2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2014)
September 14-18, 2014, Chicago, IL, USA

Highly Robust Running of Articulated Bipeds in Unobserved Terrain

Albert Wu and Hartmut Geyer, Member, IEEE

Abstract— Control design of running robots is often based on
mapping the behavior of lower order models onto the robotic
systems, and the robustness of running is largely determined
by the robustness of these underlying models. However, existing
implementations do not take full advantage of the stability that
the low order models can provide. In particular, analysis of the
theoretical spring mass model suggests leg placement policies
that generate near deadbeat rejection of large, unobserved
changes in ground height. Here we show in simulation that
this blind robustness to rough terrain can be carried over to
bipedal robots. We design a control that stably embeds the
spring mass model’s behavior in a planar robot model and show
that resulting system rejects ground disturbances of up to 25%
leg length, adapts to persistent ground slopes, and tolerates
sensor noise, signal delays, and modeling errors. The results
indicate that transferring control derived within the spring
mass model is an effective technique for realizing highly robust
running in robetic systems.

I. INTRODUCTION

Control design of running robots can often be summarized
in two distinct stages. First, a low dimensional model is used
for generating a reference behavior; then, this behavior is
tracked in the higher dimensional robot. Several techniques
have been applied to achieve the second stage [1]-[5] As
a result, the performance of running robots is largely de-
termined by the design of the reference behavior. However,
while robust locomotion in uncertain environments is a main
behavioral goal, existing implementations often show limited
stability in the underlying models. For instance, humanoid
robots controlled by the zero moment point approach [6]—
[10] generally track a single periodic reference trajectory in
running [8]-[10]. Specifically, in [8], the reference trajectory
is based on the low order inverted pendulum model and
matches prescribed vertical motions and step locations, and
it is then tracked in the joint space of the full robot. Although
feedback control is applied to deviations from the refer-
ence motion, adaptations to perturbations are not considered
in the lower order model. In contrast, locomotion control
formulated in the hybrid zero dynamics (HZD) framework
[4], [11]-[14] has been combined with local exponential
stabilization of the low order model. Specifically, the authors
of [14] reduce the dynamics of the full robot by introducing
constraints to describe virtual compliant legs and solve for an
energetically optimal limit cycle in this reduced system. They
then apply discrete LQR to produce a local family of reduced
order trajectories that converge to the optimal limit cycle.
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Fig. 1.  Executing a swing leg trajectory «(t) derived from deadbeat
stability of the spring mass model generates robust running in a model
of a bipedal robot on unobserved rough terrain.

Thus, gait perturbations within the linear approximation of
the lower order model can be gradually corrected by this
controller. Finally, running robots based on the Raibert hop-
per [1], [15]-[17] similarly have asymptotic stability in the
reference behavior. The low order Raibert hopper stabilizes
the forward speed, trunk orientation, and total energy using
three basic feedback laws. This stable closed loop system has
been embedded in the higher order dynamics of both bipeds
[18] and quadrupeds [17] by tracking a virtual leg.

In contrast to gradual error correction shown in some of
the previous examples, analysis of the spring mass model
(SMM) reveals a stronger level of stability available within
the lower order model. In this model', large gait pertur-
bations can be corrected in a single step by choosing the
leg placement between apexes, thus rendering the system
deadbeat stable [19]-[23]. Some recent work has made
progress in simulation towards leveraging this property in
control design of running robots. In [24], the authors simulate
deadbeat stability for an articulated planar leg on observed
rough terrain by identically reproducing the lower order
behavior given perfect models of the leg and of its collision
dynamics. In [25], the authors are the first to embed the 3D-
SLIP as a low order model in a simulated humanoid robot
and demonstrate near deadbeat tracking of target speeds
as well as robustness to unmodeled impacts and pushes.
Beyond these impressive results, analysis of the SMM further
allows for blind robustness on rough terrain. In both 2 and 3
dimensions, the deadbeat feedback policy can be converted
to a feed-forward trajectory of the swing leg that rejects
disturbances from upcoming, unobserved changes in the
ground height [20], [21], [23]. While this result suggests that
embedding the SMM dynamics with the placement policy
would facilitate robust locomotion in uncertain environments,

lalso referred to as the spring loaded inverted pendulum (SLIP)
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Fig. 2. The spring mass model describes running as a series of apex heights
y;, Where the transitions are parameterized by the touchdown angle arp ;.
The massless leg can take on any commanded «(t) in flight.

it has not yet been demonstrated beyond the abstract SMM.

