χd2.

A. Properties and limitations of two-step control

By construction, X∗ ∈ χd1 ⊂ χd2. The derived con-
trol gives the fastest possible convergence for any initial
condition in χd2, and this region of attraction reflects the
robustness of the stabilized gait. If the system is perturbed
from the red point X∗ to a state within this region, the limit

cycle will be restored in two steps. Otherwise, more steps
are required. Dynamic programming would naturally extend
the formulation to optimally solve as many steps as desired
(or sequential composition [28] as an approximate method),
but here we implement N = 2 for sake of simplicity as it is
the minimum for a domain of attraction with non-zero area.

Since χd2 exactly represents the region of attraction of the
two-step control, the size of χd2 and the proximity of X∗ to
its boundaries measures the disturbances that the stabilized
gait can handle. As can be seen in Figure 3, human-like two-
humped walking gaits have large regions of attraction, and
the nominal behaviors lie well within the boundaries. This
shows that these gaits can handle relatively large disturbances
in arbitrary directions.

Blue states: 1 step from
desired point

Red state:Desired state
(equilibrium point)

Green states: 2 steps from
desired point

Time

F
or

ce

Fig. 3. Each of the figures above show the region (green area) in the
workspace that can return to its equilibrium point (red point). The blue
curve is the set of the states that can go to the equilibrium point in one
step. When the equilibrium points (red points) are well inside the green
region, they are less prone to disturbance. The leg force profile and the
CoM trajectory of the red points are shown next to each part.

V. SIMULATION RESULTS

In this section we show in simulation that the bipedal
spring-mass model can accomplish the two-step deadbeat
control and fully recover from random perturbations. Fur-
thermore, we extend the policy from a constant energy level
to different energy levels and show that the system can walk
on rough terrain that the energy of the system changes due
to the change of the ground level change.

We start by showing how to make transition from one
equilibrium gait to another desired limit cycle using the two-
step deadbeat control policy. In Figure 4, transition between
the two equilibrium gaits is shown. The system starts from
a limit cycle with Poincare state A(y, ψ) = (0.81m, 0◦) and
goes to transition state B(y, ψ) = (0.817m, 12◦) and finally
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Fig. 4. Demonstration of the two-step deadbeat control policy for transitioning from A(y, ψ) = (0.81m, 0◦) to C(y, ψ) = (0.835m, 0◦) using
B(y, ψ) = (0.817m, 12◦) as transition state. Part (a) shows the CoM trajectory of the system and in part (b) the leg force profiles are shown. The states
at the Poincare section are demonstrated in part (c) and (d) shows the phase portrait of the system.

settles into C(y, ψ) = (0.835m, 0◦) using the deadbeat
control policy.

Figure 5 shows the stability of the system under different
perturbations. As it can be seen in the figure, various different
initial conditions all converge to the desired gait (y, ψ) =
(0.83m, 0◦) in two steps although the horizontal position
and history of the CoM are different. The initial conditions
are seen from the height and slope of the CoM trajectories
(y, ψ) at the beginning.

For walking on rough terrain, Figure 6 shows the model
encountering an unexpected drop step with no prior infor-
mation about the location and size of the disturbance. After
the drop step, the preceding Poincare states as well as the
system energy are changed. In the workspace of the new
energy level, the two-step control to return to X∗ = [y =
0.84m, ψ = 0◦] is computed and applied. The drop step
added energy to the system, so while X∗ preserved its values
of relative height y and direction of motion ψ across ground
levels, the new equilibrium gait moves at a faster horizontal
speed at the VLO. As can be seen, the new limit cycle is
reached in exactly two steps.

0.85

0.80

0.75

0.70
0 0.5 1.0

𝜓
𝑦=0.83
=0

Y(m)

X(m)

Same outcoming state:Starting with various 
perturbed states

Double stance

Single stance
Initial perturbations are 
(y,   ) at the beginning dy

dx-

Fig. 5. Center of mass trajectory of the bipedal spring-mass model starting
from various perturbed initial conditions. For all the cases, the system settles
into the desired state in two steps. The double stance phases are shown in
solid red lines and the dashed black lines are the single stance phases.

VI. CONCLUSIONS

In this paper we analyzed the dynamics of the bipedal
spring-mass model and investigated the control authority

5105



0 1.5

Transition)state
Disturbed)state

Transition)
step)#)2

Transition
)step)#)1

Equilibrium)gait

Equilibrium)gait
in)new)energy)level

x)(m)

Drop step

y)
(m

)

1

0

Fig. 6. Center of mass trajectory of the bipedal spring-mass model before
and after a drop step in the ground. The system does not have prior
information about the size and location of the disturbance. After the drop
step, the system goes to a disturbed state in the new energy level (determined
by the height of the drop step). To pinpoint the desired equilibrium gait,
the system first goes to a transition state and after that it pinpoints the new
desired equilibrium gait.

of the system for walking. We identified the periodic limit
cycles and designed a deadbeat control policy to recover the
system from perturbations in the fewest number of steps.
We showed that at least two steps are necessary, and that
two steps are sufficient to provide regions of attraction that
cover significant portions of the workspace. The region of
attraction of each stabilized limit cycle reflects its robust-
ness, thus providing useful information for selecting robot
walking gaits. We also observed that the gaits most similar
to human-like walking have larger regions of attraction with
the equilibrium point far away from the edges. Further, we
extended the control to handle energy changes in the system
from external disturbances like ground level changes and
demonstrated its stability in simulation. To implement this
control policy on the robot, look-up table for neighboring
desired energy levels are required.

VII. FUTURE WORK

We intend to implement the control derived here for
the simplified model on our SLIP-like robot ATRIAS [1].
ATRIAS is a spring-mass robot with the majority of the
mass lumped at the hip to be as close as possible to the
SLIP model.
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