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Abstract. Autonomic oscillatory activities exist in 
almost every living thing and most of them are 
produced by rhythmic activities of the corresponding 
neural systems (locomotion, respiration, heart beat, 
etc.). This paper mathematically discusses sustained 
oscillations generated by mutual inhibition of the 
neurons which are represented by a continuous- 
variable model with a kind of fatigue or adaptation 
effect. If the neural network has no stable stationary 
state for constant input stimuli, it will generate and 
sustain some oscillation for any initial state and for any 
disturbance. Some sufficient conditions for that are 
given to three types of neural networks: lateral inhi- 
bition networks of linearly arrayed neurons, sym- 
metric inhibition networks and cyclic inhibition net- 
works. The result suggests that the adaptation of the 
neurons plays a very important role for the appearance 
of the oscillations. Some computer simulations of 
rhythmic activities are also presented for cyclic inhi- 
bition networks consisting of a few neurons. 

1 Introduction 

Various oscillatory or rhythmic activities exist in 
almost every animal and most of them are produced 
without receiving any particular extrinsic oscillatory 
stimulus. Locomotive motions such as locomotion of 
quadrupeds, flapping of bird wings, swimming of fish, 
etc. are typical examples of oscillatory activities. 
Respiration and heart beat are other familiar examples 
of rhythmic activities occuring inside the body. Oscil- 
lation can also be observed in sensory systems. When 
the compound eye of the horseshoe crab is subjected to 
uniform illumination, periodic oscillation appears in 
the optic nerve (Barlow and Fraioli, 1978). It is also 
observed in the lateral geniculate nucleus of the cat's 

vision system (Wall et al., 1979). Binocular rivalry 
might be a psychological example observed in the 
human vision system (Matsuoka, 1984). 

To explain the mechanism of such autonomic 
oscillatory activities, various models of neural net- 
works have been suggested. In all the models, neurons 
are connected such that one neuron's excitation 
suppresses the other neurons' excitations. Reiss (1962) 
showed that a pair of reciprocally inhibiting neurons 
with fatigue can produce alternate bursts of firing. 
Kling and Sz6kely (1968) investigated rhythmic activ- 
ities of circular networks with cyclic inhibitions. 
Suzuki et al. (1971) also investigated the dynamics of a 
circular network of five neurons to explain the move- 
ments of starfish. Friesen and Stent (1977) explained 
the locomotory rhythms by neural network with 
current cyclic inhibition. Nagashino et al. (1981) 
showed that a circular network with lateral inhibition 
can generate various types of rhythm patterns. 

Although these models successfully demonstrated 
the oscillation, it was generally difficult to obtain 
specific conditions in which the oscillations occur. It is 
because their neuron models have more or less 
"digital" features. On the other hand, Morishita and 
Yajima (1972) analysed networks represented by a 
continuous-variable neuron model and gave math- 
ematical conditions in which the networks have stable 
stationary states and sustain oscillations. As for the 
oscillation, however, they only analysed a very special 
type of networks. 

This paper also gives mathematical conditions for 
mutual inhibition networks represented by a 
continuous-variable neuron model to generate oscil- 
lation. It deals with three general classes of networks 
which are important from practical point of view: 
lateral inhibition networks of linearly arrayed neurons, 
symmetric inhibition networks, and cyclic inhibition 
networks. Morishita and Yajima's (1972) model is a 
special case of the last class of networks. These models 
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are more general in two respects than the previous 
models mentioned above. 

First, in our models each neuron received a differ- 
ent magnitude of external input (stimulus) in general, 
and the synaptic weights between the neurons are not 
necessarily equal. Meanwhile, in almost every previous 
models, each neuron receives the same external input 
and the synaptic weights are all equal. Secondly, 
adaptation is incorporated into them (as a special case, 
it includes the case of no adaptation). That is, the 
neuron has a property such that the firing rate 
decreases when given a constant stimulus energy. Our 
analysis will show that adaptation has an important 
role on the appearance of the oscillation. 

2 Analyses of Mutually Inhibiting Neurons 

2.1 Model of the Mutual Inhibition Network 

Among many models representing a single neuron's 
activity (Harmon and Lewis, 1966) we shall adopt a 
continuous-variable neuron model. Since the model 
represents the firing rate of a neuron by a continuous 
variable with time, it is suitable to describe the 
behaviour of the neuron whose impulse frequency 
changes slowly in comparison with the impulse 
intervals. 

