
Why does walking require metabolic energy? One possible
answer is for mechanical work performed by muscles. In
studies on isolated muscle there is a proportional relationship
between mechanical work and metabolic cost (Hill, 1938;
Woledge, 1985). This has also been demonstrated in humans
for tasks such as rowing or cycling, where the mechanical work
performed on a load can be readily measured (Fukanaga et
al., 1986; Pugh, 1974). For human walking, the clearest
relationship between work and metabolic cost is observed
during slope walking experiments. Efficiencies for walking on
positive and negative slopes, defined as work performed
against gravity divided by metabolic cost, approach 25% and
–120%, respectively, and are similar to those found for
performing positive and negative work in isolated muscle
(Margaria, 1976).

For walking on level ground, however, it is unclear why
mechanical work is required. There is no dissipative load
external to the body as for rowing or cycling, nor is net work
performed against gravity as for slope walking. Perhaps the body
and limbs themselves act as a mechanical load. There are a
variety of methods to quantify the mechanical work performed
on the body and limbs (Burdett et al., 1983; Cavagna and
Kaneko, 1977; Willems et al., 1995), but these neither predict
nor explain where and why mechanical energy is dissipated.

Several inverted pendulum models of walking (Fig. 1)
predict that work is not needed within each step, but rather
between steps (McGeer, 1990; Alexander, 1995; Garcia et al.,
1998; Kuo, 2002). In bipeds, single support can be modeled as
an inverted pendulum, with the center of mass moving along
an arc dictated by the stance limb (Fig. 2A). A pendulum
conserves mechanical energy and requires no work to move
along an arc, but the transition from one stance limb to the next
does require work. Negative work is performed in the collision
that redirects the center of mass velocity from one arc to the
next (Fig. 2B), and positive work is required to restore the
energy lost. These step-to-step transition costs will exact a
proportional metabolic cost if muscle efficiency is constant.

These model predictions have been supported by previous
experiments measuring mechanical and metabolic cost as a
function of increasing step width (Donelan et al., 2001).
A simple model (Kuo, 1999) predicted that collision costs
would increase with the square of step width. Subsequent
experimental measurements of mechanical work performed
during step-to-step transitions (Donelan et al., 2001) showed a
similar dependence (r2=0.91), with a proportional increase in
metabolic cost (r2=0.83). This is, however, only a small part
of the metabolic cost of normal walking because humans prefer
to walk with a relatively narrow step width.
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In the single stance phase of walking, center of mass
motion resembles that of an inverted pendulum.
Theoretically, mechanical work is not necessary for
producing the pendular motion, but work is needed to
redirect the center of mass velocity from one pendular arc
to the next during the transition between steps. A collision
model predicts a rate of negative work proportional to the
fourth power of step length. Positive work is required to
restore the energy lost, potentially exacting a proportional
metabolic cost. We tested these predictions with humans
(N=9) walking over a range of step lengths (0.4–1.1 m)
while keeping step frequency fixed at 1.8 Hz. We measured
individual limb external mechanical work using force

plates, and metabolic rate using indirect calorimetry.
As predicted, average negative and positive external
mechanical work rates increased with the fourth power of
step length (from 1 W to 38 W; r2=0.96). Metabolic rate
also increased with the fourth power of step length (from
7 W to 379 W; r2=0.95), and linearly with mechanical work
rate. Mechanical work for step-to-step transitions, rather
than pendular motion itself, appears to be a major
determinant of the metabolic cost of walking. 

Key words: biomechanics, biped, energetics, locomotion, oxygen
consumption, human.
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Step-to-step transition costs associated with step length may
comprise a much greater fraction of the metabolic cost of
normal walking. Our models predict two important
components to the cost of normal walking: a cost to increasing
step length due to step-to-step transitions, and a cost to
increasing step frequency due to moving the legs relative to the
body (Kuo, 2001). The rate of mechanical work for step-to-
step transitions is predicted to increase sharply with the fourth
power of step length when walking speed increases
proportionally with step length (Fig. 3A). The metabolic cost
of moving the legs is predicted to depend more heavily on step
frequency (Kuo, 2001) and to be isolated from the cost of step-

to-step transitions by keeping step frequency fixed. Several
previous studies (e.g. Atzler and Herbst, 1927; Zarrugh et al.,
1974; Elftman, 1966) indicate an increase in metabolic cost
with step length, but because these studies provide few data
points that specifically fix step frequency for a range of step
lengths, we embarked on a new study designed for this
purpose. 

