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THE SPRING-MASS MODEL FOR RUNNING AND
HOPPING

R. BLICKHAN*
Concord Field Station, Harvard University, Bedford, MA 01730, U.S.A.

Abstract—A simple spring-mass model consisting of a massless spring attached to a point mass describes
the interdependency of mechanical parameters characterizing running and hopping of humans as a function
of speed. The bouncing mechanism itself results in a confinement of the free parameter space where
solutions can be found. In particular, bouncing frequency and vertical displacement are closely related.
Only a few parameters, such as the vector of the specific landing velocity and the specific leg length, are
sufficient to determine the point of operation of the system. There are more physiological constraints than
independent parameters. As constraints limit the parameter space where hopping is possible, they must be
tuned to each other in order to allow for hopping at all. Within the range of physiologically possible
hopping frequencies, a human hopper selects a frequency where the largest amount of energy can be
delivered and still be stored elastically. During running and hopping animals use flat angles of the landing
velocity resulting in maximum contact length. In this situation ground reaction force is proportional to
specific contact time and total displacement is proportional to the square of the step duration. Contact time
and hopping frequency are not simply determined by the natural frequency of the spring--mass system, but
are influenced largely by the vector of the landing velocity. Differences in the aerial phase or in the angle of
the landing velocity result in the different kinematic and dynamic patterns observed during running and
hopping. Despite these differences, the model predicts the mass specific energy fluctuations of the center of
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mass per distance to be similar for runners and hoppers and similar to empirical data obtained for animals

of various size.

NOMENCLATURE

m mass
g gravitational acceleration
k stiffness
i spring length
w natural frequency of the spring-mass system
x horizontal deflection
y vertical deflection
Va hopping height
¥e contact displacement
Ya vertical landing or take off velocity
t, aerial time
t contact time

period of a bounce
S frequency of a bounce
F force
Fpear (vertical) peak force
F,, peak horizontal and vertical forces
o angle of attack of the spring
B angle of the landing (take off) velocity
Al,, changesin I, , )
suffix s specific
X, y horizontal and vertical accelerations

INTRODUCTION

Animals use a bouncing gait during rapid terrestrial
locomotion. This was established from forceplate
measurements for a large number of animals
(Cavagna et al., 1977, Heglund et al., 1982). Bouncing
is a measure to minimize energy expenditure similar
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to the way the interchange between potential gravita-
tional and kinetic energy saves energy during siow
locomotion. Some animals can store up to 70% of the
kinetic energy delivered during landing in elastic tis-
sues which can then be used for take off (Alexander
and Vernon, 1975).

Several recent findings suggest that the analogy
of hopping to a simple spring-mass system may be
appropriate. During hopping or galloping animals
prefer a particular stride frequency (Heglund and
Taylor, 1988). Experiments on human hopping have
shown that it is indeed more expensive to drive the
system at a frequency below this preferred frequency
(Perez, personal communication) as would be ex-
pected for a spring-mass system driven at frequencies
different from the resonant frequency. However, if the
whole body stiffness is variable then the natural fre-
quency can be changed and, therefore, other factors
might determine preferred frequency.

The animal's muscle skeletal system can be consid-
ered mcchanically as an actively-driven, nonlinear,
multicomponent spring-mass system. Here it is as-
sumed that it behaves simply like a point mass boun-
cing passively on a massless spring without viscous
losses. This is the simplest model possible for any
bouncing system. The advantage of such a simplifying
approach is its transparency with respect to the influ-
ence of physical and morphological conditions. The
model offers important insights and describes the
interdependency of the parameters characterizing
running and hopping.

Starting with the simplest case, hopping in place,
the interdependency of the aerial and contact phase is
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described. The subdivision between these two phases,
or the hopping pattern, can be characterized by sev-
eral variables, including the specific vertical force.
From three given parameters, such as body mass,
hopping frequency, and contact time, all remaining
parameters characterizing human hopping in place
can be estimated. Physiological constraints result in a
narrow frequency region where hopping is possible.
The preferred hopping frequency is the most econo-
mical one.

With the introduction of forward speed the state of
the spring-mass system is characterized by five inde-
pendent variables and the length of the spring and
centrifugal forces become relevant. The model pre-
dicts that contact length becomes maximal for the flat
landing angles chosen by animals during running and
hopping. For landing angles between 5 and 25 degrees
the peak vertical ground reaction force and the total
vertical displacement can be predicted from contact
time and step frequency. The vertical displacements
during running are lower than those during hopping,
ie. running results in a smoother ride. Nevertheless,
the model predicts that the sum of the energy fluctu-
ations over a given distance is similar for runners and
for hoppers, in agreement with measurements carried
out on animals of various size.