Here we show in simulation of a planar biped robot
that the blind robustness to rough terrain imparted by the
deadbeat-derived swing leg trajectory is carried over to the
robot system (Fig. 1). First, we review the underlying SMM
and present the higher order robot system (section II). We
then derive the control that maps the SMM behavior to the
higher order system while stabilizing the additional dynamics
of the robot (section III). Finally, we show in simulation
experiments of rough terrain locomotion that the robot model
rejects ground disturbances of up to 25% leg length, adapts
to persistent ground slopes, and tolerates sensor noise, signal
delays, and modeling errors (section IV). To the best of the
authors’ knowledge, this is the first time that near deadbeat
stability on unobserved, very rough terrain is demonstrated
on a robot model.

II. SPRING MASS MODEL AND ROBOT MODEL
A. Lower Order System: Spring Mass Model

The SMM is a low order abstraction that captures the
essential behavior of locomotion on light, compliant legs
[26], [27]. This model reduces the body to a point mass
m following a ballistic trajectory in flight and rebounding
in stance on a massless spring leg with stiffness ko and rest
length [y (Fig. 2A). The massless leg has no dynamics; the
landing angle « is positioned kinematically in flight. For this
system, the equations of motion are

5 o[l = 2]

where x and y are the COM coordinates and the ground
reaction forces (GRFs) I, = F) = 0 in flight and

] -0 (2257

sin(a)

in stance. The leg angle « and leg length [ are functions of
the COM coordinates assuming a stationary foot in stance.
Under these dynamics, it has been shown that deadbeat
gait stability can be achieved by choosing the leg placement
« in flight. Since the SMM is conservative, each flight phase
is fully characterized by the apex height y;, and the trajectory
through the ensuing stance and flight phases is then fully
determined given the touchdown angle arp ;. Thus, SMM

Articulated robot model:

geometry

forces and torques

Fig. 3. The planar robot is represented by a rigid body trunk above the
hips, inertias I, and rotary actuators 7; at each hip, linear actuators F; in
each leg, and a small mass m ¢ in each foot. A virtual leg can be described
between the trunk COM and the stance foot. External forces Fy and Fy
applied to the foot map to the robot states through a Jacobian matrix.

running is described as a series of apex heights for which the
transitions depend on the landing angle: y; 11 = fly, (arp.;)-
To track a desired gait described by a target height y*,
from any initial condition y;, deadbeat stability is realized
by landing with angle

=y (") (1)

at some specific time ¢ after apex.

Blind tolerance to rough terrain is embedded by approx-
imating upcoming terrain changes as unobserved perturba-
tions to the previous apex height y; (the approximation is
inexact due to energetic differences) [20], [23]. Numerically
solving Eq. 1 off-line for all possible values of y; yields
solution pairs (v, ;,t) describing touchdown angles cou-
pled with their respective times of landing. Sequencing the
solutions by time gives a touchdown angle profile *(t) for
the swing leg. In effect, whenever touchdown on unobserved
terrain does occur, the initial condition y; is implicitly
inferred and «*(t) provides the correct landing condition.

%
ATD.i

B. Higher Order Robot: ATRIAS

ATRIAS (Fig. 1), a bipedal robot developed by the
Dynamic Robotics Laboratory at Oregon State University
[28], is well suited to embed the behavior of the SMM. It
has very lightweight carbon-fiber legs and point feet. Each
leg is composed of a four-bar mechanism actuated through
leaf springs by a pair of motors at the hip, which act as
differential drives to generate leg rotation as well as leg
extension and shortening. In effect, the robot’s total mass is
concentrated on the trunk, resembling a point mass of about
60kg rebounding on massless and compliant legs about 1m
in length. In contrast to the mathematical abstractions made
in the SMM, ATRIAS has a trunk that needs to be balanced,
legs that need to generate actual swing motions with ground
foot clearance, and feet that produce actual contact dynamics
with slipping and energy dissipation. In addition, the robot
is actuated by geared motors (50:1 harmonic drives), which
have torque saturation and rotational inertias.