Although various continuous-variable models are 
conceivable, the following model are widely used for its 
mathematical simplicity (Morishita and Yajima, 1972; 
Hadeler, 1974), with slight modifications by some 
authors (Sugawara et al., 1983): 

~s: + x = ~ c;sj ( ~= d/dO | 
j = l  

y = g(x - O) (9(x) & max(O, x)). (1) 

Here x is a membrane potential of the neuron, sj 
impulse rate of the input stimuli, 0 the threshold value 
below which the neuron does not fire, -c a time constant, 
cj weights of synaptic conjunctions ( > 0 for excitatory 
synapses and < 0 for inhibitory synapses), and y is an 
output or a firing rate of the neuron. 

Although this model has been used by many 
authors, its behaviour does not resemble real neurons' 
one in one respect. When the neuron receives a step 
input, the output (firing rate) will increase monotoni- 
cally with time and approach to a stationary state 
( x =  ~ ajej). Actual neurons, however, commonly do 

not exhibit such a time course; the output increases 
rapidly at first and then gradually decreases to a lower 
level. This decrease of the firing rate is called adapt- 
ation (Luciano et al., 1978). It was shown by Reiss 
(1962) and Suzuki et al. (1971) that the adaptation of 
neurons has an essential role in the generation of the 
oscillation on computer simulation or by anaIog 
models without mathematical analysis. 

Instead of (1), therefore, we shall consider the 
following neuron model which takes into account the 
adaptation: 

~ + x = ~ cjsj- by" | 
j = l  | 

TYc' + x ' = y  f 
y = o ( x -  0), j 

(2) 

where x'is the variable that represents the degree of the 
adaptation, and T(> 0) and b(> 0) are the parameters 
that specify the time course of the adaptation. Values of 
these parameters should be determined such that the 
step response will not be a (damped) oscillation in 
consideration of the behaviour of the actual neurons. 
The condition for that is 

( T - z ) 2 > 4 T z b .  (3) 

It should be noted that the previous model without 
adaptation, (1), is a special case of the present model 
(b = 0). Oppositely when b is very large (b~ oo with 
b/T=constant) it will become a kind of differentiator, 
which responds only to changing input but not to 
constant input. The neuron with small b is the so-called 
"sustained-type" or "tonic" neuron; on the other hand, 
that of large b corresponds to a "transient-type" or 
"phasic" neuron. Step responses of three cases, b = 0, 
0 < b < oo, and b = o% are shown in Fig. 1. 

Throughout this paper we discuss oscillations 
generated by mutual inhibition between n neurons 
with adaptation: 

Yet + xi = - ~ atjy j + s t -  bx~ 
j = l  

t T2~ + x~ = Yt [ 
Yi= g(xt) (i = 1,...,  n) . ] 

(4) 

Here atj indicates the strength of the inhibitory connec- 
tion between the neurons; a~j> 0 for i # j  and = 0 for 
i=j  (we consider neither excitatory connection nor 
self-inhibition). Z a~jyj represents the total input from 
the neurons inside a neural network and st the total 
input from the outside of the network, z and 0 are 
omitted in this equation, for we can let �9 = land 0 = 0 in 
(2) by replacing x i -  O, t/z, T/z, and s i -  0 by xi, t, T, and 
st, respectively. Henceforth we assume that inputs st are 
positive and constant with time. 

Morishita and Yajima (1972) investigated the case 
of b = 0 and gave a sufficient condition for the absence 
of stable stationary states in a special type of networks. 
The present paper gives some conditions to the case of 
b > 0 and more general types of networks. When the 
conditions are satisfied, the networks will produce and 
sustain oscillation (not necessarily periodic) for any 
initial state and for any temporary disturbance. 
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Fig. 1. Step responses of the neuron model for three typical cases; 
b=0, 2.5, and oo with constant z(= 1) and b/T(=2.5~12) 

Before analysing the stability of stationary states 
we describe a basic theorem on the existence, unique- 
ness and boundedness of the solution of (4). 

Theorem 1. A solution of  Eq. (4) exists uniquely for  any 
initial state and is bounded for  t > O. 

Proof.  The existence and the uniqueness of the so- 
lution can be easily proved by checking Lipschitz's 
condition. 