HOPPING AT ZERO SPEED

The seemingly artificial situation of hopping in
place, ie. at zero speed, can be taken as a model for
bouncing gaits in animals (Farley et al., 1985). Even
during hopping in place a man prefers the same
hopping frequency as used by a kangaroo of similar
size and the same frequency that an antelope of similar
bodymass prefers as stride frequency during galloping.

The simplest hopping model possible, a one-dimen-
stonal spring-mass system (Fig. 1), correctly predicts
the interdependence and magnitude of all major
mechanical parameters.

Description of the spring—mass model

The mathematics of a simple spring-mass system
defines the relevant variables and points to the as-
sumptions involved.

Assuming a linear spring (i.e. deflection propor-
tional to applied force) the following equation des-
cribes the motion of the mass during ground contact:

my + ky = mg, (1)

where m is body mass, y is vertical deflection, k is
stiffness and g is gravitational acceleration.

The general solution of this equation consists of a
linear combination of the solution of the homo-
geneous differential equation and a special solution of
the inhomogeneous equation:

y=asinwt + bcoswt + g/w?, (2)

with w? = k/m; w is natural frequency.
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Fig. 1. Spring-mass modecl, a point mass attached to a mass-
less spring. The hopping period (T) is subdivided into two
phases, a contact phase (z.) and an aerial phase (1,). A
sinusoidal displacement during contact time is followed by a
parabolic flight phase. Due to the linear stiffness of the spring
the time course of the force is also sinusoidal with the weight
of the system as equilibrium value. The length of the flight
phase determines the landing or take off velocity (y,). The
maximum velocity is reached after landing when the force
equals body weight (¢ : contact time).

The constants a and b are determined by boundary
conditions. A necessary condition for hopping is that
the spring force (F oc y) exerted at the moment of
touch-down (t=0) is O: :

y(t=0)=0, thus b= —g/w?

The remaining factor (a) can be related to the landing
velocity (y,):

yt=0)=y, thus a=y,/o.
The resulting solution is:
y = yJwsinwt — g/w?coswt + g/w? 3)

or

Y = Va(m/k)'*sinwt — gm/kcoswt + gm/k. (3a)

From this, the force during stance (F) can be calcu-
lated as:

F = y,(km)'*sinwt — gmcoswt + gm. (3b)

At midstance (¢t = t./2;1, is contact time), the spring
is deflected to its maximum and the velocity of the.
center of mass is zero (y(t =t./2) = O

Yacos(wt./2) + g/wsin(wt,/2) = 0,

thus tan(wt./2) = —y,w/g. “4)
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This nonlinear equation relates take off or landing
velocity, contact time, and the natural frequency of
the spring-mass system. Selection of values for two of
these three parameters uniquely determines the third
onc. Respective numbers can be calculated in a nu-
merical, iterative approximation.

During the aerial phase the equation of motion is
simply:

my =mg, thus y, =gt,/2, (5)

where ¢, is aerial time.

The contact phase can be characterized by the
landing velocity (v,) and the natural frequency of the
oscillator (w), whilst the aertal phase depends only on
the landing velocity (y,). Thus the aerial phase de-
pends unambiguously on the stance phase or vice
versa. The stride period (T) and the hopping frequency
(f= 1/T) are determined by:

T=t +t,. (6)

Of all mechanical variables describing steady state
hopping at zero speed (f; T, te, ta, ¥, Yoo Var Fpeaks k» @,
y,. €tc.), only three are independent. The performance
of the spring-mass system depends on the magnitude
of these selected parameters.

The hopping pattern

Despite very different frequencies and amplitudes,
hopping looks similar for a small kangaroo rat and a
large red kangaroo: hops have similar “patterns”. This
similarity in pattern seems to be characterized by a
certain ratio of contact time (¢.) and aerial time (t,),
by a certain ratio of the displacements during ground
contact (y.) and during the aerial phase (y,), or by a
certain time course of the ground reaction force
(F(t)). It is worthwhile to describe this pattern and to
understand its variation because the pattern typical of
animals differs much from a bouncing steel ball gen-
erally taken as the typical example of a system boun-
cing elastically.