In the present study, we tested predictions regarding
step-to-step transition costs in walking by measuring
mechanical and metabolic costs in humans as a function of
step length. A fixed step frequency was used to control for
other potential metabolic costs such as for moving the legs.
Based on our model’s predictions (Fig. 3), and assuming
constant muscular efficiency, we hypothesized that both the
mechanical and metabolic power associated with step-to-step
transitions would increase with the fourth power of step
length.

Materials and methods
Model predictions

Models based on passive dynamic walking (McGeer, 1990;
Alexander, 1995; Garcia et al., 1998; Kuo, 2002) lead to
predicted mechanical costs as a function of step length. In these
models, the legs move freely during a step, ending with an
instantaneous and perfectly inelastic collision that produces
initial conditions for the subsequent identical step. Energy is
lost at each collision, even for models that have been adapted
to walk on the level (Kuo, 2002; McGeer, 1990), and to walk
at different step frequencies (Kuo, 2002).

We applied a previously developed model, the ‘simplest two-
dimensional passive dynamic walking model’ (Fig. 1; briefly
reviewed in Appendix), to predict how collision costs increase
with step length (Kuo, 2002). During single support phases, the
model behaves as an inverted pendulum (Fig. 2A). Each
transition to a new stance limb (Fig. 2B) involves a collision,
where the negative work per step, denoted W(–)

trans, is performed
by the leading limb on the center of mass, according to:

W(–)
trans∝ f 2 × l4 , (1)

where f is step frequency and l is step length. Average rate of
negative mechanical work Ẇ(–)

trans is found by multiplying
W(–)

transby step frequency:

Ẇ(–)
trans∝ f 3 × l4 . (2)

To maintain a steady walking speed, an equal amount of
positive work is required to restore the energy lost.
Consequentially, positive work has the same dependence on
step frequency and length as negative work, from Equation 2
(Kuo, 2002). We therefore predict that the collision cost,
expressed in terms of average rate of mechanical work,
increases with the fourth power of step length (Fig. 3). These
predictions hold true even for a passive dynamic walking
model with more anthropomorphic features (Figs 1B, 3) (Kuo,
1999). 

Humans redirect the center of mass velocity during step-to-
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Fig. 1. (A) The simplest two-dimensional passive dynamic walking
model has two degrees of freedom, stance leg angle and swing leg
angle, and is restricted to motion in the sagittal plane. Mass is
concentrated in points located at the pelvis (M) and feet (m), making
it possible to compute step-to-step transition costs analytically
(Garcia et al., 1998; Kuo, 2002) (B) The anthropomorphic three-
dimensional passive dynamic walking model (Kuo, 1999) extends
this model in two ways. First, it employs a torsional hip spring acting
between the limbs, making it possible to explore the mechanics of
walking at different step lengths or frequencies (after Kuo, 2002).
Second, it includes an extra degree of freedom allowing for lateral
motion and finite step widths. Step width is adjusted by changing the
splay angle, β. The model has three degrees of freedom (stance,
swing and roll angles).
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step transitions not with instantaneous collisions, but with
negative work performed by the leading leg over a finite period
of time (Donelan et al., 2001, 2002). The step-to-step transition
costs are the negative external work performed to redirect
the center of mass velocity from one inverted pendulum to
the next, and the equal amount of positive external work
performed to restore the energy lost. Equation 2 predicts that
both of these quantities increase with step length raised to the
fourth power.

In addition to these step-to-step transition costs, motion of
the legs back and forth relative to the body contributes to
external mechanical work, whether or not work is performed
on the legs (see Appendix). Keeping step frequency fixed, this
motion contributes a term increasing with the square of step
length (Fig. 3B). Even though leg motion is not related to step-

to-step transition costs, it nevertheless affects the average
external mechanical work rate. 

Combining contributions from step-to-step transitions and
limb motion, simple bipedal models predict that when walking
faster by increasing only step length, the rate of external
mechanical work Ẇmechwill be:

Ẇmech= Ctransl4 + Clegl2 + D , (3)

where Ctrans is a constant associated with step-to-step
transition power, Cleg is a constant associated with leg
motion, and D is a constant. The parameters Ctrans, Cleg and
D depend on gait parameters such as step width and step
frequency, and on physical attributes such as inertial
properties and musculoskeletal geometry. 

