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Abstract

Impact is a complex phenomenon that occurs when two or more bodies undergo a collision. This
phenomenon is important in many different areas––machine design, robotics, multi-body analysis are just a
few examples. The purpose of this manuscript is to provide an overview of the state of the art on impact and
contact modelling methodologies, taking into account their different aspects, specifically, the energy loss,
the influence of the friction model, solution approaches, the multi-contact problem and the experimental
verification. The paper is intended to provide a review of results presented in literature and some additional
insights into existing models, their interrelationship and the use of these models for impact/contact sce-
narios encountered in space robotic applications.
� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to provide an introduction and an overview of the state of the art
on the subject of impact and contact dynamics modeling. Impact is a complex physical phe-
nomenon, which occurs when two or more bodies collide with each other [1]. Characteristics of
impact are very brief duration, high force levels reached, rapid dissipation of energy and large
accelerations and decelerations present. These facts must be considered during the design and
analysis of any mechanical system [2]. Furthermore, during impact, the system presents discon-
tinuities in geometry and some material properties may be modified by the impact itself.
Contact is a more ambiguous term although it is frequently used interchangeably with impact.

In our work, we use this term to describe situations where two or more bodies come in touch with
each other at some locations. Inherently, contact implies a continuous process which takes place
over a finite time.
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In general, two different approaches can be distinguished for impact and contact analysis. The
first approach assumes that the interaction between the objects occurs in a short time and that the
configuration of impacting bodies does not change significantly. The dynamic analysis is divided
mainly in two intervals, before and after impact, and in secondary phases, such as slipping,
sticking and reverse motion. To model the process of energy transfer and dissipation, various
coefficients are employed, mainly the coefficient of restitution and the impulse ratio [3,4]. Ap-
plication of these methods, referred to as impulse–momentum or discrete methods [5], has been
confined primarily to impact between rigid bodies. The extension to flexible systems as well as
extension to more general cases involving multiple contacts and intermittent contact is quite
complicated. The second approach is based on the fact that the interaction forces act in a con-
tinuous manner during the impact. Thus, the analysis may be performed in the usual way, by
simply adding the contact forces to the equations of motion during their action period. This al-
lows a better description of the real behavior of the system, in particular, with respect to friction
modeling. More importantly, this approach is naturally suitable for contact modeling and com-
plex contact scenarios involving multiple contacts and bodies. This approach is referred to as
continuous analysis or force based methods [5].

In the following section, we present basic concepts and definitions used in any impact theory.
This is followed by a general historical overview of the research on impact and contact dynamics
modeling, starting with the initial models of Newton and Poisson through to the modern for-
mulations capable of dealing with complex contact scenarios. In the body of the paper, starting
with Section 2, we allocate one section to each the discrete and continuous models. Given the
complexity of impact modeling, it is imperative that results obtained from theoretical analysis are
confirmed with experimental measurements. Furthermore, as in any modeling of reality, the
goodness of the model depends on the choice and accuracy of model parameters. Therefore, the
last section of the paper is devoted to experimental model validation and identification of impact/
contact parameters.

It is important to emphasize that the literature on contact/impact analysis is vast and spans
many diverse disciplines. To narrow the list of citations, our review focuses on contact (and
impact) dynamics, rather than contact mechanics treatments of the subject. The latter traditionally
aims to solve for stress and displacement distributions in the contact patch, as well as the wave
propagation problem. Analytical results are often sought for ‘simple’ geometry and material
combinations of the contacting bodies, such as two spheres with identical elastic constants or
impact of a mass on an elastic half space. In addition, contact mechanics solutions are obtained
for a known loading condition, as in the case of the classical Cattaneo problem [6,7] where the
normal loading is held fixed while the tangential load is increased monotonically. Jaeger [8]
presents an excellent overview of several contact mechanics analyses. In distinction, contact dy-
namics models tend to deal with, not surprisingly, dynamic quantities such as forces, impulses and
velocities of the contacting bodies. Being motivated by space robotic applications, our review
favors the works presenting general contact dynamics formulations for multi-body systems.

1.1. Basic impact theory

Impact of two bodies is characterized by large reaction forces and changes in velocities of the
two bodies. As a consequence, the bodies are subject to elastic and/or plastic deformation, with
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dissipation of energy in various forms [9]. A generic impact can be represented as shown in Fig. 1.
The line of impact is a straight line normal to the contacting surfaces at the contact point, 1 i.e.,
normal to the tangential plane at the contact point [1]. Four types of impact can be defined for
single-point collision between two bodies: (a) central or collinear, if the mass centers of the two
bodies are on the line of impact; (b) eccentric, if the mass centers of one or both bodies are not on
the line of impact; (c) direct, if the initial velocities of the two bodies are along the line of impact;
(d) oblique, if the initial velocities of one or both bodies are not along the line of impact. A class of
tangential impacts was introduced by Wang and Mason [10], which is characterized by zero initial
relative velocity along the line of impact.

The dynamics of impact is a very complex event, depending on many properties of contacting
bodies such as material, geometry and velocity. In general, two phases can be identified: com-
pression and restitution, as shown in Fig. 2 [2,3,9,10]. The first phase begins when the two bodies
come in contact at the instant t0 (point O), and finishes when the maximum deformation is
reached at the instant tm (point A), where the relative normal velocity is zero. The second phase
begins at the instant tm and finishes when the two bodies separate, i.e., instant tf (points B, C or
D). For impacts with sufficiently high velocities, not all deformation is recoverable because of the
permanent (plastic) deformation and the resulting energy loss. With respect to the latter, impact
can also be classified into: (a) perfectly elastic, line O–A–C, where no energy is lost; (b) perfectly
plastic, line O–A, where all energy is lost and the deformation is permanent; (c) partially elastic,
line O–A–D, with energy loss but no permanent deformation; (d) partially plastic, line O–A–B,
with energy loss and permanent deformation.

The objective of impact modeling is to determine the after-impact conditions of the system,
given its initial (pre-impact) configuration. Because of the complex dependencies on many pa-
rameters, one possible solution is to use experimentally measured coefficients. Coefficient of
restitution, defined along normal direction, and coefficients along tangential directions are the
most important [3,4].

1.1.1. Coefficient of restitution
The energy loss due to the motion in the normal direction can be expressed in terms of a co-

efficient, usually denoted by e. To honour the work-energy principle, it should satisfy the con-
dition 06 e6 1 with the end conditions corresponding to perfectly elastic ðe ¼ 1Þ and perfectly

Fig. 1. Impact between two bodies.