Dividing force by body weight results in a dimen-
sionless formulation of equation (3b):

F(t) =y, sinwt + 1 — coswt (3c)
where F, = F/mg represents the specific ground reac-
tion force which is equal to the specific displacement
during ground contact (y., = y.w?/g), and y,w/g the
specific landing velocity, which is proportional to the
specific aerial time (t,, =t,0 = 2y,,), and propor-
tional to the square root of the aerial displacement
(Vye = v, w?/g = y1/2). From equation (4) we know
that a given specific landing velocity corresponds to a
certain specific contact time (t. = t.w/2). Thus, the
specific landing velocity also determines the ratio of
contact and aerial time. Rewriting equation (3) using
the specific displacements shows that the specific
landing velocity also determines the ratio of the am-
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plitudes. All dimensionless ratios can be used for
characterization of the hopping pattern.

The specific landing velocity y,, or its equivalents
determine the amplitude and the time course of the
specific ground reaction force, i.e. the partitioning of
the sine or cosine terms. For small specific aerial times
the sine term vanishes. The mass oscillates around the
resting position determined by the spring stiffness and
the animal’s weight. The contact time approaches the
period of the oscillator. For large specific aerial times
the sine term dominates. The time course of the
ground reaction force approaches a sine half-wave
whose amplitude greatly exceeds the animal’s weight.
The contact time becomes small compared to the time
the animal spends in the air. Hopping then consists of
a sequence of parabolic flight phases and the system
bounces very much like a steel ball on a hard surface.

The influence of constraints

Due to anatomical and physiological properties of
their locomotory system animals can use only a very
limited region of the parameter space theoretically
possible. For example, it is impossible for a human
hopper to hop with a frequency higher than 10 Hz, or
to hop to a height of 3m, or to hop like a steel ball.

Including body mass three parameters must be
given in order to set the point of operation of a
spring—mass system hopping in place. However, due
to the interdepcndency of all parameters it is not
sufficient to consider constraints in only three para-
meters. The constraints of one parameter should not
conflict with constraints of another. In the case of
conflicting constraints hopping would become
physically impossible.

How do physiological constraints cause a narrow
range of possible hopping frequencies (Fig. 2)?

Force (F ;). The isometric stress developed by
vertebrate muscles is about 250 kPa (Close, 1972).
From this a maximum ground reaction force of ca
3 kN can be estimated for an average human hopper
(70 kg). This limit in force implies that the contact
time cannot become very small compared to the dura-
tion of the top. In order to keep the forces below a
certain limit at low frequencies spring stiffness must be
low. In contrast, high stiffnesses are required to be
able to generate high forces at high frequencies.

Contact displacement (y.). The maximum displace-
ment during ground contact cannot exceed the leg
length which is about 1 m for a human hopper. If
ground reaction force should be close to maximum
this length shrinks to about 0.5 m due to the force-
length curve of the muscles and the increase of the
moment arm with knee flection. The assumption that
during hopping muscles work largely isometrically
and the deflection is taken up by lengthening of the
tendons would reduce this number further.

For low frequencies limited contact displacements
invoke high whole body stiffnesses and high ground
reaction forces. The limits in force and displacement
result in a lower boundary for the hopping frequency.
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Fig. 2. Influence of constraints on a vertically bouncing spring-mass system (mass: 64 kg). Without any
restriction the bouncing mechanism itself imposes limits on most parameters (vertical hatching: t, = 0 or
ta=T=F, /mg=00,p. =0,k =00,y,=g/(8f?),y =y, t./T = 0,0, 0, = /2.1 horizontal hatching:
te=T t,=0=>F/mg =2,y =g/Q2rf?), k =min?[?, v, ., = g/(2n /), unhatched: parameter space
where bouncing is possible). Stippled regions: areas which are excluded after introducing constraints (from
left column to right): specific force F/mg < 3; contact displacement y, < 0.06 m; contact time t.>0.15s;
spring stiffness k < 70 kN m™'; aerial displacement y, > 0.1 m; total displacement y < 0.15m. (T =,
Uemax: Maximum shortening velocity of the spring.)

If the feedback loop controlling muscle forces re-
quires a particular minimum displacement, then this
displacement limits the maximum hopping frequency.

Stiffness (k). Maximum energy can be delivered for
high forces and high displacements. The values given
above for the maximum forces and displacements
result in a corresponding stiffness value of about
6 kNm™'. In terms of energy storage less force, i.c.
less muscle tissue, is necessary to store the same
amount of energy in a more compliant system. It is
thus not economical to build very stifl systems.