Assuming constant muscular efficiency, the rate of
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Fig. 2. (A) The direction of the center of mass velocity, vcm, is perpendicular to the stance limb during the single support inverted pendulum
phase of the simplest two-dimensional passive dynamic walker. (B) Each transition to a new stance limb requires redirection of the center of
mass velocity, from vcm
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(+) (with the superscripts ‘–’ and ‘+’ denoting the instances immediately before and after impact, respectively),

accomplished by an impulsive heel strike, S, acting along the leading limb. S also causes an instantaneous reduction in the magnitude of the
center of mass velocity through negative work by the leading limb with W(–)

trans∝ |S|2 (shaded square). To walk at steady speed, an equal amount
of positive work is required (see Kuo, 2002; Donelan et al., 2002). The magnitude ofW(–)

trans
., and thus the step-to-step transition cost, depends

on vcm
(–) and the angle between the legs, 2α (Equation 1). (C) When step frequency is kept fixed, vcm

(–) and 2α are proportional to step length, l, so
that W(–)

transincreases with l4 (denoted by the differences in area of the shaded squares. 
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mechanical work for step-to-step transitions (Equation 3)
translates directly into Ėmet, a predicted metabolic rate:

Ėmet = C′transl4 + D′ , (4)

where C′trans and D′ are parameters that depend on their
counterparts in Equation 3 and on muscle efficiency (with the
prime denoting metabolic rate). There is no term for leg motion
in Equation 4, because our model predicts that the metabolic
cost of moving the legs is determined by muscle force rather
than muscle work (Kuo, 2001) (see also Appendix), with a cost
that will be relatively constant at fixed step frequency, and
which can therefore be subsumed withinD′. In the present
study, we tested these predictions with nonlinear regressions,
quantifying the parameters from Equations 3 and 4
empirically. 

Experimental procedures
We measured the mechanical and metabolic costs of walking

as a function of step length in human adult subjects (N=9). All
subjects (four male, five female, body mass 66.0±8.4 kg; leg
length 0.93±0.05 m; means ±S.D.). were healthy and exhibited
no clinical gait abnormalities. Before the experiments began,
volunteers gave their informed consent to participate, in
accordance with university policy.

We first measured each subject’s preferred step length, l*,
and step frequency, f*, for walking at 1.25 m s–1 on a treadmill.
After allowing each subject to acclimate to the treadmill for
10 min, we timed at least 100 steps at each speed to find the
average step period, which is the reciprocal of f*. We then
found l* by dividing speed by f*. Average preferred step length
was l*=0.70±0.03 m and average preferred step frequency was
f*=1.81±0.07 Hz. Average step width, measured in the same
manner as by Donelan et al. (2001), was 0.12±0.03 m and did
not change significantly with step length (P=0.44, ANOVA).
For all remaining trials, subjects walked at their own f* by
stepping to a metronome.

We measured ground reaction forces for subjects walking
overground at six different step lengths, keeping step
frequency fixed. Subjects walked over two ground-embedded
force platforms mounted in series (described in detail in
Donelan et al., 2002), at target speeds within the range
0.75–2.00 m s–1, presented in random order. These speeds
were chosen so as to produce multiples of each subject’s
preferred step length: 0.6, 0.8, 1.0, 1.2, 1.4 and 1.6l*. The
minimum step length was large enough to ensure that subjects
could step on two separate force platforms, and the maximum
was close to the largest that subjects could comfortably
achieve. We discarded trials if the walking speed, measured
with photocells, was not within 0.05 m s–1 of the target speed
or if the individual feet did not fall cleanly on separate force
platforms. We analyzed data for three acceptable trials from
each subject at each of the step lengths. Reported values are
averages from a single step, beginning and ending with
successive heel strikes, from each of the three trials for each
subject and condition. 