1 The definition of the line of impact is an approximation since the contacting surfaces can have different normals at

the point of contact.
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plastic impact ðe ¼ 0Þ. The coefficient of restitution depends on many elements, such as the geo-
metry of the bodies in contact, the approach velocity, the material properties, the duration of
contact and, possibly, friction [9]. Related to the energy loss and coefficient of restitution is the
phenomenon of wave propagation. Since real bodies are not perfectly rigid, their parts are not
instantaneously subjected to the same change of motion following the impact. The disturbance
generated at the contact point travels in the body as stress (and deformation) waves with a finite
velocity [2,11]. These waves produce oscillations and part of the impact (kinetic) energy is con-
verted to the energy associated with this vibration. A useful parameter to quantify this situation is
the ratio between the duration of impact and the period of the fundamental natural mode of
vibration of the impacting bodies. The greater is this ratio, the smaller is the energy dissipation
associated with the elastic waves since they can travel across the bodies many times before the
impact ends. If this ratio is large enough, a quasi-equilibrium state is reached [2]. These obser-
vations are complemented by Stronge [11] who states that stress waves contribute to energy
dissipation during collision if the relative size of the bodies is different from unity. In this case, the
waves in the larger body do not have sufficient time to reflect from any boundary and, in essence,
remain ‘trapped’ in the body. If the two impacting bodies are similar in size and material prop-
erties, the vibration energy lost is negligible [11]. The energy flow associated with impact dynamics
in the normal direction is illustrated in Fig. 3.

The dependence of e on the approach velocity can be explained by considering the previously
introduced ratio of the impact time to the fundamental period of vibration. If this ratio is large,
then the coefficient of restitution is mainly determined by the plastic deformation near the impact
point. The velocity of impact determines the extension of plastic deformation and this accounts
for the basic velocity sensitivity of the coefficient of restitution of spherical bodies. Usually, bodies
with a low ratio of surface area to volume (like spheres) present this kind of behavior [2,9]. For
slender bodies like beams or plates, the time of impact tends to be short compared with the period
of propagation of stress waves. Thus, a more significant portion of the initial kinetic energy re-

Fig. 2. Deformation during the impact.

Fig. 3. Energy flow associated with normal direction.
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mains in the bodies in the form of vibration. In this case the coefficient of restitution may be
significantly influenced by this factor [2]. Later in the paper, we discuss three models proposed for
the coefficient of restitution: Newton’s [12], Poisson’s [13] and Stronge’s [14,15].

1.1.2. Tangential coefficients
Friction modelling is another key aspect of impact and contact dynamics, since friction can

stop and/or reverse the motion as well as, it contributes to energy dissipation. If friction is taken
into account, the relationship traditionally used to determine the force of dry friction is the
Coulomb’s law. This law states that the magnitude of the frictional force, Ft, can be related to the
magnitude of the normal force, Fn, via a coefficient and its direction is always opposite to
the relative tangential motion [16]. Two possible situations are distinguished: (a) sliding, with
Ft ¼ ldFn; (b) sticking, with Ft 6 lsFn, where ld is the coefficient of dynamic friction and ls is the
coefficient of static friction. The two coefficients take into account the nature of the contact
surfaces, mainly, the type of material and surface quality. Alternative ways to describe the be-
havior in the tangential directions include the use of tangential coefficient of restitution, based on
Newton’s model, and the impulse ratio defined as a ratio of tangential impulse to normal impulse.
The latter is a generalization of the coefficient of friction and can take into account other tan-
gential forces [3,4].

1.1.3. Impulse and impact energy
The time integral of the contact force FC acting during the impact is called the impulse, P, and is

finite [10]:

P ¼ lim
Dt!0

Z
FCðtÞdt ð1Þ

The energy loss EL incurred by impact can be calculated as the negative work done by FC during
the collision [17], that is:

EL ¼ �
Z

FC � _dddt ¼ �
Z

FC � dd ð2Þ

where _dd is the velocity of deformation. Alternatively, by making use of the differential relationship
between impulse and force, one can write:

EL ¼ �
Z

_dd � dP ð3Þ

According to the work-energy principle, 2 the work done by FC must be equal to the change in the
kinetic energy, DT [18], so that:

DT þ EL ¼ 0 ð4Þ
It follows that the change in the kinetic energy depends on the coefficient of restitution and im-
pulse ratios. In [17], Stronge states a theorem which allows to calculate the work done by contact

2 Usually, in literature on the subject, the term used is the energy-conservation principle. This terminology is not

completely correct, because of the presence of friction and other energy dissipation.
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forces during periods of unidirectional slip as a simple function of the corresponding impulse and
the average relative velocity at the contact point.

1.2. Literature overview

1.2.1. Discrete models
The impact between two rigid bodies was analysed initially by Sir Isaac Newton [19], and

expanded by Whittaker [12] to account for frictional impulse. In that model the coefficient of
restitution is a kinematic quantity that defines a relationship between the normal components of
the velocities before and after the impact at the contact point (referred to as Newton’s model).
Routh [13] presented a graphic method based on a kinetic hypothesis to define the coefficient of
restitution (referred to as Poisson’s model). The coefficient of restitution is defined as a kinetic
quantity that relates the normal impulses that occur during the compression and restitution
phases. The two approaches are also different in the treatment of the motion in tangential di-
rection during the impact. In Routh’s study, the possibility of changes in slip direction during
contact is taken into account, while in Whittaker’s study it is not. In many simple cases, the two
approaches lead to the same result, as shown by Wang and Mason [10], while in other cases, they
can produce inconsistent results, as shown by Kane and Levinson [18] and Stronge [14]. This is a
consequence of the possible changes in the slip direction. Ignoring these can lead to the overes-
timation of the final velocity after the impact, as illustrated with the Newtonian approach.
Poisson’s model, instead, can result in an increase of energy in some configurations for a perfectly
elastic impact [14].

Brach [3,4] proposed an algebraic solution scheme, revising Newton’s model and introducing
impulse ratios to describe the behavior in the tangential directions. He defined the tangential
impulse as a constant fraction of the normal impulse––the constant ratio of the two being the
impulse ratio. It is equivalent to the friction coefficient in many cases. Brach also demonstrated
that work-energy and kinematic constraints impose an upper bound on the impulse ratio. He also
expanded this approach to include the impulse moments. Alternatively, the motion in the tan-
gential direction was described by using the tangential coefficient of restitution. Smith [20] pro-
posed another purely algebraic approach to the problem using the Newtonian definition for the
coefficient of restitution. Impulse ratio is determined using as velocity an average value of different
slipping velocities. Keller [21] developed an approach which involves the integration of the contact
impulse variables. Thus, the system is treated as an evolving process parameterized by cumulative
normal impulse. Also, by using a revised Poisson’s model, Keller concluded that during impact,
no increase in energy is possible. Using Routh’s graphical method to analyse the contact models,
Wang and Mason [10] identified the impact conditions under which Newton’s and Poisson’s
models give the same solution. Stronge [14] demonstrated the energy inconsistencies in some
solutions obtained with Poisson’s model when the coefficient of restitution is assumed to be in-
dependent of the coefficient of friction. In that case Poisson’s model does not lead to vanishing
dissipation for a perfectly elastic impact. As a result, Stronge proposed to define the coefficient of
restitution as the square root of the ratio of the elastic strain energy released during restitution to
the energy absorbed by deformation during compression. With this definition no energetic in-
consistencies are present [14].
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Multiple frictional contacts in multi-body systems have been studied by several authors.
Hurmuzlu and Marghitu [22] examine the problem where a planar rigid-body kinematic chain
undergoes an external impact and an arbitrary number of internal impacts. The latter was defined
as the situation when two bodies are simply in contact while impact occurs elsewhere in the system
[22]. They developed a differential–integral approach, extending Keller’s work [21] and using all
three models for the coefficient of restitution, and an algebraic approach, based on Newton’s
model of restitution. Han and Gilmore [23] proposed a similar approach, using an algebraic
formulation of motion equations, Poisson’s model of restitution and Coulomb’s law to define the
tangential motion. Different conditions that characterize the motion (slipping, sticking, reverse
motion) are detected by analyzing velocities and accelerations at the contact points [24], similarly
to Hurmuzlu and Marghitu [22]. Han and Gilmore [23] verified their simulation results with
experiments for a two-body and three-body impact.