To prove the boundedness, solve the second equa- 
l. tion of (4) with respect to x~, 

x;( t )= x;(O)e-'/T + 1,r e-t/T i g(xi(u))e"/T du. (a) 
1 0 

Since g(xi(u)) is nonnegative, 

t ~ x,(t) = - Ix~(O)l (t > 0) (b) 

Solving the first equation in (4) with respect to x,, we 
obtain 
xi(t) = xi(O) e - '  + si(1 - e - t) 

t t 

- Y. aiae-' ! g(xj(u)) e" d u -  be - '  j x~(u) e ~ du. (c) 
j o 

Applying (b) to (c), we get 

t 

xi(t) < Ixi(O)] + si + be- t  [. [x~(0)l e" du 
0 

= Ix,(O) l + s, + b N ( 0 )  I (1 - e - t) 

_-< Ix,(0)l + s, + blx;(0)] .  (d) 

Applying (d) to (a) gives similarly 

xi(t) = Ix,(0)l + Ixi(0)[ + si + blxi(0)l (e) 

Applying (d) and (e) once again to (c), we obtain 

xi(t) >= - I x i ( 0 ) l -  52 ao.Qxj(0)l + sj + blxS(0)l) 
J 

- b(Ix~(0)l + Ix,(0)[ + s~ + blxi(0)l).  (f) 

From (b), (d), (e), and (f) we can conclude that any 
solution is bounded for t => 0. Q.E.D. 
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2.2 Stationary Solutions 

Let yO(= [yO,... ,y0]r) be an output in a stationary 
state, then it must satisfy the following equation 

yO = F[-y0] =a [-f~ (yO), ..., f~(yO)] r ,  (5) 

where 

Conversely, if yO satisfies (5), then xi = -  Z aijy ~ + si 
) 

0 t 0 �9 
- byi,  xi = Yi 0 = 1 . . . . .  n) is a stationary solution of(4). 
As for the existence of stationary states, the following 
theorem holds. 

Theorem 2. Equation (4) has at least one stationary 
solution. 

Proof. Define a bounded, convex region D in the 
n-dimensional Euclidean space R" by D & {0 < yi<s~; 
i=  1, ...,n}. Since 0_-_g(- ~ a i j y  ~ + s i - b y  ~ <=s~ for 

arbitrary yO, F is a continuous, contractive mapping 
from D into D. According to Brower's fixed point 
theorem there must be a fixed point of F and it is a 
stationary solution of (4). Q.E.D. 

Let S be a subset ofN ~= { 1, ..., n}. It is obvious that 
x = x ~  [x ~ . . . .  , x~ T) is a stationary solution of (4) if 
x ~ satisfies the following equalities and inequalities: 

_ + 0 , 
j s S  

(we shall not consider the case where the inequalities 
become equalities to avoid too delicate discussion). S 
implies a set of neurons which are more or less firing in 
a stationary state. In general there are more than one 
subset that satisfy (6) and we denote the family of such 
S by S. It is not easy to find all solutions of (6), but we 
shall only use the following simple lemmas which 
assure the positivity of the i th neuron's output yO in 
every stationary state. 

Lemma 3. I f  si > Z a~jsj, then x ~ > 0 for  every S e S. 
J 

Here a~j z~ aij/(1 + b) (this denotation'  will be frequently 
used). 

Proof. If x~  then x ~ ~ 1 7 6  ~ Therefore x ~ 
= - Y. a~jy ~ + s~-  bx~ ~ < s , -  bx ~ giving yO < sj(1 + b). 
If x ~ < 0, of course, yO <= sj(1 + b). Thus yO < sj(1  + b) 
in every case. Hence 

'S x~ >= - 2 aij j + s i -  bx~ ~ (a) 

We here suppose x ~ < 0 or yO = 0. Then, since x~ ~ = yO, 
(a) becomes 

0 > x ~ > - Z ai%sj + %. (b) 
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Since it is contradictive to the assumption of the 
lemma, x ~ must be positive. Q.E.D. 

A less strict condition for the positivity ofx  ~ can be 
obtained as follows. Suppose that x ~  and find 
certain lower bounds of the outputs of the neurons 
other than i; x ~ >~i}/(1 + b). Then we can find certain 
upper bounds of the outputs; x ~  If 
~a~j~./(1 +b)  is less than s~, there will never exist a 
stationary solution such that x~<0.  Therefore, if 
x ~ <__0, then Z aij~./(1 + b) > si. Thus we have 

Lemma 4. For i E N, define u~ i, Sk-- ~ a'kzSz, ~ik zX g(UD, 
l * i  

i ~ -" " ~ .  i Vj=SJ--k~**ia}kU' k and ~=9(vj) ,  k, j e N .  Then if 

s i > ~, aijvj; ~ x ~ > 0 for every S e S. 
J 

Proof. Suppose that x ~ < 0  or yO = 0, then inputs to 
the k th neuron are Sk and - auy ~ (l ~ N, 1 =t = 0. Since yO 
<= sJ(1 + b) (see the proof of Lemma 3), the total input 
to the k '~ neuron is not less than u~ a= Sk-- Y~ a~zst. If u~ 

l:#:i 

is positive, yO o i =Xk>=Uk/(l+b ). Since yO is always 
nonnegative, 

y~ for k such that u~>0 

_>_0 for k s u c h t h a t u ~ < 0 .  