In a mammalian leg at least one limb segment is
oriented obliquely to the direction of the load. As a
result, attainable stiffness values are largely deter-
mined by the properties of muscles, tendons and
ligaments. High stiffness values can be attained by
locking the more compliant joint. If we assume that a
human hopper hops with his knees locked then the

properties of the achilles tendon should determine
maximum stiffness. A rough estimation (Young’s
modulus: 1.2 GNm™?; tendon length: ca 3 m; tendon
cross-sectional area: ca 50 mm?) yields a tendon stiff-
ness of ca 200 kN m ™ '. High stiffness of a joint can be
attained by keeping it as straight as possible during
landing. Assuming a lever arm ratio of 2: 1 the stiffness
of one leg could reach 100 kN m ™.

The stiffness along with the body mass determines
the natural frequency of the oscillator and it limits the
range of possible contact times from one half of the
natural period of the spring-mass system for low
frequencies to the full natural period for the highest
frequencies.

Contact time (t.). Il the joints are not locked all
changes of the ground reaction forces are accompan-
ied by equivalent changes in muscle force. The intrin-
sic time constants of the muscles involved would



The spring-mass model for running and hopping

introduce upper and lower boundaries for contact
times. If an animal uses prestretch to enhance the
force output the stretching has to occur rapidly com-
pared to relaxation processes triggered simulta-
neously. The shortest contact time is determined by
the fastest switching time of all muscles involved.
Contact times measured for humans hopping between
2 and 6 Hz range from 0.1 to 0.3 s (Farley et al., 1985).

For a limited contact time lower frequencies can
only be reached by increasing aerial time, ie. the
landing velocity. This in turn requires high forces.
Considering the fact that short contact times require
high intrinsic muscle velocities and are thus meta-
bolically expensive, these contact times should be
adapted to the largest ground reaction forces which
can be exerted by the leg. Moreover, the velocity of
the center of mass increases with decreasing hopping
frequency. In other words it is not necessary to de-
crease contact time if the forces are too low to be able
to generate the momentum for take off during that
time. The highest hopping frequency is attained when
the hopping frequency equals the inverse of the
shortest contact time possible. A constraint in the
contact time imposes a limit to the stiffness values
and vice versa.

Aerial displacement (y,). Terrestrial habitats pos-
sess a certain surface roughness which sets a minimum
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hopping height. A minimum aerial time necessary for
the recovery stroke would also result in a lower limit
for the hopping height. The maximum height could be
selected freely. It is, however, obvious that within a
limited time span high jumps can only be provided by
sufficient high ground reaction forces and stiffnesses.

Total displacement (y). In experiments on humans
the total displacement during each hop can be con-
trolled more casily than any other parameter dis-
cussed so far (Farley et al., 1985). As the spring-mass
model demonstrates, the condition of a constant total
displacement results in an extremely narrow range of
possible hopping frequencies. The hopping frequency
could thus be approximately predicted from the total
displacement.

The hopping frequency. Combining the rough con-
straints results in the frequency (1-6 Hz) and pattern
(t./T > 0.3) region observed for human hoppers
(Fig. 3). Certainly, the constraints are tuned to each
other. They are not conflicting, i.e. hopping is still
possible, and they overlap to a large degree.

Human hopping at maximum height:
between model and experiment

comparison

Hopping in place at maximum height over a wide
range of hopping frequencies (1-6 hopss~!) provides
(a) the range of possible hopping frequencies for a
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Fig. 3. Range (unshaded) of hopping frequencies and hopping patterns (ordinate), measured by ¢./T,

possible after introducing physiologically reasonable constraints (shaded: parameter space forbidden by the

constraint). The constraints are introduced step by step, (a) F; (b) y.; (c) t.; (d) k; (€) y,; (f) y, with the new
forbidden regions lined out heavily.
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human hopper, (b) the maximum output of the system
at these frequencies (Farley et al., 1985), and (c) a
direct comparison between model and experiment
(Blickhan et al., 1986).

Humans can set hopping frequency to a metro-
nome. For an individual hopper the body mass is
given leaving one parameter free. This is set according
to individual abilities under the condition of maxi-
mum hopping height. Forceplate measurements allow
for the calculation of the force, contact time, and
hopping frequency and can be used to calculate velo-
cities and displacements (Cavagna et al., 1976). Under
the condition of maximum height the contact time
remains almost constant in the frequency range from
2 to 6 hopss™', where ca 2 Hz is the preferred fre-
quency (Fig. 4; Farley et al., 1985). Based on this,
contact time, peak ground reaction force, peak con-
tact displcement and whole body stiffness are calcu-
lated using the spring-mass model. The deviation of
the predicted values from the measured ones is less
than 20%.