We simulate a planar robot model that captures the es-
sential characteristics of this system (Fig. 3). It has a trunk
of mass m and inertia I; about the center of mass, which is
located distance d away from the hip joint. The effect of each
four-bar leg mechanism is represented by two components: a
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linear actuator outputting force F; that extends the leg with a
small foot point mass m ¢, and a rotary actuator with limited
torque |7;| < Tmax coupled to an inertia I, at the hip.

Whenever a leg touches the ground, a dynamic contact
model actuates the foot. In the vertical direction, the ground
behaves like a nonlinear spring and damper, generating the
force GRF, = kyAyg(1l — 4/Vmax). In the horizontal
direction, it generates either a similarly computed nonlinear
spring and damper stiction force, or a sliding force that
opposes the motion in proportion to GRF,,. Details of the
contact model are described in [29], and it realistically
describes unilateral forcing, dissipative collisions, and both
static and sliding friction.

These dynamics are summarily described in the equations
of motion

M(q)§ +h(q,q) =ST+J'F )

where M is the mass matrix, q is the coordinate vector, vector
h accounts for Coriolis, centrifugal, and gravitational forces,
the selection matrix S assigns control inputs 7 to q, and the
Jacobian J maps external forces F to q. Here, q consists of
the coordinates z,y and 6 describing the global position and
orientation of the trunk, along with ~; and I; describing the
global orientation and length of each leg (Fig. 3). Control
vector T is composed of the motor torque 7; and linear force
F; of each leg, and vector F holds the components of the
external force applied at each foot. The modeling of these
GRFs is described above, and they cannot be expressed as
functions of just the robot state and applied actuation.

ITII. MAPPING CONTROL DESIGN
A. Simplifying Assumptions

In deriving the control, we apply a few assumptions to
simplify the dynamics and reduce the complexity of the
design process. Our simulation results (section IV) confirm
that the robot runs robustly despite the errors induced by
these assumptions.

First, because m f/ m < 1, we ignore the inertial effects
of the masses at the feet, thereby eliminating small coupling
terms in M and h and collapsing the COM onto the trunk
coordinate (z,y). Setting m; = 0 would also imply F; =0
and remove the dynamics of the length [; for any leg not in
contact with the ground. Instead, the leg force of a swing leg
is computed separately using a PD feedback loop that tracks
a target leg length. In stance, the simplified dynamics of the
remaining states is given by the equation

mo0 o0 0 00][# 0 0 00

omo 0 00| mg 0 00|

007, 0 00| |6 0 ~1-10 [Py
00010, 00| 5| |o|T]1 00 L?]*J [ ®
000 0 I,0| |% 0 0 10 !

0000 0o0) i 0 0 01

where index 1 denotes the stance leg and 2 denotes the swing
leg, I is the length of the stance leg, F), , are the horizontal
and vertical GRFs (Fig. 3) at the stance leg, and the Jacobian
J is given by

J= Je| _ |1 0 —dcosf
T |Jy] |01

dsin 0

lcosv 0

sin v
—lsiny; O :| ’ ®

Cos Y1

In swing, no external force acts on either leg, so (3) further
reduces to

mO0O0 0 O Z 0 0 0

0OmO 0 O i mg 0 0

00I; 0 0 6l+|o0f|=]|-1-1 [Tl], I6))
0001, 0| |4 0 1 0| L™
000 0 Il L4 0 0 1

leaving only the angular states and a ballistic COM trajectory.

The other assumption in designing the control replaces the
dynamic contact model governing the GRFs with a standard
constraint; the ground provides the exact force which pre-
vents motion of the foot. Written as a function of coordinates
q (the remaining states in Eq. 3), this requirement of &0 =
0 and Yoot = 0 implies the acceleration constraints

Ji+Jg=0

where J is the same Jacobian in Eq. 4. Combining the
floating base equations of motion and constraints into a single
system of equations yields

M6><6 . 'h6><1 _ SG><3 m

|iJ2><6i| a+ [(J('l)le} - |:02><3:| [;21

which relates robot accelerations, actuator inputs, and
reaction forces.

In section III-E, we discuss an alternative assumption for
when a static contact point is invalid.