In addition to the overground walking trials, we also
conducted treadmill trials to measure the metabolic cost of
walking at six step lengths. Metabolic cost was measured by
indirect calorimetry using an open circuit respirometry system
(Physio-Dyne Instrument Co., Quogue, NY, USA). After first
measuring each subject’s resting metabolic rate while standing,
we then repeated the same walking trials as above, with the
exception of a 1.5l* condition (1.90 m s–1) in place of 1.6l*
because subjects had difficulty maintaining the longer step
length for a sufficient duration without switching into a run.
Treadmill speed and metronome frequency were used to
enforce step length and frequency. Following a 3 min period to
allow subjects to reach steady state, we measured the average
rates of oxygen consumption and carbon dioxide production
over 3 min, and calculated metabolic rate (Brockway, 1987;
described in detail in Donelan et al., 2001). We subtracted the
metabolic rate for standing from all walking values and then
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Fig. 3. (A) Walking models predict that the rate of external
mechanical work dissipated in collisions is proportional to the fourth
power of step length l (keeping step frequency fixed; Kuo, 2002).
The simplest two-dimensional (Fig. 1A) and anthropomorphic three-
dimensional passive dynamic walking models (Fig. 1B) both give
similar predictions. (B) The anthropomorphic model predicts that leg
motion also contributes to external work rate, with a term
proportional to the square of step length. Step length is expressed as
a fraction of leg length, L. Mechanical work rate shown is made
dimensionless by dividing by Mg√gL

—–
, where M is body mass and g is

the gravitational acceleration. C,D, constants. See Materials and
methods for details.
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divided by body mass to derive normalized net metabolic rate,
Ėmet (W kg–1).

Data analysis

We calculated mechanical step-to-step transition costs using
the individual limbs method for quantifying external
mechanical work (Donelan et al., 2001; reviewed in

Appendix). Briefly, the external mechanical power generated
by a limb was found from the dot product of the limb’s ground
reaction force and the velocity of the center of mass (see Fig. 4
for intermediate results showing these quantities). The
magnitude of negative external mechanical work per step was
found from the time-integral of the negative portions of
external mechanical power generated by the limb (Donelan et
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al., 2002). We determined the average normalized rate of
negative external mechanical work, W(–)

trans (W kg–1), by
dividing the negative work for both limbs by body mass and
step period.

The measures of step-to-step transition costs used here differ
slightly from our previous estimates, described by Donelan et
al. (2002). We previously estimated transition costs as a
function of step width using the negative external mechanical
work performed by the leading leg during double support
alone. While some negative work continued beyond double
support, it probably did not adversely affect our conclusions,
as its magnitude was small. In the present study, however, the
leading limb performed substantial negative work after double
support during the longer step length conditions (Fig. 4D).
Integrating negative power over the entire step therefore better
quantifies step-to-step transition costs for the conditions
presented here. 

A trade-off to quantifying external work over an entire step,
rather than the double support phase alone, is that motion of
the legs can affect our measurements. We expect that
including the term Clegl2 in Equation 3 will underestimate
Ctransbecause external work from leg motion mathematically
cancels some of the step-to-step transition costs (see
Appendix). However, this estimate of the negative work of
step-to-step transitions is sufficient to test the predicted
relationship between step-to-step transition costs and step
length given by Equation 3. 

We used these data to test our predictions regarding step-to-
step transitions. We first tested whether the measured rate of
mechanical work increased with step length as predicted by
Equation 3, and then tested whether measured metabolic rate
increased as predicted by Equation 4. These tests were
performed with a nonlinear regression to both equations, with
r2 and 95% confidence intervals (c.i.) indicating the degree and
significance of fit. Because the offsets D and D′ are purely
empirical constants not predicted by the model, we performed
the regressions with an individualized offset subtracted from
each subject’s data. To compare with previously reported data,
we also calculated traditional combined limbs measures of
external mechanical work (Cavagna, 1975) and percentage
recovery (Cavagna et al., 1976).

Finally, we tested whether metabolic rate increased in
proportion to mechanical work rate, as would be expected if
muscle performed this work at constant efficiency. We used a
linear regression for this comparison, with r2 and 95% c.i.
indicating the degree and significance of fit. The linear constant
of proportionality was also used to estimate an efficiency,
defined as negative external mechanical power divided by net
metabolic power. We first estimated efficiency by performing
a linear regression between total negative external mechanical
power and net metabolic power. The result is probably an
overestimate due to cancellation of swing leg work (see
Appendix). To also estimate a lower bound on efficiency, we
subtracted our estimated contribution of leg motion, Clegl2,
from negative external mechanical power data (yielding a
lower bound on negative step-to-step transition power), and

then performed a linear regression between this transition
power and net metabolic power. Using these methods, we were
restricted to step lengths for which we collected both
mechanical and metabolic data, i.e. excluding the longest step
length condition.