The predictions for hopping in place seem not to be
sensitive to minor deviations from the assumptions
used in the calculations and they do not depend on
finding a linear elastic spring in the musculo-skeletal
system. It is sufficient that the control of the musculo-
skeletal system results in a nearly spring-like behavior
during ground contact.

Interpretation of the data on human hopping

The data show that during hopping at maximum
height stifiness increases with the hopping frequency.
This increase of stiffness (k) is, however, not sufficient
to maintain the same pattern: the ratios of aerial time
to contact time as well as the peak ground reaction
forces are changing. A constant pattern would require
an increase of the stiffness with the square of the
hopping frequency. In fact, from the constant contact
time it can be deduced that the stiffness can vary up to
a factor of four over the whole frequency range.

The maximum stiffness attainable, ca 90 kN m ™!
for an untrained human hopper, sets the maximum
hopping frequency at about 6 hopss™!. This stiffness
value is about half the value assessed from anthro-
pomorphic data assuming only rotation of the ankle
joint. In a multi-joint system stiffness can be increased
by locking one joint. A closer look at the kinematics of
the human leg (Farley et al.,, 1985) demonstrates that
the measured 90 kN m ™! for whole body stiffness may
well be an overestimation if applied to the ankle joint.
The knee is not simply locked but moves ca 180° out
of phase. It acts as if it would drive the ankle joint
actively inducing higher deflections than measured for
the center of mass. In this case, both the leg mass and
the stiffness of the ankle joint determine the contact
time. Thus, the maximum possible ankle stiffness may
well be half of the measured whole body stiffness.
The change in stiffness with increasing frequencies is
largely induced by leg kinematics and not by material
properties.
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Fig. 4. Hopping in place at maximum height: comparison of
measurements and predictions. The contact time is fairly
constant (c) as shown by the fitted line. (a) Peak forces (closed
circles) and peak displacements (total displacement: circle
with slash; hopping height: circles half filled) are slightly
larger than those predicted from the contact time using the
spring-mass model. These crrors cancel each other out in the
calculation of the whole body stiffness.

Below the preferred frequency of ca 2 Hz the force
pattern changes dramatically (Taylor, 1985). The oc-
currence of multiple peaks in the force tracings indi-
cate that a simple spring-mass model might be of very
limited value. Apparently the hopper avoids large
excursions of the center of mass by changing the force
pattern. Compared to a sinusoidal force pattern, a
more rectangular pattern allows application of the
same momentum with reduced peak displacement
and reduced force during ground contact.

Why is it impossible to use locking of the knee to
increase stiffness at low frequencies? Hopping with the
same stiffness at lower frequencies would demand
much higher displacements during ground contact
which in turn cannot be supplied by the stiffened leg:
the knee has to be flexed. Using the knee as a part of
the spring automatically reduces the spring’s stiffness,
but increases the range of possible deflections. The
lower stiffness value does not result in longer contact
times. The more compliant spring even stores a higher
amount of energy in the same time if loaded with a
higher momentum which is possible by hopping at a
lower frequency. Thus, the preferred frequency allows
for the development of the highest forces and the
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delivery and storage of large amounts of mechanical
energy.

If we are not interested in maximum height, hopp-
ing frequencies from ca 1-6 Hz can be chosen. Why
then should a human hopper still have an invariant
frequency? The high stiffnesses during hopping at
high frequencies demand high muscle forces without
gaining the benefit of high jumps. Even for the limit
of an infinitely high stiffness the jumping height can
only reach ca 0.035m for a hopping frequency of
6 hops s~ '. Hopping using the preferred frequency
allows a much higher jump. If maximum height is not
required stiffness can be reduced allowing for longer
contact times. This in turn reduces muscle recruitment
and lowers switching and loading rates. As long as
elastic storage is possible, i.e. the deflections are smali
enough and the loading rates are not too slow, it is
more economical to hop at a low frequency.