D -

02><2 Y

B. Control Goals

In the SMM, the leg placement policy «(t)* provides
blind, deadbeat tracking of a specified gait (parameterized
by apex height and forward velocity [y, %], where &7
resolves the energy of the gait) in the presence of large
ground disturbances. The higher order robot recovers the
same performance if it tracks the equivalent leg placement
policy in flight and generates GRFs matching a virtual spring
through the COM in stance. Beyond this direct embedding of
the SMM, there are three other tasks that must be addressed
in the higher order system. First, the trunk pitch # must be
stabilized, and the total angular momentum H = Ité +
Iy + Iny2 about the COM should be 0 on average;
otherwise the system would have an eventually unstable pitch
rate. Since the GRFs of the SMM are directed through the
COM such that H is nominally constant, here we target
H (t) = 0 for all time. Second, the translational energy s
(defined without rotational components) should match the
system energy E* that parameterizes the SMM. Both Ej,ng
and H are constant in flight (see Eq. 5); they can only be
regulated in stance. Finally, the robot should be driven away
from problematic configurations. For example, if the trailing
leg starts too far back (72 is too large) in stance, swinging
it forward quickly to track o*(t) in flight can be difficult.
Mirroring the two legs through vo = 27 — =1 solves this
problem by targeting symmetric configurations. Furthermore,
coupled with driving the trunk to a constant reference pitch
0*, mirroring angular velocities 45 = —7; also encodes
zeroing the angular momentum H.

Therefore, on a functional level, we implement controls
with the following specific goals:
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1) Track SMM-derived landing angle o*(¢) in flight.

2) Produce GRFs matching the SMM in stance.

3) Maintain trunk pitch 6* throughout flight and stance.

4) Stabilize system energy to E™* in stance.

5) Drive the average hip angle ¢ = % to ¢* =,

which enforces mirrored leg angles.

The remainder of this section details how we design the
control to achieve these goals during flight, stance, and
sliding transitions. The methods we use include optimal
control, inverse dynamics, and feedback linearization, and
are similar to the methods used by others for mapping control
in robotic systems.

C. Flight

In flight, the center of mass moves on a ballistic trajectory
(Eq. 5), and the control focuses on the angular motions of the
trunk and legs. As listed above, the control goal is to track
the SMM-derived angle a*(t), the trunk pitch 6*, and the
average hip angle ¢*. Since angular momentum is conserved
in flight, not all these goals can be met simultaneously.
We use linear quadratic regulation (LQR) to optimally trade
off between these goals. Meanwhile, the control of the leg

lengths is independent and addressed in Section III-F.
The angular dynamics are linear. Expressed in state space
form x = Ax + Bu, we obtain

1 1 T
« = |03x3 I3x3 « 000 -7 7, O a
O3x3 Osxs 000 7% 0 —Izn

with x = [0 Y1 Y2 0 Y1 ’.)/2]T and u = [7’1 TQ]T. The
controllability matrix [A AB A®B] is rank deficient by 2;
the system is uncontrollable, corresponding to the fact that
no external torque acts on the COM and the total angular
momentum H is conserved. Thus, the target behavior defined
with respect to all three segments may not be achievable.
Instead, the controller must track the targets as closely as the
dynamics allow. The combined tracking tasks are expressed
in a quadratic objective function

= Oo)(7)(*7—‘ X*X* ll*ll*T ll*ll*
J—/O (x — x)TQ(x — x*) + (u— u*)TR( )dt

where the tracking targets 7 (¢), 8* and ¢* feature in x*,
and the hip angle +} (t) = Z+a*(t)—sin™ " (dsin(y1 —0)/1,)
is defined by the target angle o*(¢) of the virtual leg (Fig. 3).
LQR solves for the optimal feedback policy u = u* —K(x—
x*) that minimizes 7. However, the uncontrollable modes
cause this integral to grow unbounded.