Results
In support of our hypothesis, the rate of mechanical work

associated with step-to-step transitions increased with the
fourth power of step length (Fig. 5A). A nonlinear regression
to Equation 3 yielded coefficients Ctrans=0.087±
0.045Wkg–1m–4 (mean ± 95% c.i.), Cswing=0.344±
0.135Wkg–1m–4 (mean ± 95% c.i.) and D=0.122±
0.102Wkg–1m–4 (mean ±S.D.) (r2=0.98). Our estimates for
the mechanical step-to-step transition work rate therefore
increased from 0.01 W kg–1 to 0.57 W kg–1 over the range of
step lengths we employed.
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Fig. 5. (A) Increases in negative external mechanical work rate
(black circles) and (B) net metabolic rate (black circles) were both
dominated by the fourth power of step length l. External mechanical
work rate (A) is compared against a nonlinear regression from
Equation 3 (black line), and metabolic power (B) is compared
against a regression from Equation 4 (black line). Note that
traditional combined limbs measures of total negative external
mechanical work rate (grey circles in A) underestimated the external
work rate generated by the individual limbs. Values shown are
means ±S.D., N=9. l*, preferred step length; C,C′, D,D′, constants.
See Materials and methods for details.

0

0.5

1.0

1.5

2.0

R
at

e 
of

 m
ec

ha
ni

ca
l w

or
k 

(W
 k

g
–1

)
Individual limbs method
Combined limbs method

0.6 0.8 1.0 1.2 1.4 1.6
0

2

4

6

8

N
et

 m
et

ab
ol

ic
 r

at
e 

(W
 k

g–
1 )

Normalized step length (fraction of l* )

0.75 1.00 1.25 1.50 1.75 2.00

Speed (m s–1)

Ctransl4+Clegl2+D
(r2=0.98)

A

B

C′     l4+D′
(r2=0.95)

trans



3723Step-to-step transition costs

Also in support of our hypothesis, metabolic rate associated
with step-to-step transitions increased with the fourth power of
step length (Fig. 5B). A nonlinear regression to Equation 4
yielded the coefficients Ctrans=0.877±0.060Wkg–1m–4 (mean
± 95% c.i.) and D′=1.543±0.363Wkg–1m–4 (mean ± S.D.)
(r2=0.95). The metabolic step-to-step transition rate therefore
increased from 0.11 W kg–1 to 5.75 W kg–1 over the range of
step lengths we used.

Our estimates of the efficiency of step-to-step transitions
ranged from 10%–25 % (Fig. 6). A linear regression between
mechanical costs, correcting for swing leg work, and metabolic
costs yielded a slope of 0.10±0.02 (mean ± 95% c.i.) (r2=0.79),
a lower bound on efficiency. Another regression, without the
correction for swing leg work, yielded a slope of 0.25±0.03
(mean ± 95% c.i.) (r2=0.89), likely to be an overestimate of
efficiency. 

Traditional combined-limbs measures of external
mechanical work were on average 31% less than individual-
limbs measures (Fig. 5A). The net metabolic cost observed
here was substantially higher than that for unconstrained
normal walking at the same speeds (e.g. by 87 W at 1.75 m s–1;
Tolani and Kram, 1999; ANOVA, P=0.0011) but percentage
recovery was not statistically different (ANOVA, P=0.36). 

Discussion
Walking with longer steps requires considerable mechanical

work and exacts a substantial and proportional metabolic cost.
The mechanical cost is from energy lost in redirecting the
center of mass velocity from step to step, and the positive work
to restore that loss. The rate of work increases with the fourth

power of step length when step frequency is kept fixed. The
proportional metabolic cost is probably due to the (positive)
costs of performing both positive and negative mechanical
work. Assuming efficiencies of 25% and –120% for positive
and negative work, respectively (Margaria, 1976) we would
expect a step-to-step transition efficiency of 21%, which falls
within our range of estimates (10–25%, Fig. 6). The reasonable
model fit (r2=0.79–0.89) suggests that the mechanical work of
step-to-step transitions does indeed determine the observed
increases in metabolic cost, and the low values of estimated
efficiencies suggest that elastic energy storage does not
substantially contribute to step-to-step transitions over the step
lengths tested.

Step-to-step transitions may also account for much of the
overall metabolic cost of freely selected gait. The rate of work
for these transitions increases sharply with step length, and to a
lesser extent, step frequency (Equation 2). Humans typically
walk faster by increasing step length and step frequency in
almost equal proportion (for a review, see Kuo, 2001), rather
than by increasing step length alone as in the present work. The
preferred combination of step length and step frequency
minimizes metabolic cost of transport (metabolic rate divided by
speed, or energy per distance) at a given speed (e.g. Elftman,
1966), and is expected to result in slightly lower, but still
substantial, step-to-step transition costs than were observed here. 