HOPPING FORWARD

For hopping in place theoretical predictions and
empirical data are in agreement. Next, planar move-
ment, i.e. bouncing at a given forward speed, is con-
sidered. In the one-dimensional model {ormulated
above the geometric dimensions of the system merely
limit possible excursions during ground contact.
However, hopping at nonzero speed introduces leg
length as an additional parameter in the governing
differential cquations of the spring-mass system. Con-
tact time not only depends on the spring stiffness and
the vertical landing velocity, but also on the animal's
speed and leg length. Despite the enlarged parameter
space, a simple spring—mass model is still powerful in
describing the performance of running or hopping
animals. In particular, it will be demonstrated how the
mechanical properties of a simple spring--mass system
working under physiological constraints correctly
predicts the mass specific sum of the fluctuations of
the energy of the center of mass at a given distance.
This parameter was found to be the same for a large
variety of animals (Heglund et al., 1982; Blickhan and
Full, 1987).

The spring—mass system bouncing forward

During ground contact the planar movement of a
point-like mass attached to a massless spring (Fig. 5a)
can be described by a system of two nonlinear diff-
erential equations:

£=xo?(/(x* +yH)'"2 —1)
=y (/x> +y)'r —-1) - g

(7a)
(7b)

where x = horizontal deflection, y = vertical deflec-

tion, g = gravitational acceleration, w = (k/m)!2 =
natural frequency of a spring-mass system, k =
spring stiffness, m = mass, ! =length of the spring
= (x5 +y§)"2

The inclusion of the horizontal component results
in the appearance of the spring length (/) in these
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Fig. 5. The planar model. Here force, velocity, and displace-
ment become vector quantities. (a) The compression of the
spring (Al) can be subdivided in a horizontal (Ax) and
vertical (Ay) component. (b) Of all simulated hops only
stationary movements were selected, i.c. with symmetrical
take off and landing velocities (v). I, length of the spring; v,
absolute value of the landing velocity; §, angle of the landing
velocity; «, angle of attack of the spring; x,, contact length;
x,, hopping distance; y.., compression of the spring at
midstance, not equal to the vertical displacement during
ground contact y,; F, ., peak vertical and horizontal force.

equations. For forward locomotion the length of the
spring becomes as important as the spring stiffness
and the landing velocity. The nonlinear coupling re-
sults from the fact that the forces, i.e. the accelerations,
are not related linearly to the actual movement of the
center of mass (x,y) but to the compression of the
spring (Al = (Ax? + Ay?)'/?; see Fig. 5a). Even for the
case in which the center of mass does not show any
vertical displacement and is only moving forward the
compression of the spring shows a vertical component
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(Ay) which exceeds the horizontal component (Ax).
The coupling between the horizontal and vertical
components implies that the fluctuations in the hori-
zontal and vertical components of the energy of the
center of mass (compare with Cavagna et al., 1977) do
not translate to similar fluctuations of the horizontal
and vertical work done on the spring.

The planar model has five independent parameters,
e.g. the mass (m), the spring length (1), spring stiffness
(k), the absolute value of the landing velocity (v), and
the angle of the landing velocity (8). The system of
equations was solved by using a fourth order Runge-
Kutta algorithm (500 steps, step precision = 0.00001)
on a PDP 11/23 laboratory computer. A cross-check
of the algorithm by integrating the calculated dis-
placements proved an agreement within 0.3% of the
calculated take off velocities. Five parameters were
given; one parameter, the angle of attack of the spring,
was determined iteratively by taking the deviation of
the take off velocity from the desired value as the
guiding measure.

Pattern of running or hopping at nonzero speed -

For hopping in place one parameter, e.g. the speci-

fic vertical landing velocity or the specific force, was
sufficient to characterize the pattern of a hop. During
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forward hopping the pattern also depends on the
animal’s leg length.

Again, this becomes more transparent in a dimen-
sionless form of equations (7a,b):

X = x(I/(x3 + y)'2 = 1) (8a)
Vo= yll/x2 + y2)2 — 1) — 1 (8b)

where  x, = xw?/g = specific displacement, %, =
xw/g = sp. velocity, X, = X/g = sp. acceleration and
ty = tw = sp. time.

Constants. Specific vertical landing velocity: y,, =
Yaw/g; specific spring length: [, = lw?/g.

The motion of the mass characterized by equations
(8a,b) can only be similar if the specific landing velo-
city and the specific spring length are the same. The
specific length (1) is the same if the body’s weight (mg)
compresses the spring by the same relative length
(Alweight/l):

ly = lw?/g = lk/mg = I/Al, 4.,

where k is the spring stiffness.