To circumvent this problem, we rewrite the uncontrollable
modes in terms of the momentum H, reducing the explicit
states to a controllable subsystem. In particular, we substitute
Ao = 11 (H — 1,6 — I,%1) and integrate this expression to
obtain v, = f(H,t,xp,X,) as a function of H, time, the
initial conditions x¢, and the reduced states x,. = [0 71 0 A1)-
The dynamics of this controllable subsystem are

1 11T
. _ |02x2  T2x2 0 0 -7 15
Xr = [02><2 O2x2 x>+l o 7% 0 u
Ar By

and the objective function reduces to

210 7 RN
% targetstate A reference att=0

—— min state error m reference att=0.3

—— trajectory @ reference att=0.6

- - - positional constraints,

[}
(deg)
180

160

Fig. 4. Applying LQR after accounting for uncontrollable angular
momentum in a 2 dimensional system with states [0 ¢ 6 ¢]. Integrating
H = 16 + 21,,¢ yields a time-dependent linear constraint between 6 and
¢. The reachable sets [0 ¢](t) satisfying these constraints are shown as
dotted blue lines for ¢ = (0s, 0.3s, 0.6s). The original target [0* ¢*] (green
star) is only attainable at one specific time (t ~ 0.2s). At all other times,
there is a distinct state (blue markers) within the reachable set that minimizes
the state error. Targeting these states in series produces a trajectory (green
line) of lowest-cost feasible states. The re-parameterized problem (explicit
dependence on [¢ ¢] removed) is controllable, and LQR w.r.t the moving
references BT(t) produces the optimal red trajectory.

28757 sliding stiction , 2
p
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= cmnded transition|
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Fig. 5. Vertical and horizontal GRFs during the first stance phase. The
commanded GRFs from the stance controller (solid green) differ slightly
from the SMM forces (dashed blue) due to the change in stiffness for
energy regulation and to the feedback torques for correcting the trunk and
swing leg orientations and velocities. The simulated forces (dashed black) do
not exactly match the commanded forces because the assumptions used for
deriving the controller differ from the simulated dynamics. At the beginning
of stance, the contact is not stationary, and the transition controller (solid
red) accelerates the foot while gradually matching the vertical loading of
the SMM model. The controller’s switching to stance control (section III-G)
does not exactly match the simulation’s transition between kinetic friction
(shaded pink) and stiction (shaded gray), but this difference does not result
in instability.

J= /oo(xr —x)TQu(xr — x1) + (u — uh)TR(u — ul) +9(H, t, x0)dt
0

Ir

where g(H,t,x0) is the inevitable error that accrues as a
result of the fixed angular momentum. With no dependence
on u or x,, we drop g from the objective function and solve
LQR for the matrices (A,, B,, Q,,R) to find the optimal
control u = uf —K(x, —x[) that minimizes 7,, the part of
that does not grow unbounded. (The algebra for solving Q,.,
x!, and u' is omitted here for brevity.) The resulting control
uses a linear gain matrix K to track a compensated reference
x[(t) that is optimal with respect to the original target state
trajectory x*, subject to the constant angular momentum. As
an example, Fig. 4 visualizes the resulting tracking behavior
for a simpler, two-segment system ([0 ¢]).

D. Stance

The control goals in stance consist of tracking SMM
ground reaction forces GRF™, maintaining trunk pitch 6%,
stabilizing system energy E*, and enforcing the average
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hip angle ¢*. Because energy regulation and producing
energetically conservative SMM behavior compete with each
other as control goals, we use a cascaded control design. An
outer loop regulates system energy by modulating the virtual
spring stiffness, and an inner loop uses inverse dynamics
control [30] to generate leg forces that are similar to the
SMM while stabilizing pitch and average hip angle.

Outer loop - energy regulation: The stance dynamics
of the SMM are characterized by ground reaction forces
GRF* = kgAll,/|1,| where k is the virtual spring stiffness
and 1, is the virtual leg pointing from the foot to the COM.
We alter this target force profile to regulate the translational
system energy FEyans = (4% 4+ 9?) + mgy, which we
estimate from the robot configuration at lift-off. Based on
the error AE = FEy,s — E*, the target GRFs are modified
assuming a spring-leg behavior with the nonlinear stiffness
k = ko + ¢AEl,. The virtual spring force F), produces the
net work

tf . tf .
W :/ F, - l,dt = 7/ koAlydl, — cAE/ Al,l2dt.
to C Jto

The first term integrates to zero (linear spring component)
while the second term always opposes the error AFE. The
modification preserves a GRF target profile

o] = [ o] o

that is similar to the SMM, with the correction gain c
balancing between energy correction and profile similarity.