In addition to step-to-step transitions, there appears to be
another substantial component to the metabolic cost of walking
that depends more heavily on step frequency (Atzler and
Herbst, 1927; Zarrugh et al., 1974). If step-to-step transitions
alone determined the metabolic cost of walking, they could be
minimized by walking at high step frequencies and short
step lengths. The preferred combination of step length and
frequency (Elftman, 1966) may be a result of a trade-off
between step-to-step transitions and a cost to increasing step
frequency, such as for moving the legs back and forth. Indeed,
our model of this trade-off predicts the preferred combination
(Kuo, 2001). We aim to test the cost of moving the legs, its
trade-off against step-to-step transitions, and the contribution
of step frequency to step-to-step transitions (Equation 2) in
future experiments. 

The metabolic cost of high step frequencies does not,
however, appear to be proportional to work performed on the
legs. The external work originating from leg motion increases
with the square of step length, corresponding to the term Clegl2

in our mechanical cost regression (Equation 3). But as
predicted by our model, this work appears to contribute
negligibly to metabolic cost; addition of a similar term to the
metabolic cost regression (Equation 4) does not substantially
improve the degree of fit (r2 increases from 0.955 to 0.957).
When walking faster by increasing only step length, metabolic
costs associated with leg motion appear not to increase
substantially. One possible explanation is that metabolic cost
depends more on the cost of producing force, rather than work,
to move the legs (Kuo, 2001). This would yield a large cost to
high step frequencies that would be nearly constant when step
frequency is kept fixed.
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motion, Clegl2 (Equation 3); a least-squares linear regression of these
data also exhibits linearity (solid line, r2=0.79). These data are for
step lengths l* in the range (0.6–1.4l*).
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Step-to-step transition costs depend not only on step length
but also on step width (Fig. 7A). We previously studied
transition costs as a function of step width while keeping step
length and frequency fixed and found that, as predicted, they
increased with the square of step width (Fig. 7B) (Donelan et
al., 2001). The present study examined the effect of step length
while keeping step width and frequency fixed, and found that
transition costs increased with step length to the fourth power
(Fig. 7C). These different relationships are predicted by a
single model of redirecting of the center of mass between steps. 

There are other costs of walking that are not explicitly
represented in our models, as indicated by the y-intercept of
the mechanical and metabolic power curves (Fig. 5). These
offsets (D and D′) are important in determining the magnitude
of the minimum metabolic cost of transport and the speed at
which it occurs (Schmidt-Nielsen, 1990). Metabolic cost of
transport is the metabolic energy required to move a unit body
weight or mass a unit distance, and animals prefer to move at
speeds that minimize this cost (Alexander, 1989). A small part
of the mechanical offset, D, may be explained by step-to-step
transition costs due to the non-zero step width. There may be
other mechanical work required of step-to-step transitions that
is not accounted for in our rigid body model, such as to restore
energy dissipated from flexible body deformations. It is also

probable that there are additional metabolic costs not
attributable to step-to-step transitions or external mechanical
work, such as for supporting body weight, moving the legs,
moving other limbs, or controlling stability. However, our
present data are insufficient to resolve their contributions.

Another limitation is that even though our experimental
data are consistent with the proposed model, they also cannot
preclude other possible explanations. Our tests were based on
a power law relationship predicted by a simple model, in fact
the simplest possible model based on mechanics (Garcia et al.,
1998). The data fit of Equation 4 contains two coefficients,
equivalent to a linear fit, treating l4 as the independent
variable. A linear fit can confirm the statistical significance of
the linear coefficient, but cannot prove linearity. Our present
results therefore do not prove that the l4 term is exclusively
superior to other possible terms. In addition, polynomials with
additional statistical degrees of freedom would almost surely
provide better fits. But a model capable of predicting such a
polynomial would also probably be more complex than the
simple model (Fig. 1A) proposed here. In fact, the predictions
of the more complex anthropomorphic model (Fig. 1B) and
our experimental data are fitted nearly as well with l5, rather
than the l4 of the simple model. We feel that the present
analysis is a reasonable compromise between model
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simplicity (which facilitates predictions made a priori) and
goodness of fit. Not only is the model simple, but its physical
manifestation (McGeer, 1990) can also walk down a slope
with the same scaling of step-to-step transition costs as found
here.