Haug et al. [25] solve directly the differential equations of motion by using the Lagrange
multiplier technique. For impact, Newton’s model is used, while Coulomb’s law is used for
friction. Wang and Kumar [26], Anitescu et al. [27] reduce the problem to a quadratic program-
ming problem.

1.2.2. Continuous models
Application of the impulse–momentum methods to model the impact dynamics of rigid bodies

leads to several problems. First, in the presence of Coulomb friction, cases arise in which no
solution or multiple solutions exist. Examples and analysis of these inconsistencies can be found in
Wang and Kumar [26] and Mason and Wang [28]. These ambiguities have been attributed to the
approximate nature of Coulomb’s model and to the inadequacy of rigid body model, but no clear
explanation has been found. The second problem is that energy conservation principles may be
violated during frictional impacts, as shown by Stronge [14], as a consequence of the definition of
the coefficient of restitution. Finally, the discrete approach is not easily extendible to generic
multi-body systems. The use of compliance or continuous contact models where the impact force is
a function of local indentation can overcome the problems encountered in the discrete formula-
tion [26,29].

Different models have been postulated to represent the interaction force at the surfaces of two
contacting bodies [2,3]. The first model was developed by Hertz [30], in which an elastostatic
theory was used to calculate local indentation without the use of damping. The corresponding
relationship between the impact force and the indentation is allowed to be non-linear. In the first
and simplest model of damping, referred to as spring-dashpot model [9], the contact force is
represented by a linear spring-damper element. Dubowsky and Freudenstein [31] presented an
extension of this model called the impact-pair model, where they assumed a linear viscous
damping law and a Hertzian spring for modeling the behavior of the impact surfaces. Hunt and
Crossley [32] showed that a linear damping model does not truthfully represent the physical
nature of the energy transfer process. Thus, they proposed a model based on Hertz’s theory of
contact with a non-linear damping force defined in terms of local penetration and the corre-
sponding rate. Lee and Wang [33] proposed a similar model, but with a different function spec-
ifying the non-linear damping term. Other damping models have been proposed to describe totally
or partially plastic impacts [2,3,15].
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Contact stiffness and damping forces are dependent, at the minimum, on two parameters––the
coefficient of stiffness and the coefficient of damping. For simple contact between two bodies, the
former is determined by the geometry and the material of the contacting objects, while the co-
efficient of damping can be related to the coefficient of restitution [32,34,35]. An important ad-
vantage of continuous contact dynamics analysis is the possibility of using one of many friction
models available in literature. Different models have been developed to permit a smooth transi-
tion from sticking to sliding friction [29,36–38]. Non-linear models, as well as non-local models
have been used to represent the real behavior of the surface irregularities that cause the friction.
The use of continuous models for contact forces allows to generalize the contact dynamics
methodology to multi-body/multi-contact scenarios, as well as contact involving flexible bodies
[5,38].

Two solution approaches can be distinguished in the context of continuous impact models. In
the first, the contact model is expressed as an explicit functional relationship between the contact
force and the generalized coordinates and their rates, with dependencies on certain geometric and
material parameters. Application of this approach has been studied by several authors, including
Ma [38], Kraus and Kumar [39], Deguet et al. [40], Vukobratovic and Potkonjak [41]. The contact
condition is a geometric state, and involves determination of the minimum distance or interference
between surfaces [5,38]. Several friction models have been used with the explicit contact model, for
example, Coulomb’s model and its variations [39,41–43], or the bristle model [38].

The second approach for solving impact/contact dynamics within the continuous framework
takes into account the deformation due to contact directly via the flexibility of the contacting
bodies. No explicit relationship is employed between the normal contact forces and the inden-
tation, however, the condition of impenetrability at the contact point must be enforced. This
approach has been used by Kim [5], Bathe and Bouzinov [44], Farahani et al. [45], Heinstein et al.
[46]. Impact can still be detected by checking the minimum distance between the bodies, similarly
to the explicit solution. By imposing the geometric condition of impenetrability, it is possible to
calculate the contact force, using the Lagrange multipliers method [5,44,46] or with other
mathematical techniques [45]. This method is typically used in conjunction with the finite element
discretization of the contacting bodies (or contacting regions). It is the closest to reality and makes
no assumptions nor approximations on the fundamental nature of contact dynamics.

2. Discrete contact dynamics models

The discrete formulation is based on the assumptions that [10]: the impact process is instan-
taneous and impact forces are impulsive; kinetic variables have discontinuous changes while no
displacements occur during the impact, and that other finite forces are negligible. This model is
used mainly if the impact involves rigid or very hard and compact bodies, while the effects of
deformation at the contact point are taken into account through coefficients. The impact problem
is solved by using the linear impulse–momentum principle, the angular impulse–momentum
principle, and the relations between the variables before and after impact [3,4]. If m is the mass, v
the center of mass velocity, P the linear impulse due to impact, h the angular momentum, d the
distance from the center of mass to the point of impact and M the angular impulse due to impact,
the impact dynamics equations are:
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m1 v1ð � v10Þ ¼ P

m2 v2ð � v20Þ ¼ �P

h1 � h10 ¼ d1 � PþM

h2 � h20 ¼ d2 � P�M

ð5Þ

In the above, indexes 1 and 2 specify the body, while 0 denotes the initial conditions. The un-
knowns are the linear and angular velocities of the two bodies and the impulses P and M. The
angular impulse M is neglected in the majority of formulations since, consequently to the basic
assumptions, the contact region must be small.

Additional relations are required to solve for the unknown impact variables. For the normal
direction, one relation is provided by the coefficient of restitution. In the tangential direction, the
relational laws may have to be replaced with kinematic constraints (for instance, during sticking,
zero tangential velocity is imposed).

2.1. Coefficient of restitution models

Let the vector triad ðn; t; bÞ define a coordinate system with origin at the contact point, where n
is the normal to the two bodies at that point, and vectors t and b define the tangent plane [3,4].
Then the linear impulse can be written as

P ¼ Pnnþ Pttþ Pbb ð6Þ

The relative linear velocity at the contact point, denoted by C, has a component along the normal
direction, called the compression velocity, and a component along the bi-tangential direction,
called the sliding velocity [10]. The principle models of restitution are introduced below.