Inner loop - inverse dynamics and positional feedback:
Next we compute the actuator commands for producing
these target GRFs, and then add a feedback controller for
positional tracking. To match nominal values of F, Iy, and
4, we re-arrange the full equations of motion (Eq. 6) as

7Mg><1i| ?z _ { .h6><1 i| ®)
7J(2)><1 9 (Jél)2><1

where vector z = [1; 72 F1, & § %1 42 ], vectors M° and
Je° select the 3rd column (corresponding to # in q) of M and
J, leaving M’ and J' as the remaining 5 columns from each.
The matrix P is invertible, allowing us to directly solve for
the actuation and resulting accelerations in z for a specified
target [E, F), ]. In line with inverse dynamics control [30],
we substitute the virtual spring forces [ F; ., F; 0] from
Eq. 7 for [F,, F,, 6] in Eq. 8 and extract the first 3 elements
of z to find the feed-forward actuation |71 g, 7o, F1 g
that produces the nominal behavior. Finally, we apply 7; =
Tiff + Ti,;p With the feedback torques

[—sm M/’M} - [(JT)M

O2x3  Jous 0252
4

To = Kpg(2m — 1 — 72) — Kag(1 + 2),

T = —Tam + Kpo (0" — 0) — Kag(0),
to drive the average hip angle ¢ and the trunk angle 6
to stationary references m and 6* with second order error
dynamics. Leg force is not used in the feedback, so we
directly apply Fi = F g. These actuator outputs nominally
generate the green GRFs in the stiction phase of stance in
Fig. 5.

E. Sliding

The constraint &, = 0 is not always a good assumption.
In particular, upon touchdown, the relative foot speed is
largely determined by the tracking of the landing policy
a*(t) and is entrenched in the hip rotating with inertia
I,,, but it generally does not exactly oppose the center
of mass speed z. The previous stance control is not ideal
for this transition phase because the inverse dynamics in
Eq. 8 assumes F, maintains Zfoy = Ffoor = 0, firmly
opposing applied actuation. Even with a rough estimate
for the coefficient 1 of sliding friction, |Fy| = pF, is a
more appropriate assumption. For the running conditions we
simulate, we safely replace the absolute value with a negative
sign.

This transition phase does not exist in the abstract SMM
dynamics that we wish to embed. Furthermore, the orienta-
tion of the GRF vector is governed by p which can be hard
to estimate, allowing the controller very limited authority for
regulating momentum or joint configuration. Therefore, the
goal during this transient phase is to quickly and smoothly
shift to the subsequent stance phase where Ty = 0.

Thus, during sliding, we apply maximum torque 7; while
mimicking the nominal stance behavior. Equations 7 and
8 of the stance controller yield the vertical reaction force
Fv*’y and leg acceleration Znom (last element of z) for the
target spring-like behavior. Reproducing fs*lide = Thom during
the transition largely preserves the virtual leg geometry of
the SMM, and scaling the target vertical force F 4. =
max(0, &, /i,)?F;,, based on the relative motion of the
foot avoids prematurely loading the leg. The scaling term
compares the relative velocity between the COM and the
foot z,- to the estimated apex speed x, (estimated at the end
of the previous stance phase).

The equations of motion (Eq. 3) combined with the sliding
friction assumption and a vertically constrained point of
contact yields the system of equations

M x 6 Jhexa Sexs| |71 ()62 F
Jyaxe| G+ |(Jyd)ix1| = |Oixs T2 | + | Oixe [FI] .
Oi1x6 O1x1 O1x3| [F1 [1 w v
Finally, to solve for the actuation to produce the target

behavior, we re-arrange the system of equations as

_Séi><2 Méxs _(Jz)ﬁxl

O1x2  Jy x5 O1x1 W=

O1x2 O1x5 -1

Sgx1 (Jg)ﬁxl —Mg, T1 = Tmax hexa
O01x1 O1x1 —Jg 1x1 Fy_.zl_f_‘y*ysllde — | (Jy@)1x1
01x1 iz 01x1 U= lige O1x1

where the first matrix is invertible and the first two elements
of w=[r F1, & § 0 %1 42, Fy] give the remaining actuator
commands. Similar to Eq. 8, M° and J; select the 2nd
column (for ¢ in q) of M and J, while vector S° selects
the 1st column of S (for 71), respectively leaving 5 columns
in M" and J;and 2 columns in S’. These actuator outputs
nominally generate the red GRFs in the sliding phase of
stance in Figure 5.
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FE. Foot ground clearance