Our results are based on a measure of the external
mechanical work performed by individual limbs. Traditional
combined-limbs measures of external mechanical work
(Cavagna et al., 1976) are prone to underestimating step-to-
step transition costs because they ignore simultaneous
positive and negative mechanical work by the trailing and
leading legs (Donelan et al., 2001, 2002). Measures of the
total mechanical work performed on the body and limbs
(Burdett et al., 1983; Cavagna and Kaneko, 1977; Willems et
al., 1995) include work performed both for step-to-step
transitions and to swing the leg, of which the latter appears
not to contribute to metabolic cost in a proportional
relationship. Our measure of external work by individual
limbs appears to better quantify step-to-step transitions than
combined-limbs measures of external work. It cannot
differentiate the effects of swing leg motion, but is less
affected by this motion than measures of the overall
mechanical work performed on the body and limbs. Still
better estimates might result from a more complete separation
of step-to-step transitions from swing leg motion, perhaps
through a joint power approach to estimating the mechanical
work performed by individual limbs (e.g. Winter, 1990) or
through measuring muscle mechanical work directly (e.g.
Prilutsky et al., 1996; Biewener and Roberts, 2000). The
latter would assist in quantifying the degree to which
transition work is apportioned between work performed by
muscle fibers, elastic energy stored and returned by tendon,
and energy dissipated in other structures (see Appendix).

Step-to-step transition costs help to relate the observed
metabolic cost of walking with the inverted pendulum
paradigm. An inverted pendulum by itself conserves energy
while the center of mass moves in a pendular arc. Yet one of
the enduring hypotheses of human walking is that it costs
energy to produce vertical excursions of the center of mass
(Saunders et al., 1953). The present model of step-to-step
transition costs predicts that larger vertical excursions of the
center of mass will indeed be correlated with, but do not
themselves cause, increasing metabolic cost. The vertical
motion of an inverted pendulum motion need not consume
energy, but the transitions between steps require mechanical
work, and it is this work that consumes metabolic energy.
Longer steps result in greater vertical excursions of the
inverted pendulum, but more importantly, they incur higher
step-to-step transition costs. This theory is expected to apply
not only to humans, but to any other animals whose walking
can be likened to an inverted pendulum.

In summary, humans perform substantial mechanical work
to redirect the center of mass velocity during step-to-step
transitions. This work exacts a proportional metabolic cost,
consistent with studies on slope walking, rowing, cycling and
isolated muscle. Legged animals vary widely in size, shape,

and number of legs, but most walk with long steps and some
walk with wide steps. The associated cost of step-to-step
transitions may be a general and major determinant of the
metabolic energy required for walking in all animals that make
use of an inverted pendulum mechanism.

Appendix
Model details

Collision costs for the simplest passive walking model are
derived as follows. At the end of each step, the transition to a
new stance limb (Fig. 2B) requires redirection of the center of
mass velocity, from v–

cm to v+
cm (with the superscripts ‘–’ and

‘+’ denoting the instances immediately before and after impact,
respectively), accomplished by instantaneous, inelastic
collisions. The magnitude of v+

cm is:

|v+
cm| = |v–

cm| cos2α , (A1)

where 2α is the angle between the legs at the transition. This
redirection of the center of mass velocity requires negative
work by the leading limb. The magnitude of this negative work
per step, W(–)

trans, is:

W(–)
trans= GM |v–

cm|2 − GM |v+
cm|2 , (A2)

where M is the mass concentrated at the pelvis. Combining
equations A1 and A2 yields:

W(–)
trans~ |v–

cm|2(1 − cos22α)  (A3)
~ |v–

cm|2sin22α
~ |v–

cm|2α2 .

We can restate Equation A3 as follows. First, α is nearly
proportional to step length,l, for small angles. Second, v–

cm is
proportional to walking velocity, v. Finally, v is the product of
l and step frequency, f, yielding Equation 3 in the main text.