2.1.1. Poisson’s model
In Poisson’s model [13], the total normal impulse, Pf , is divided in two parts, Pc and Pr, cor-

responding to compression and restitution phases, respectively. The coefficient of restitution is
defined as [10]

e ¼ Pr

Pc

; Pf ¼ Pc þ Pr ð7Þ

The condition for the end of compression phase is zero relative velocity along the normal di-
rection, that is C � n ¼ 0. In the Pn � Pt space, this represents the line of maximum compression [10].
Using this definition and Eqs. (5)–(7), it is possible to define the line of termination as:

C0 þ
C1

1 þ e
Pn þ C2Pt ¼ 0; t ¼ tf ð8Þ

where C0 is the approach velocity, C1 and C2 are parameters depending on initial conditions,
geometry and inertia [10].
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2.1.2. Newton’s model
In Newton’s model the coefficient of restitution is defined as [12]:

e ¼ �CðtfÞ � n
Cðt0Þ � n

¼ �Cf

C0

ð9Þ

This model is based on a kinematic point of view and only the initial and final values for the
relative normal velocity are taken into account. The line of termination is given by [10]

ð1 þ eÞC0 þ C1Pn þ C2Pt ¼ 0; t ¼ tf ð10Þ

2.1.3. Stronge’s model
This model is based on the internal energy dissipation hypothesis [14]. The coefficient of resti-

tution is defined as the square root of the ratio of energy released during restitution to the energy
absorbed during compression. In terms of the work done by the normal force during the two
phases, the coefficient of restitution can be calculated from:

e2 ¼ Wr

�Wc

ð11Þ

It can be shown that the energy hypothesis leads to the only model which ensures that the energy
loss from sources other than friction is non-negative, and is zero when e ¼ 1. In [47], Stronge
applies the above definition to derive a theoretical expression for e in terms of Wc and the work
required to initiate yield.

In a recent work [15], Stronge considers the problem of oblique impact of a rigid cylinder on a
deformable half-space. It is noted that in this and similar cases of collisions between objects of
very different sizes, the energy loss to stress waves, Ww, is substantial and can be accounted for
with the following definition of the coefficient of restitution:

e2 ¼ Wr �Ww

�Wc

: ð12Þ

2.2. Additional relations

To obtain additional equations, one can pursue either of two possibilities. The first is to define
coefficients of restitution for each of the other directions. For instance during slipping, one can
obtain the following relationships by applying Newton’s model in the tangential plane [3]:

et ¼ �CðtfÞ � t
Cðt0Þ � t

; eb ¼ �CðtfÞ � b
Cðt0Þ � b

ð13Þ

In the same manner, it is possible to define three coefficients to model the rotational effects of the
impact [3,4]. The second possibility is to define a relationship between quantities in the normal
and tangential directions. Brach [3,4] proposed to relate the tangential and normal impulses with
equations analogous to Coulomb’s law:

Pt ¼ ltPn; Pb ¼ lbPn ð14Þ
where coefficients l are called impulse ratios. Smith [20] extended the use of Coulomb’s law to
allow for a change in the direction of tangential velocity. If sticking occurs before the end of the
impact, relationships (13) and (14) must be replaced with a condition of zero slip, i.e., C � t ¼ 0
and C � b ¼ 0, referred to as lines of sticking [23].
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2.3. Solution of impact problem

2.3.1. Planar impact of two bodies
Planar impact analysis is conveniently carried out with a graphical approach [10,23]. The im-

pact is represented in the Pn-Pt plane with the following lines as illustrated in Fig. 4:

• Line of limiting friction LLF, defined by Coulomb’s friction model.
• Line of sticking LS, defined by zero velocity along the tangential direction.
• Line of maximum compression LM, defined by zero relative velocity in the normal direction.
• Line of termination LT, defined according to the restitution model used.

The graphical construction as in Fig. 4 is completely specified by the following parameters: the
geometric conditions of the impact, the inertia properties of the colliding bodies, the velocities
before impact, the coefficients of friction and restitution. It is also noted that the use of graphical
approach described here assumes Poisson’s or Newton’s models of restitution.

In Fig. 4, Point A is the intersection between lines LS and LT, and point B is the intersection
between lines LS and LM. The resulting lines OA and OB define three regions that allow to dis-
tinguish the different contact modes. In particular, if LLF lies in region #1, slipping without
sticking is present; if it lies in region #2, sticking is reached after the maximum compression; if it
lies in region #3, sticking is reached before the maximum compression and it may be followed by
reverse motion [23]. A detailed analysis of contact processes and their dependence on parameters
defining the planar rigid-body collisions is presented in [47]. The main disadvantage of the
graphical (and analytical) approaches is that they are not easily extendible to three-dimensional
impact, primarily because of the difficulty in describing the limiting friction [10,23].

2.3.2. General formulation and solution
Several formulations of the motion equations have been applied to solve the impact problem

between two (or more) rigid bodies with a discrete approach. The more general form of these
equations, previously stated in Eq. (5), is:

Fig. 4. Graphical impact analysis.
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m1ðv1 � v10Þ ¼ Pþ PU
1 þ PF

1

m2ðv2 � v20Þ ¼ �Pþ PU
2 þ PF

2

h1 � h10 ¼ d1 � PþMþ dU
1 � PU

1 þ dF
1 � PF

1

h2 � h20 ¼ d2 � P�Mþ dU
2 � PU

2 þ dF
2 � PF

2

ð15Þ

where PU is the vector of unknown impulses associated with geometric constraints on the bodies,
PF is the vector of external known impulses, dU and dF are the position vectors from the center of
mass to the point of application of the respective impulses [3]. To solve Eq. (15), we need to resort
to additional relations for the impact parameters. Different models for these parameters lead to
different forms of the final equations and possibly different results, depending on the particulars of
the impact.

2.3.2.1. Algebraic equations. Using Newton’s or Poisson’s models to define the coefficients of
restitution in any direction (or about any axes), purely algebraic equations are obtained. Together
with the impulse ratios, these equations can be written in the form:

e ¼ eðP;M; vÞ; l ¼ lðP;MÞ ð16Þ

Examples of analytical solutions of Eqs. (15) and (16) can be found in Brach [3,4], Smith [20] and
Mac Sithigh [48]. Lagrange’s equations describing impact between two rigid bodies are presented
in [16,25]. These formulations solve for unknown generalized coordinates, the Lagrange multi-
pliers associated with impact forces (or normal impulses) and the friction forces due to stiction.
This approach has also been applied by some authors to flexible-body systems (see, for example,
Kulief and Shabana [49], Yigit et al. [50]). In this case, the coefficient of restitution value for
relatively compact bodies must be used with care as it may be affected by the flexibility. Ref. [50]
demonstrates that the ‘‘rigid body’’ concept of the coefficient of restitution can be used for the
flexible beam considered by these authors.