Omitting the foot mass removes the length of the swing
leg from the equations of motion (Egs. 3 and 5). During
swing, the leg force is computed using a PD feedback loop
that tracks a target leg length. For the trailing leg, a target
length is commanded such that the foot height scales (50%)
with the estimated COM height. After apex, the leading leg
begins to track the nominal landing length. This change of
goals scales linearly with the landing angle error |yF — v1].

G. Switching between modes

Assumed contact sensors in the foot trigger the controller
to switch from flight to sliding transition. The control mode
then changes to stance when two conditions are met: the rela-
tive COM velocity &, matches the estimated apex velocity &,
within 10%, and modeling the stance controller’s commands
using the slipping dynamics produces an acceleration &, that
reduces the estimated speed difference. This prevents the
stance controller from prolonging slipping. Note that explicit
detection of the transition between actual sliding and stiction
is not required by the control. Finally, the control switches
back to flight when the distance [, exceeds the virtual rest
length of the SMM.

IV. SIMULATION RESULTS

We test the performance of the derived control on the
simulated system in Section II-B without the assumptions
made in Section III-A for deriving the control. Other distur-
bances are introduced through rough terrain, sensor noise,
delays, and mis-modeled parameters. The controller robustly
stabilizes the gait ([y,,d,]) to the target [1.05m, 5m/s] and
while stabilizing the trunk orientation 6 to a reference lean
of 0* = 10°, despite these differences and disturbances
(Fig. 6 shows the simulated robot running over unobserved
rough terrain). Tracking the tasks defined at the beginning of
section III successfully achieves the deadbeat gait stability
derived from the abstract SMM on the simulated articulated
robot.

A. Performance on flat ground

On flat ground, the simulated robot stabilizes an initial
trunk perturbation of 10° in about two steps. Figs. 7A,B,C
show the performance with respect to the original per-
formance objective of tracking the gait parameterized by
apex heights and speeds [y,,,], while holding the trunk
at 0*. The gait behavior is achieved through matching the
landing condition a*(t) (dashed green in Fig. 7D) in flight
(unshaded) while producing SMM-consistent GRFs (Fig.5)
during stance (shaded pink and gray). The discontinuities in
a (black in Fig. 7D) come from switching the definition of
the landing leg. In flight, the controller computes and tracks
adjusted target angles [#, '] (dashed green in Figs. 7C.E)
that are not necessarily [6* = 10°, ¢* = 180°] but are
consistent with the fixed angular momentum H (Fig. 7F).
In addition to regulating energy, the stance control drives H
back to 0 through small changes in the GRF profile when the
foot is stationary (shaded gray). When the foot is slipping
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Fig. 7.  First 2 seconds of simulated running on flat terrain. White
background for flight, pink for transition, and gray for stance. Target values
in dashed green and only shown in the phases in which the states are actively
controlled. See section IV-A for detailed description.

(shaded red), the motors saturate (Fig. 7G) to oppose the
motion of the foot.

The resulting apex heights (light blue circles in Fig. 7A)
and horizontal speeds (Fig. 7B) match the desired values with
respective steady state errors of 1.8cm and 0.8cm/s. These
errors are comparable to the errors in a pure SMM simulation
on flat terrain (-1.1cm, 2.3cm/s) induced by approximating
a(t) with the same polynomial used for the articulated robot
controller.

B. Robustness to unobserved rough terrain

On rough terrain with random steps every 3m that have
height changes up to +25cm, the robot model does not fall
and performs similarly to the pure SMM model (Figs. 6 and
8).