That is, o -i yk>Uk/(l+b). Using this result we obtain 
yY < ~/(1 + b) in the same way. 

Since we supposed x ~ < 0, the total input to the i th 
neuron must be nonpositive, which gives 

s~- Za~j~<0. 
J 

However it contradicts the assumption in the lemma. 
Therefore, x ~ must be positive on the assump- 
tion. Q.E.D. 

Since ~<sj ,  the condition in Lemma 4 is a less 
strict condition than that in Lemma 3. 

Stability of a stationary solution will be found by 
investigating the differential equation which is ob- 
tained by linearizing (4) in the vicinity of the stationary 
solution: 

2i + xi = - ~ ai jx j -  bx~ ] 
j ~ s  

r2~ + x~ = xi (i c S). (7) 

If the origin of (7) is unstable for every S ~ S or (4) 
has no stable stationary state, then every solution 
(other than the unstable stationary states) must be 
oscillatory (not necessarily periodic) due to the 
boundedness of the solution (Theorem 1). 

Without losing generality, we assume that 
S = {1 . . . . .  m} (m < n). Expressing (7) in a matrix form 

gives 

TX~ + xb_ l x} ' 
(8} 

where 

x~= [x~,..., x j  T, x;= [xl,..., x;,] ~, 

0 a l ,  2 a~,m 

a 2 ,  1 0 .  \ \ 1 
1 I \ . .  " . .  " - .  

As= I "" \ I 

] x x x \ a m - l , m  
I "- 

" " 0  am,  1 . . . .  am ,  m -  1 

and I is the mth order unit matrix. The characteristic 
equation of (8) becomes 

( 2 + l ) I + A s  bI1) I 
- I  (T2+  = 0 .  (9) 

It can be modified to 

[AI + As] -= 0 ] 

A =(2 + 1) + b/(T2 + 1) / (10) 

(i.e., T22+(1 + T -  TA)2+(1  + b - A )  =0) .  

If a root of the equation, 2, has a positive real part, the 
stationary solution is unstable. 

In the sequel we shall only discuss the following 
three important cases from a practical point of view: 

I) lateral inhibition between neighbouring 
neurons in a linear network; a~,i-~ = a l ,  ai-l , i=a2 
(i = 2, . . . ,  n) and other aij are zero. 

II) symmetric inhibition; a~ = aji (i,j = 1,...,  n). 
III) cyclic inhibition in a circular network; air 

- - a i _ u _  1 ( i , j = 2  . . . . .  n), au=a, , j_  1 ( j=2  .... ,n), all 
=a i - l , ,  ( i=2  . . . .  ,n). 

2.3 Case I: Lateral Inhibition in a Linear Network 

The most simple mutual inhibition network will be one 
consisting of a pair of neurons (n= 2) reciprocally 
inhibiting each other's excitation. Reiss (1962) inves- 
tigated the rhythmic behavior of such a network of 
digital neurons by computer simulation. Matsuoka 
(1984) gave a mathematical condition in which the 
present continuous-variable model has no stable 
stationary solution. He investigated the case of 
a12 = a21 , and a similar result can be derived in the case 
of alz4:a21 in the same way: 

Theorem 5. Equation (4) in the case of n-= 2 has no 
stable stationary solution if and only if 

a'~z <&/s2, a'z~ <s2/&, and [/-alaa2t > l + l /T .  



The theorem can be generalized to a tri-diagonal 
matrix with equal diagonal elements: 

0 a 2 0~ .  0 

\ I 
a 1 0 .  a 2 \ \ 1 

A =  0 .  . .. - - .  0 (11) 

I "-. \ \ " a ,  x .  "x  

\ " 0  0 \ 0 a 1 

This matrix can be interpreted as a lateral inhibition 
between neighbouring neurons in a network consist- 
ing of linearly arrayed neurons. 