2.3.2.2. Integral–differential equations. Another approach to solving the impact problem is to think
of the impact as an evolving process parameterized by cumulative normal impulse [21,48]. An
application of this approach is reported by Keller [21], where Poisson’s model of restitution is
used. Stronge [51] employes a similar analytical method to investigate changes in relative velocity,
but with the use of the energetic coefficient of restitution. The linear impulse P is divided in the
usual two components, normal and tangential, given by:

PnðtÞ ¼
Z t

0

FCðsÞ � nds ¼
Z t

0

Fn ds; Pt ¼ �
Z tf

0

lFntdt ¼ �
Z Pf

0

ltdPn ¼ �
Z ð1þeÞPm

0

ltdPn

ð17Þ

The normal component Pn is used as an independent variable. The solution of the impact problem
is reduced to determining Pm, as well as the variation in the slip direction specified by the tan-
gential unit vector t. To this end, differentiating the relative linear velocity with respect to the
normal impulse Pn gives
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dC

dPn

¼ dC

dt
dt

dPn

¼ dC

dt
1

Fn

ð18Þ

Eliminating the velocity time derivative by using the impulse–momentum relations, Eq. (15),
allows to express the derivative of C as a function of the normal and tangential unit vectors,
i.e.,

dC

dPn

� n ¼ dCn

dPn

ðn; ltÞ; dC

dPn

� t ¼ dCt

dPn

ðn;ltÞ ð19Þ

where we indicated the corresponding functional dependence. Integrating the equation for the
normal component Cn and setting the result to zero yields an integral equation for the impulse Pm.
The differential equation for the tangential component can be integrated to solve for the tan-
gential impulse defined in Eq. (17).

2.4. Multi-body/multi-contact impact

One disadvantage of the discrete contact modeling is that it is not easily extendible to impacts
involving multiple bodies and multiple contact points. In the application of interest to us––con-
strained robotics operations––simultaneous collision of several bodies is not likely to occur. It
is the second situation, where contact occurs between two bodies with complex geometries at
multiple points, that poses difficulties for the discrete approach.

Hurmuzlu and Marghitu [22] present a generalization of the integral–differential method de-
scribed in Section 2.3.2 to a multi-body system. The equations of motion are written as

MðqÞ€qqþHðq; _qq; tÞ ¼ JT
CFC ð20Þ

where M is the inertia matrix of the system, H contains all non-impact forces (gravitational,
external, control), q is the vector of generalized coordinates, and FC denotes impact forces (normal
and tangential) at all contact points. Using kinematics, the acceleration at a contact point can be
expressed as

a ¼ dv

dt
¼ H1ðqÞ€qqþH2ðq; _qqÞ ð21Þ

By substituting for the generalized accelerations from (20), neglecting the non-impulsive terms
and assuming that the generalized coordinates do not change during impact, the above is sim-
plified to

a 	 H1M
�1JT

CFC ð22Þ
To proceed with the solution, it is now necessary to distinguish between different situations at the
contact points: (a) interaction is present along tangential and normal directions; (b) interaction is
present only along the normal direction; (c) there is no interaction. Each of these conditions can
be represented with additional equations for each contact force. Conditions of sticking, attach-
ment and detachment can be detected by checking velocity and acceleration at the contact point.
The end of the compression phase will be characterized by zero normal velocity while the end of
restitution phase will be defined according to the restitution model used (any one of the three
models can be used). Hurmuzlu and Marghitu [22] also proposed an algebraic method based on
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Eq. (15), with additional equations provided by Newton’s model of restitution and the definition
of impulse ratio. Note that the algebraic approach provides only a post-impact solution defined
by the coefficient of restitution. As a result, the possibility of detachment during the impact cannot
be detected at the internal contact points.

2.5. Summary of discrete models

As implied by the discussion above, the definition of restitution is a key aspect of the discrete
formulation of impact dynamics. Three theories of restitution have been proposed to date and it is
appropriate to comment on how they compare against each other. In particular, energetic analysis
of a planar impact of two bodies [10,14] leads to the following conclusions:

• The three restitution models are equivalent if there is no friction, or the impact is central, or
there is friction but the motion along the tangential direction does not stop (i.e., there is no slip
reversal).

• If friction is present and the impact is eccentric, the normal velocity during and at the end of
impact depends on the direction of slip. Since Newton’s model does not differentiate between
the possible contact modes, it neglects the change in the slip direction.

• Poisson’s and Stronge’s models dissipate more energy than Newton’s model, and this energy is
always positive, but different for the two when sticking or reverse motion are present.

• Poisson’s and Newton’s models are inconsistent when e ¼ 1, since for this case, they can pro-
duce non-zero energy dissipation in the normal direction.

It has been suggested that a way to resolve some of the problems with the existing restitution
models is by allowing an interdependency between the coefficients of restitution and friction [3].
Nevertheless, at this time it appears that Stronge’s hypothesis of restitution is the better of the
three theories.

Another important aspect of discrete models is the unequivocal use of Coulomb’s law to model
friction during impact. Several authors have noted the inconsistencies that arise when rigid body
models are used with Coulomb’s empirical law of friction. Examples are described by Wang and
Kumar [26] where the aforementioned inconsistencies are demonstrated by either no feasible
solution or by multiple solutions for particular initial conditions. This has been attributed to the
approximate nature of Coulomb’s model and to the inadequacy of rigid body model, but no clear
explanation has been found.

Finally, we observe once again that the discrete models are based on the assumption that
impact time is small and the bodies involved in the impact are mainly rigid. The use of these
models with flexible bodies is not straightforward because of the ‘‘rigid body’’ concept of the
coefficient of restitution [50]. However, the results presented in [52,53] for transverse impact of a
rotating flexible beam demonstrate relatively little sensitivity to the coefficient of restitution. The
application of discrete modelling to contact scenarios such as robotic insertion tasks envisioned
for the space station is not straightforward. In these cases, the approach velocities are small and
there is time-varying contact between the fixture and the mating object at many points. To deal
with the multiplicity of contact points would require ad hoc assumptions regarding the order of
impulses [11].
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3. Continuous contact dynamics models

The continuous model, also referred to as compliant contact model, overcomes the problems
associated with the discrete models. The basis of the continuous formulation for contact dynamics
is to explicitly account for the deformation of the bodies during impact or contact. In a large class
of continuous models, referred to in this paper as explicit this is done by defining the normal
contact force Fn as an explicit function of local indentation d and its rate, i.e., [2,3]:

Fn 
 Fnð _dd; dÞ ¼ F _ddð _ddÞ þ FdðdÞ ð23Þ

In the following, we summarize three existing contact force models, including the initial model of
Hertz [30] and the non-linear damping model of Hunt and Crossley [32].

3.1. Contact force models

3.1.1. Spring-dashpot model
The impact is schematically represented with a linear damper (dashpot) for the dissipation of

energy in parallel with a linear spring for the elastic behavior [9]. The contact force is defined as
[2,3]

Fn ¼ b _dd þ kd ð24Þ
and is represented schematically in Fig. 5. This model has three weaknesses [35]:

• The contact force at the beginning of impact (point A) is discontinuous, because of the dam-
ping term. In a more realistic model, both elastic and damping forces should be initially at zero
and increase over time.

• As the objects are separating (point B), i.e., the indentation tends to zero, their relative velocity
tends to be negative. As a result, a negative force holding the objects together is present.

• The equivalent coefficient of restitution defined for this model does not depend on impact ve-
locity. As we discuss in Section 4, velocity dependence of e has been demonstrated experimen-
tally [9].