Experimental details

We used the individual-limbs method to calculate external
mechanical work (Donelan et al., 2001, 2002). The external
mechanical power (Fig. 4D,E), generated by a limb is equal to
the dot product of the limb’s ground reaction force, F, and the
velocity of the center of mass, vcm. The magnitude of negative
external mechanical work per step, W(–), performed by a limb
is found from the time-integral of the external mechanical
power generated by the limb, restricted to the intervals within
each step over which the power is negative (denoted by the
domain NEG). Total negative individual limb external
mechanical work per step, W(–)

ILM , is the summed magnitude of
negative external mechanical work from each limb. For a
biped, 

where the subscripts ‘trail’ and ‘lead’ denote the double
support trailing and leading limbs, respectively. We discuss

⌠

⌡NEG

(Ftrail · vcm)dt −
⌠

⌡NEG

(Flead· vcm)dt , 

W(–)
ILM = W(–)

trail + W(–)
lead

(A4)= −



3726

the assumptions and limitations of this method elsewhere
(Donelan et al., 2001, 2002). 

Analysis details

We use negative external mechanical power, averaged over
an entire step, to estimate the mechanical costs of step-to-step
transitions. However, average external mechanical work
includes not only the work performed during step-to-step
transitions, but also work performed to move the legs and
perhaps energy fluctuations due to storage and return of
elastic energy. Here we discuss briefly how these separate
contributions may affect total external mechanical power and
metabolic cost.

A large fraction of external mechanical work is due to the
work required of step-to-step transitions (Fig. 4E,F). Most of
this work occurs during the double support phase. But at
longer step lengths, the stance leg performs some of the
negative work extending beyond double support, into the
beginning of single support (Fig. 4E; collision in Fig. A1). In
addition, the stance leg performs some of the positive work
prior to double support, at the end of single support (Fig. 4E;
propulsion in Fig. A1). 

While limb motion involves mostly internal work, it also
contributes to the work done on the center of mass because
movement of the legs also results in movement of the center

of mass. This is true even if the legs move passively or
otherwise add no net mechanical energy over a step. In an
anthropomorphic two-dimensional model with a hip spring
acting between the legs (Kuo, 2001), motion of the legs
generates positive and negative external mechanical power at
the beginning and end of single support, respectively (Fig. A1).
The internal mechanical power is equal and opposite, so that
there is no net change in total mechanical energy. The
magnitude of negative external power increases with the square
of step length and the square of step frequency (Fig. 3B).
Keeping step frequency fixed, moving the legs therefore
contributes a term of the form Clegl2 to our external mechanical
power regression model (Equation 3).

External mechanical power for moving the legs partially
cancels power generated or dissipated during step-to-step
transitions, making it impossible to separate the two
contributions from force plate data alone (Fig. A1). This is a
mathematical cancellation that is not representative of a
physical cancellation, which would require a transfer of
energy from one limb to the other. Inclusion of Clegl2 in a
regression fit (Equation 3) will therefore underestimate Ctrans

(and Cleg), making our estimate a lower bound on step-to-step
transition costs. An alternative method is to exclude the
swing leg from the regression. But exclusion of Clegl2 from
Equation 3 will attribute all increases in total external

mechanical power to Ctransand none to Cleg. Though not
a strict upper bound, the result is likely an overestimate
of Ctrans. The results of such a regression are coefficients
Ctrans=0.200±0.012Wkg–1m–4 (95% c.i.) and D=0.314±
0.087Wkg–1m–4 (r2=0.96).

External mechanical work measured within a step
may have contributions from elastic energy storage and
return. We consider three potential cases. First, the
external mechanical work for moving the legs (Fig. A1;
leg motion) could be due to storage and return of elastic
energy by hip tendons rather than work performed by
hip muscles (Alexander, 1990; Bennett, 1989). This is
supported by previous theoretical work (Kuo, 2001) and
by our current finding that metabolic cost is not
proportional to work performed on the leg (see
Discussion). Second, positive external mechanical work
as the leg extends just prior to mid-stance (Fig. A1;
rebound) may be due to stored elastic energy during the
collision with ground (Fig. A1; collision). Third,
negative external mechanical work by the stance limb
just after mid-stance may reflect elastic energy being
stored in tendon (Fig. A1; preload). The subsequent
release of this stored energy would contribute to the
positive external mechanical work performed to redirect
the center of mass velocity (Fig. A1; propulsion). These
potential uses for storage and return of elastic energy
represent opportunities to save on work performed by
muscle fibers and therefore to reduce metabolic cost. If
this reduction is substantial, the measured metabolic cost
could potentially differ from the prediction of
Equation 4. The present study, however, is insufficient
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to quantify elastic energy storage, which is best measured in
vivo (Prilutsky et al., 1996; Biewener and Roberts, 2000). 
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