©

Interdependence of parameters

Even if we only consider animals of a certain size,
ie. if we keep mass and spring length constant, an
infinite variety of hopping patterns are still possible
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Fig. 6. Influence of constraints on planar hopping (m = 64 kg; | = 0.9 m). Column 1:

(k=70kNm-?;

v=6ms"') animals use in general flat angles (hatched) of the landing velocity (8). For such angles the

ground reaction force (F,) becomes low and the contact length is

at its maximum. For flat angles the

contact time becomes shorter than half the natural frequency of the spring-mass system and the hopping

frequency,

the inverse of the hop duration, increases steeply. Column 2: (k=70 kNm™!; f= 14°); with

increase of the landing velocity the ground reaction force increases. The stippled region marks the range of
walking. For the selected point of operation the hopping frequency increases from 1.6 to 3.4 hopss™!. The

possible change in velocity does not influence the ho

pping frequency as much as the angle of the landing

velocity (8). Column 3:(v = 6 ms™'; f = 14°): in the relevant stiffness region (k > 10 kN m™ 1) stiffness also
has a minor influence on hopping frequency, whereas when the ground reaction force increases, the contact

length and contact time are decreasing hyperbolically.
solutions were found in this region

The interrupted line represents an extrapolation; no
using the numerical simulations.
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by changing the vector of the landing velocity and the
spring stiffness. As for hopping in place, physiological
conditions limit the parameter space (Fig. 6). Here,
only some important new aspects will be discussed.

Contact time and hop frequency both strongly de-
pend on angle of the landing velocity to the horizontal
(B). For very flat landing angles the hopping fre-
quency increases due to short aerial times and short
contact times induced by centrifugal forccs. For very
steep landing angles step length becomes short and
the contact time and hop duration must decrease in
order to achieve higher speeds. For a certain speed a
maximum contact length was found for landing
angles from 5 to 25 degrees. With speed a long contact
length and large horizontal forces can only be main-
tained by a simultaneous increase in leg stiffness. This
results in lower contact times and higher ground
reaction forces.

"™ Running and hopping animals indeed use angles of
the landing velocity ranging from 5° to 25° (Blickhan,
1989). For such a restricted parameter space some

. barameters become closely related (Fig. 7).

(a) The total vertical displacement (y) and the dura-
tion (T) of the hop:

y~ L1T2. (10)

(b) As during hopping in place the specific vertical
force (F,/mg) and the ratio between contact time and
hop duration (¢./7T):

F,/mg =y w?/g~11T/t. (11

(c) The ratio between horizontal and vertical force
(F./F,) and the spring’s angle of attack (a):

F./F,~033tana. (12)

These relationships allow the calculation of gait
dynamics from kinematics or vice versa.
Human running or hopping ;

The planar spring-mass model describes well
human running and hopping (Fig. 8).

Running. For a human runner the step frequency
increases from ca 2.7 stepss ™ ' ataspeed of 3ms™! to
42 stepss™! at 9ms™ ! Such an increase in step
frequency is typical for all running and trotting ani-
mals (Heglund et al., 1974). The distance a runner
travels during ground contact, i.e. the contact length,
is for all runners about equal to their leg length and
varies little with the animal’s speed (Cavagna et al.,
1977). Here, only solutions that meet these constraints
are presented.

The stepping frequencies given for runners permit
angles of the landing velocity between 5° and 10°. This
produces a very smooth ride, i.c. small total vertical
excursions. The restriction of the contact length in-
duces an increase in spring stiffness with increasing
running speed from ca 10kNm~™" at 3ms™' to ca
30kNm™! at 9ms~!. These stiffness values are of
correct magnitude (McMahon et al., 1986) and result
in shorter contact times at higher running speeds. The
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Fig. 7. Restriction to flat landing angles (5° < f < 25°). The
stippled area marks the range where solutions were found.
The lines are drawn by eyeball through these points. (a) The
total vertical displacement (v) is proportional to T2. (b}
Specific force (F,/mg) and the inverse of /T are related
linearly. (c) The ratio of the horizontal and vertical forces
(F,/F,) is sinusoidally related to the angle of attack of the
spring and thus proportional to the contact length.