Fig. 5. Contact force history for the spring-dashpot model.
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Although the spring-dashpot model is not physically realistic, its simplicity has made it a
popular choice [29,39,41,42]. It provides a reasonable method for capturing the energy dissipation
associated with the normal forces without explicitly considering plastic deformation issues.

3.1.2. Hertz’s model
This is a non-linear model but limited to impacts with elastic deformation and in its original

form does not include damping. With this model, the contact process can be pictured as two rigid
bodies interacting via a non-linear spring along the line of impact. The hypotheses used states that
the deformation is concentrated in the vicinity of the contact area, elastic wave motion is ne-
glected, and the total mass of each body moves with the velocity of its mass centre. The impact
force is defined as [2,9,30,54]

Fn ¼ kdn ð25Þ
where k and n are constants, depending on material and geometric properties and computed by
using elastostatic theory. For instance, in the case of two spheres in central impact, n ¼ 3=2 and k
is defined in terms of Poisson’s ratios, Young’s moduli and the radii of the two spheres [34]. Since
Hertzian model does not account for energy dissipation, its equivalent coefficient of restitution is
one. Therefore, as discussed further in Section 4, this model can be used only for low impact
speeds and hard materials.

The elastic contact law of Hertz can be augmented to account for plastic deformation by in-
troducing hysteresis in the contact force law. This can be accomplished by using a different force-
indentation relationship for the unloading phase of the contact which generally takes the
following form [15,55]:

Fn ¼ Fn;max

d � dp

dmax � dp

� �n

ð26Þ

In the above, Fn;max and dmax are the maximum normal force and indentation reached during the
loading phase and dp is the permanent indentation. Note that in the context of contact dynamics
simulation, the maximum quantities in Eq. (26) can be calculated at every instant of the numerical
integration. By contrast, the value of dp must be specified as an additional parameter in this
contact force model. The hysteretic force law of Eq. (26) has not been previously applied to solve
multi-body contact scenarios, partly because it is somewhat cumbersome to implement and the
plastic deformation per se is unimportant in the majority of applications.

3.1.3. Non-linear damping
To overcome the problems of the spring-dashpot model and to retain the advantages of the

Hertz’s model, an alternative model for energy dissipation was introduced by Hunt and Crossley
[32]. It includes a non-linear damping term and hence the impact/contact force is modeled as

Fn ¼ bdp _ddq þ kdn ð27Þ
where it is standard to set p ¼ n and q ¼ 1 [32,34,35]. As with the spring-dashpot model, the
damping parameter b can be related to the coefficient of restitution, since both are related to the
energy dissipated by the impact process. For the central impact of two bodies Hunt and Crossley
[32], Lankarani and Nikravesh [34], and Marhefka and Orin [35] established:
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e ¼ 1 � a _dd0; a ¼ 2b
3k

ð28Þ

An important aspect of this model is that damping depends on the indentation. This is physically
sound since contact area increases with deformation and a plastic region is more likely to develop
for larger indentations. Another advantage is that the contact force has no discontinuities at
initial contact and separation, but it begins and finishes with the correct value of zero. This model
has been studied and used by several authors [32–35,38–41,56,57].

3.2. Friction models

It is apparent from our comments in Section 2 that Coulomb’s law is frequently used to de-
scribe the friction phenomenon for impact problems. The main problem with Coulomb’s law is
the discontinuity of the friction force due to the difference between static and dynamic behaviors.
For this reason and to capture other aspects of frictional interaction, alternative friction laws have
been proposed. One improvement to Coulomb’s law is obtained by using a non-local model of
friction [36] where the value of friction at one point (in space) depends on the value of certain
quantities in the neighborhood of that point. Another improvement is to use a non-linear model
to permit a continuous transition from the phase of sticking to sliding [29,36,37,57,58].

A model worth mentioning is the bristle model [37,38], which represents the effect of surface
irregularities using bristles. The friction force is defined as

Ft ¼ kfs; sðtÞ ¼
sðt0Þ þ

R t
t0
vt dt; if jsj < smax;

smax
vt

jvtj ; otherwise;

8<
: smax ¼ l

jFnj
kf

ð29Þ

where kf is the bristle stiffness, s the vector of bristle displacement, t0 is the start time of the last
sticking at that contact point, vt the relative tangential velocity and parameter smax is the maxi-
mum allowable deflection of the bristle. Dynamic friction models such as the bristle model above
are particularly suited to continuous contact dynamics modeling as they effectively calculate the
friction force as a function of time (through dependence on s or Fn). Most importantly, the
friction force is defined explicitly and uniquely during sticking at the contact point.

Although not presented as a friction model, Stronge [15] uses the concept of tangential
compliance to evaluate the tangential force at the contact point during sticking. Using our no-
tation,

Ft ¼ ktdt ð30Þ
where dt is the tangential component of displacement of a massless particle at the contact point
and kt is the tangential stiffness. Differently from the bristle model, dt is evaluated as a solution to
simple harmonic motion in the tangential direction.

It is not the scope of the present paper to review in detail the friction models available in lit-
erature. The additional complexity of modern friction models comes at a price of a larger number
of parameters required to define the model, and a less intuitive connection to the actual physics.
Of importance to us is the fact that continuous formulation of impact dynamics allows the user to
easily implement any one of the available friction models. By contrast, only Coulomb’s law has
been used in the discrete formulations of impact dynamics. The reason for this lies in the fact that
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discrete impact models are based on the impulse–momentum formulation and it is only for the
Coulomb’s law of friction that one can easily extend the friction force relationship to the impulse
domain.

3.3. Formulation and solution

A generic unconstrained system is defined by the vector of generalized coordinates q, including
the coordinates used to discretize the flexible bodies [41]. With regard to the latter, we point out
that modeling and discretization issues require special consideration when the impacting bodies
have significant structural flexibility. We direct our readers to the relevant work by Shabana
[52,53], Stronge [11] and Abrate [55,59]. The dynamics equations of a multi-body system in free
(unconstrained) motion have the form

MðqÞ€qqþHðq; _qq; tÞ ¼ 0 ð31Þ

To model the constrained motion of the system, it is convenient to separate the vector of gen-
eralized coordinates in two subvectors, ðqF; qCÞ, where qC contains the coordinates constrained by
the contacts, and qF contains the free coordinates.