By design, the SMM leg placement policy targets an apex
“bounce height” (blue circles in Figs. 7A and 8) measured
with respect to the ground level at the previous stance
phase, as opposed to the absolute apex height within the
world frame (black lines). The terrain variation changes the
effective system energy [23], which introduces small errors
(s.d. 1.8cm and 18.6cm/s) in the SMM bounce height and
speed tracking. Using joint sensor data at the end of stance,
the robot model can only estimate the relative energy with
respect to the ground at stance. This quantity includes the
energy introduced by variations in the terrain as well as
energy dissipation due to robot motion. To compare the
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Fig. 6. First 4 seconds of simulation over rough terrain.
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Fig. 8. Performance of the pure SMM and of two versions of the robot model (see Section IV-B for details) on rough terrain with maximum step changes
of 25cm for ground that is flat on average (top row) and sloped upward on average (bottom row). In all cases, the leg placement targets a bounce height
of 1.05cm and a horizontal speed of 5m/s. The difference between the global heights (black lines) at apex and the bounce heights (light blue circles) is
the terrain height at stance measured in the global frame. The performance of the full robot is comparable to that of the underlying model.

tracking performance to that of the SMM, we implement
two versions of energy regulation in the robot model. The
first version only accounts for the dissipative losses (energy
conservation control) by using truth values for ysor. Albeit
unrealistic for actual robots, it enables a direct performance
comparison to the SMM (first two columns in Fig. 8). The
second version regulates the total energy difference estimated
from joint sensor data (right column, energy regulation
control) by assuming Yot = 0. The first version has slightly
better bounce height and speed tracking (s.d. 5.3cm and
20.2cm/s) than the second one (s.d. 10.4cm and 25.5cm/s),
which works harder to regulate the small energetic deviations
between steps instead of maintaining the prescribed gait.

Because it considers the most current ground height, the
more realistic energy regulation control generalizes to sloped
terrain without further modification. With a persistent 1%
slope added to the rough terrain, the gait tracking of this
controller is unaffected (s.d. 10.2cm and 26.4cm/s), while
the pure SMM model and the robot model with energy con-
servation control eventually fail by losing forward velocity
as the slope consumes effective locomotive energy.

The tracking of the trunk angle, the landing angle, average
hip angle, and angular momentum in all instances of the
robot model are very similar to the flat ground simulation
shown in Fig. 7 and are omitted here.

C. Error sensitivity

Finally, we examine the sensitivity of the controller to
sensor noise, delays, and modeling errors (using the energy
conservation control version). With uniform noise (sampled
every 3ms) distributed between +3°, +3°/s, £3cm, and
+3cm/s for all state sensors, the model stably runs over

the same rough terrain with a wider spread of apex heights
and speeds (s.d. 10.1cm and 26.1cm/s). In addition, the
controller tolerates a 10ms delay over rough terrain, although
it runs significantly lower and faster (average errors of -
7.2cm and +71.9cm/s). This overshoot may be caused by
the delay of force generation, which reduces braking in the
first half of stance and increases acceleration in the second
half at lower speeds. Computing the inverse dynamics with
inertias or a coefficient of friction with +50% errors has very
little effect on orientation tracking, momentum regulation,
and gait tracking over rough terrain. Miscalculated mass or
spring stiffness have larger effects as they produce errors in
foot placement policy. For instance, £20% errors in mass
or stiffness cause average tracking errors of about [+14cm,
F17cm/s] and [F6cm, £5cm/s], respectively. Despite these
errors, the system keeps running on both flat and rough
terrain.

V. CONCLUSION

In this work, we design a control for a higher order robot
model by embedding the deadbeat stabilized spring mass
system. Specifically, we incorporate a deadbeat-derived leg
placement policy that renders the running robot robust to very
rough, unobserved terrain. To the best of our knowledge,
this level of stability has not been demonstrated either on
hardware or in simulation. Furthermore, the tolerance shown
by the simulated robot to a wide array of disturbances and
uncertainties strongly suggests that building the stability of
the SMM into the underlying reference behavior can be a
practical and powerful technique for controlling real running
systems. Our current research addresses this step. We are
working on transferring the control developed here to a
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Fig. 9.

CMU’s copy of ATRIAS [28], currently mounted on a boom to

validate planar running using the deadbeat leg placement policy from the
SMM.

specific bipedal robot (Fig. 9). In addition, we are extending
this control framework to 3D systems. As an initial result, we
have extended the leg placement policy to produce deadbeat
running with steering over unobserved rough terrain [23].
Our current focus in this area is to map this behavior onto
the 3D dynamics of the higher order robot.
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