calculated contact times range from 0.1 to 0.3s (see
Cavagna et al., 1976). The peak vertical force increases
with running speed attaining ca 3.5kN at 9ms™ .
This is about half the maximum force measured dur-
ing bipedal hopping in place. A lower force and a
longer contact time makes slow running more
economical per unit time. The predicted ratio of the
horizontal and vertical force (0.15-0.3) is within values
measured for all animals (0.1-0.3; Cavagna et al,
1976). The predicted specific vertical landing velocity
ranges from 0.5 to 1.5. The model ‘runs’ with the same
pattern as a human runner (McMahon et al., 1986).
Most significantly, the model predicts the energetics
of the center of mass correctly (Cavagna et al., 1976).
The sum of all positive increments of the energy
fluctuations of the center of mass over a given dis-
tance, the ‘mechanical cost of transport’ amounts to ca
1.3Wkg ™ 'm™! (cf. Blickhan and Full, 1987). The
mechanics of the center of mass of an animal is the
result of physiological constraints imposed on a boun-
cing system.
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leg length (0.9 m), the other parameters can be calculated. [Selected regions—running: step frequency
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b

Hopping. Quadrupedal animals increase their
stride frequency during trotting until they attain the
galloping frequency which is nearly constant across
the entire speed range and is similar for animals of
comparable mass (Heglund and Taylor, 1988). A
human subject selects the same frequency for hopping
forward. In the following, this frequency, as well as the
ratio of horizontal to vertical force (0.1-0.3), is used to
set the point of operation of the spring-mass system
during simulation of human hopping,

The hopping frequency is similar to the maximum
stride frequency attained at maximum running speed.
However, for each stride during running there are two
steps or two bounces. Thus, the hopping frequency is
lower than the step frequency selected during running.
Recalling the coupling between vertical displacement
and frequency, then hopping results in a bumpier ride
than running, The power fluctuations of the center of
mass per stride do not differ much from running. They
seem to be lower at high speed, resulting in a slightly
lower cost of transport. All parameters including con-

tact time and ground reaction force remain within
physiologically reasonable boundaries.

CONCLUSION

Investigating the performance of a simple spring-
mass model has resulted in several general insights. A
simple model describes human running and hopping
remarkably well. Dimensionless parameters such as
the specific ground reaction force and specific landing
velocity are suitable to specify hopping patterns.
Physiological limits largely defined by muscle proper-
ties and skeletal dimensions result in a narrow fre-
quency band where hopping is possible. At the prefer-
red frequency high hops can be produced econom-
ically.

In forward or planar hopping the specific spring
length must be included as an additional parameter
determining the performance of the spring-mass sys-
tem. Not only does the stiffness of the spring and the
loading during landing impact determine the ground



reaction force, but also the centrifugal force contri-
butes due to rotation of the mass around the foothold.
Expecially for the low angles of landing velocity selec-
ted by average runners or hoppers (5-25°) the depend-
ency of hopping frequency on this angle is steep. The
advantage of selecting such a flat landing angle is a
maximum condact length with low contact forces.
Besides predicting useful relationships between vari-
ous parameters the model allows correct calculation
of the mechanical energetics of the center of mass
based on only a few kinematic and/or dynamic para-
meters.

Clearly the validity of such a simple model should
not be overstressed. For example, animals in general
do not have a similar take off and landing velocity as
assumed in the model. They take off with straightened
legs and land with bent legs. Muscles and tendons
control the compliance during landing, avoiding axial
impact loads of the bones. The distance of deceler-
ation during landing is shorter than of acceleration
during take off, i.e. the leg has to be more stiff during
landing than during take off. By implementing differ-
ent stiffnesses during landing and take off it would be
possible to investigate the influence of deviations from
the symmetrical model. However, such a correction
would not lead to major changes in the general per-
formance of the model. The heelstrike in human run-
ning can be considered as a mechanism to deliver part
of the additional energy necessary for deceleration
during landing. It is largely due to deceleration of
distal leg masses (Alexander et al., 1986). The intro-
duction of a leg mass also requires a joint between
body and leg in order to be able to conserve torque
during a step cycle, thus adding two independent
parameters to the system. Such a model served as a
mathematical basis for hopping machines which
largely mimic animal locomotion (Raibert, 1984,
1985).

The fact that the spring—mass model is successful in
predicting and describing general features of animal
locomotion does not depend on a detailed agreement
of the real leg with the assumed linear, massless
spring. General features like the conservation of
momentum during ground contact, coupling of hori-
zontal traveling time to the elastic rebound of the
spring, coupling between horizontal and vertical for-
ces etc., are the basic conditions making this model
successful. It should be stressed that the model does
not imply that all hopping and running in animals is
just elastic bouncing with some deviations. It states
that, even in the case of actively supplied forces, a
bouncing system behaves very similarly to a spring—-
mass system.

The spring-mass model for running and hopping
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