3.3.1. Rigid impact formulation
We will start by assuming the impact is rigid, that is similarly to the discrete approach, there is

no deformation associated with the impact, and furthermore, there is no account of energy dis-
sipation. Such a model can be valid in some situations, for example when the surfaces in contact
are very stiff [41]. Letting FC represent the vector of contact normal forces 3 the motion equations
for a multi-body system in contact become

M€qqþHþ 0

JT
CFC

� 	
¼ 0

UCðqC; tÞ ¼ 0; JC ¼ oUC

oqC

ð32Þ

where JC is the constraint Jacobian, and UC represents the constraints associated with the contact
conditions, in particular that the relative distance at the contact point is zero. It is further ap-
propriate 4 to separate the vector of constrained generalized coordinates as ðqsl

C; q
st
CÞwhere qsl

C

contains coordinates associated with slipping contact constraint, while qst
C contains those associ-

ated with the sticking constraint. In case of slipping, in the most general case, friction is defined as
a function of contact forces, coordinates and their rates:

Fsl
t ¼ Fsl

t ðFC; q
sl
C; _qq

sl
CÞ ð33Þ

In case of sticking, the corresponding friction force Fst
t is unknown and the sticking constraints

must be included in the formulation. Thus, the system equations become

3 In Section 2, Fc was used to denote the total contact force, including the normal and tangential components. The

presentation here is made easier by explicitly separating these forces, however, we chose to keep the same symbol for the

sake of convenience.
4 This discussion assumes that the static friction force is not explicitly defined but is unknown.

1230 G. Gilardi, I. Sharf / Mechanism and Machine Theory 37 (2002) 1213–1239



M€qqþHþ
0

JT
CFC

� 	
þ

0

Fsl
t

JstT

C Fst
t

8><
>:

9>=
>; ¼ 0

UCðqC; tÞ ¼ 0; JC ¼ oUC

oqC

Ust
t

_qqst
C

� �
¼ 0; Jst

C ¼ oUst
t

oqst
C

ð34Þ

where Ust
t and Jst

C are associated with sticking constraints [41]. The unknowns are the generalized
coordinates q, the contact (normal) forces FC, and the friction forces Fst

t and are calculated by
solving the differential–algebraic system (34).

The assumptions of the rigid impact model––no deformation and no energy dissipation––are
not likely to be valid for impacts involving high impact forces, although surface and material
properties play a role as well. Furthermore, it may be impractical to apply the rigid impact
analysis to scenarios involving complex geometries where multiple contacts need to be monitored
during simulation.

3.3.2. Explicit continuous formulation
A generic contact model can be expressed as an explicit functional relationship between the

contact force and the generalized coordinates and their time derivatives [39,41], i.e.,

FC ¼ FCðqC; _qqCÞ ð35Þ
with additional dependencies on certain geometric and material parameters. Then, the geometric
contact constraints defined by the vector UC in the system (34) can be dropped. The motion is now
‘‘constrained’’ by the elastodynamic forces defined by Eq. (35). Note that a check of the contact
constraints is still necessary to determine when contact begins or ends. This is an important aspect
of the compliant impact dynamics formulation and is discussed in Section 3.4.

3.3.3. Implicit continuous formulation
This solution to contact dynamics problem is distinguished here because it implicitly allows

deformation due to contact, however, it does not explicitly evaluate the relationship between
contact force and deformation. This method is typically used in the finite element formulations of
contact problems, as in [5,44–46]. The system of equations takes the same general form as in Eq.
(34) except that the generalized coordinates must include the elastic coordinates associated with
the discretization of the contact region. The constraints enforce the condition of impenetrability at
the contact nodes or elements.

3.4. Contact detection and interference calculation

A general algorithm to solve the impact/contact problem must address the problem of detecting
contact. The contact condition of real impacts between bodies is that no material overlap can
occur, that is a condition of impenetrability [5]. One way to determine if contact is present is by
checking the minimum distance between bodies––the contact is declared if this distance decreases
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to zero. Many algorithms for minimum distance calculation and contact detection have been
proposed in literature [60]. One approach involves solution of a constrained optimization problem
of the form:

min
1

2
ðp1

�
� p2Þ

Tðp1 � p2Þ
	
;

g1ðp1Þ6 0
g2ðp2Þ6 0

ð36Þ

where p1 and p2 are the position vectors of two points on the two bodies and g1 and g2 are the
bounding surface constraints. The contact point is the point where the minimum distance is zero.
Examples of application of this approach can be found in [5,38,46].

The explicit formulation of the continuous contact dynamics requires evaluation of the contact
force, which in turn depends on the deformation associated with the contact. Practical imple-
mentations of the explicit contact force model have used the concept of interference distance or
penetration in order to define the contact force. The interference distance calculation can also be
formulated as an optimization problem [38,60]:

minf�dg; g1ðp1Þ6 � d
2
e1

g2ðp2Þ6 � d
2
e2

ð37Þ

where e1 and e2 are vectors containing 1’s and d is the interference distance. The optimization
approach provides a general and robust solution to minimum distance and interference problems.

3.5. Solution of contact dynamics equations

The solution procedure must be tailored to the particular formulation of the contact dynamics
equations. Three general solution methodologies can be defined. The first involves solving a
system of differential–algebraic equations, such as that defined by Eq. (34). Although several
algorithms are available for solution of such systems, they are less advanced than methods for
solving ordinary differential equations. Alternatively, the explicit continuous model can be solved
as a system of ordinary differential equations with a number of algorithms for initial-value
problems. Another method is the penalty method [16,40] where constraints are included in the
motion equations with a penalty parameter. The main weakness of this method is the ill-condi-
tioning which worsens as the penalty value is increased. Other problems are that the solution
strongly depends on the particular choice of the penalty parameter and that it violates the work-
energy balance of the system since some of the energy is stored in the penalty term.

4. Experimental verification

The complexity of impact dynamics requires verification through experiments. Such a valida-
tion can be conducted at two levels, the first being a validation of the basic theories of restitution
or contact force models, while the second is a validation of the overall contact dynamics simu-
lation. As well, experimental measurements or other means are required to determine parameters
characterizing the impact. In the case of discrete models, this involves determination of the co-
efficient of restitution, while for continuous models, at least contact stiffness and damping are
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needed. Both modelling approaches also use one or several parameters to define the friction
model––it is usually the coefficient of friction.

Much of the experimental work related to impact/contact dynamics has focused on measuring
model parameters and verifying the contact force models. The main results of this research are
summarized in the following sections. We do not review the literature dealing with the validation
of the complete contact dynamics models, but direct the interested readers to Van Vliet, Sharf and
Ma [58].

4.1. Coefficient of restitution

The principal and most general study of this subject is due to Goldsmith [9], who measured
the displacements of the impacting bodies, the duration of impact, the geometry of the crater
and the stress waves generated by the impact. Using the initial impact velocity and the measured
displacements, the final (post-impact) velocity was calculated and used to compute the coeffi-
cient of restitution. Fig. 6 shows qualitatively the relationship between the coefficient of resti-
tution and impact velocity for a central direct impact of two spheres. The experimental data
were used to find the dependencies between different quantities, such as coefficient of restitution
and the initial impact velocity, as well as to check the limits of the known impact theories. The
results obtained for the coefficient of restitution clearly demonstrated the dependence of this
parameter on the geometry and material of the impacting bodies, as well as the initial impact
geometry and velocity. More specifically, the coefficient of restitution decreases with the increase
of the initial impact velocity, and for most materials, it is significantly smaller than unity, even
at very low impact speeds. This implies that Hertz’s theory [30] of perfectly elastic impact is
not valid in most impact situations and that some plastic deformation always takes place. As a
conclusion, Goldsmith [9] states that Hertz’s theory provides a good description for impact
of two spheres or a sphere and a plate, if the materials are hard and the initial speed is low.
Under more general conditions, plastic deformation and/or energy loss associated with wave
propagation should be taken into account. As shown in Fig. 6, the coefficient of restitution
tends to level out with increase in impact velocity––the fact demonstrated analytically by Brach
[3].

Fig. 6. Coefficient of restitution as a function of approach velocity.
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Based on the studies reported by Goldsmith, it is possible to establish the following relation-
ship:

e ¼ 1 � a _ddm
0 ð38Þ

where parameter a and the exponent m are dependent on the material and geometry. Other re-
searchers have measured e for specific contact situations, such as the collision of steel bars with
external surfaces [56], impact of an unconstrained slender bar with a massive surface [43], impacts
of a steel sphere moving between two plates [61], and the oblique impact between a sphere and a
plate [62]. All experiments demonstrate that coefficient of restitution depends on many properties
and impact characteristics, in addition to the material properties of impacting bodies. It is
therefore difficult to use this parameter to model complex impact scenarios with multiple-point
contacts.

4.2. Contact stiffness and damping

Contact stiffness and damping, also known as contact parameters, are used to define the contact
force law in the explicit continuous formulation of impact dynamics. Although this model is
conceptually simple, the physical meaning of contact parameters is not obvious and thus, it is not
straightforward to define their values for complex contact scenarios. This is particularly true for
robotic insertions where the contacting bodies––parts to be mated––are subcomponents of a
multi-body chain, which itself may comprise many compliant and dissipative elements. In such
situations, the characteristics of impact are very much determined by the relative compliance and
damping of local (contact) regions, the structural flexibility and damping of the contacting bodies
and/or other constituents of the system. Nevertheless, for simple impact geometries, one can use
the analytical approach to estimate the contact parameters. For example, one can calculate the
contact stiffness by applying Hertz’ theory of contact [54]. For contact damping, one can use the
energy-balance to find a relationship between contact damping and the coefficient of restitution
[32,34,35], although, inevitably, such a result is limited by the accuracy of the coefficient of res-
titution.

An alternative estimation of contact stiffness was used in Van Vliet et al. [58] for a relatively
complex case of a peg contacting a hole wall. There, the contact stiffness was calculated by using
the stiffness of the most compliant element of the wall––the load cells between the hole sides and
the fixed support. Possibly the most practical approach is to determine the contact parameters by
direct experimental measurements. Some research in this area has been carried out in the robotics
community where several identification algorithms have been developed to estimate the stiffness of
the robot environment [63]. As done by the authors of [56], one can always tune the parameter
values used in the numerical simulation to achieve an agreement with the experimental results.

4.3. Tangential coefficients

Extension of experiments to oblique impacts allows a verification of tangential models, in
particular, Coulomb’s model of friction as well as tangential compliance. The former is effectively
done by measuring the coefficient of friction for different impact geometries and demonstrating
that it is approximately constant [56,62]. Results, qualitatively displayed in Fig. 7, indicate the
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presence of two main zones. In the first zone, the initial tangential velocity is low (i.e., the angle of
incidence is high) and the impulse ratio increases rapidly. In this zone, both slipping and sticking
is possible. In the second zone, the tangential velocity is high (i.e., the angle of incidence is low).
For any tangential velocity in this zone, only slipping is present until the termination of impact. In
this zone, the coefficient of friction decreases slowly with increase in tangential velocity.

4.4. Validation of contact force models

It is difficult to make general statements on the validity of discrete impact dynamics models. It
is commonly said that they depend on the applicability of the rigid-body hypothesis, more spe-
cifically, whether it is reasonable to neglect deformation at the contact point. Discrete models
have been used, however, to predict the impact dynamics of flexible bodies, such as flexible beams
[49,50,52,53]. The strong dependency of the energy lost during impact on vibrations of the con-
tacting bodies has been confirmed. Although the discrete formulation is capable of capturing the
energy loss––through the coefficient of restitution––this parameter depends on many factors and
it is difficult to use for general impact scenarios.

If the rigid body hypothesis is not applicable, a continuous contact model can be used. The
non-linear contact force model has been validated experimentally by using flexible beams, as in
[43,56,64]. It was shown that the dynamic behavior of the system is not sensitive to the value of the
damping coefficient over a wide range. Comparison of simulated and measured velocities of the
contact point shows good agreement, especially for low speed impact.

5. Conclusions

In this paper, we reviewed the state of the art on the subject of impact and contact dynamics
modeling. All models were classified in two categories: impulse–momentum or discrete and con-
tinuous. In the former, the impact analysis is divided into discrete events and energy dissipation is
accounted for via coefficient of restitution and the impulse ratio. In the continuous approach, the
dynamics analysis is conducted continuously, by admitting (explicitly or implicitly) a relationship
between contact force and deformation.

Fig. 7. Impulse ratio as a function of initial tangential velocity.
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The discrete formulation has been applied mainly to rigid-body collisions since its main premise
is the rigid-body hypothesis which imposes a limit on the energy loss. Definition of the coefficient
of restitution is a key aspect of the discrete approach and three such definitions exist in literature.
Closed-form solutions for simple impact geometries demonstrate that under general impact
conditions, the three models of restitution do not produce the same results. Moreover, Newton’s
and Poisson’s models may produce solutions which are energetically inconsistent. Naturally,
predictions of the discrete impact analysis depend on the accuracy of the coefficient of restitution.
However, experiments have proven that this parameter depends on many impact characteristics,
which makes accurate estimation very difficult. The use of the coefficient of restitution for impacts
involving flexible bodies is precarious.

Various solution methods to solve the discrete impact dynamics equations have been presented,
as well as the generalization of the methodology to multi-body systems subject to multiple con-
tacts. It was noted that the discrete formulation is not easily extendible to handle general impact
scenarios, more specifically those where impacts occur at many points in the system. Finally, the
necessary use of Coulomb’s law with the discrete approach may lead to inconsistencies or multiple
solutions.

The continuous approach has several advantages over the discrete formulation. Very impor-
tantly, it does not require one to differentiate between impact and contact situations and permits
the use of solution methods employed for non-impact dynamics problems. The approach extends
quite naturally to contact scenarios with multiple bodies and/or multiple points of contact. The
added complexity of the minimum distance/interference determination problem seems minimal
when compared to making ad hoc assumptions on the impulse histories at different contact lo-
cations. Different models for contact force were presented, and as noted by several researchers and
verified experimentally, the model with a non-linear damping term represents quite well the real
behavior of the system during impact. However, it may require tuning contact parameter values
since for impacts involving multi-body systems, their values are not easily obtained. Unlike the
discrete formulation, the continuous approach allows for use of any friction model. Two principal
solution methods were identified in the context of continuous formulation: explicit and implicit.
The latter is typically used in conjunction with a finite-element discretization of the contacting
bodies.

In our final overall consideration of the different approaches, we conclude that the continuous
formulation combined with an implicit solution for the contact forces appears to be the best for
analyzing flexible multi-body systems subject to multiple impacts and contacts. This procedure is
most general, does not involve approximations or assumptions regarding the impact process and
does not require additional contact parameters.
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