Theorem 6. I f  there exist i 1 and i 2 (e N, i 1 < i2) that 
satisfy the following inequalities 

si>(alSi_x +a2si+l)/(l +b ) ( i=i 1 . . . . .  i2) (12) 

and 

21 a /~a~cos( l r / (M+l) )>l+l / r  or l + b  

(MZX i 2 - i l )  (13) 

then Eq. (4) has no stable stationary solution. Here So 
and s,+t are regarded to be zero when i 1 = 1 or i2=n. 

Proof. From (12) and Lemma 3, there exist kx(<il)  
and k2(>iz) for each S ~ S  such that xkl~ 
Xk 20 + 1 < 0, and x ~ > 0 (k I < i N  ka); that is, the k t-th to 
kz-th neurons are not influenced at all by the other 
neurons' activities in the neighbourhood of the station- 
ary state. Therefore, if the linearized differential equa- 
tion (7) for the small set of neurons (k l<i<k2)  is 
unstable for each S ~ S, all the stationary states of the 
original system will be unstable. The characteristic 
equation of the linear differential equation (10) 
becomes (Appendix A) 

K 

I~ { A - 2  a]/~la~cos(rci/(K+ 1))} =0  ( K & k z - k a )  
i = 1  

i.e., 

T22+ {1 + T-Za]/~lazTcos(zri/(K+ 1))}2 

+ { 1 + b -  2al/~a ~ cos(rci/(K + 1))} = 0 

( i =  l, . . . ,  K) . (a) 

Meanwhile, from K > M  and (13) we have 

2 al/~la2cos(rc/(K+l))>l+l/T or l + b .  

Thus, the coefficient of the second or third term of (a) 
for i = 1 becomes negative, which implies that a root of 
(a) has positive real part. Q.E.D. 

Roughly speaking, osciIlation will occur when the 
following conditions are satisfied: 

(i) A part of neurons receive equal degrees of 
inputs; one can see that (12), i.e. l>(axs~_~/s~ 
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--]-azsi+l/si)/(1 +b), will not be satisfied if si-1/si or 
si + 1/si is very large for all i = 2, ..., N - 1. 

(ii) The inhibitory synaptic weights, al and a2, are 
around one; if they are too great or too small, (12) or 
(13) will not suffice, respectively. 

(iii) The neurons have a strong adaptation effect, 
or large b and T. 

These three conditions will also apply to the other 
classes of networks. 

Almost all vision systems (the retina for example) 
are basically two-dimensional networks. However, 
they can often be described by one-dimensional models 
without losing their essential functions. Oscillations in 
the optic nerve of the horseshoe crab (Barlow and 
Fraioli, 1978) and in the lateral geniculate nucleus of 
the cat (Wall et al., 1979) might be explained by the 
present model. 

2.4 Case II: Symmetric Mutual Inhibition 

We now assume that the matrix A is symmetric; 
aij= aji (i,j ~ N). Then the following theorem holds. 

Theorem 7. Assume that for some i and k (i # k) 
(i) si - Z ai~sj > 0 and Sk-- Z a'kjSj > 0 

J J 
(ii) aik > 1 + 1/T or aik > 1 + b, 

then Eq. (4) does not have any stable stationary solution. 

Proof. Since we have assumed that A is a symmetric 
matrix, A s is also symmetric for every S ~ S. So, A that 
satisfies (10) is a real number. Therefore, a necessary 
and sufficient condition for real part of some 2 to be 
positive is 

I + I / T - A < O  or l + b - A < 0 .  

Since (10) can be modified to 

I-A'I+ {As + (1 + 1/T)I}[ =0 

A ' = I + I / T - A  

o r  

] - A " I +  {As + (1 +b)I}[ = 0 ,  

A " = I + b - A ,  

the condition for a root of Eq. (9) to have a positive real 
part is that matrics A~+(1 + 1/T)I or A~+(1 +b)I  has 
at least one negative eigenvalue. 

From assumption (i) and Lemma 3 every S ~ S  
includes i and k, and according to assumption (ii) 
As+(1 + 1/T)I or As+(1 +b)I  has a negative prin- 
cipal minor of the following form: 

1 + 1/T a~k l+ibak aik 
aki 1 + 1/T or 1 +b  " 
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Thus A+(1  + 1/T)I  or A+(1  +b)I  must have a nega- 
tive eigenvalue (a condition that all eigenvalues of a 
matrix have nonnegative real parts is that every 
principal minor of A is nonnegative). Q.E.D. 

This theorem suggests that, also in symmetric 
networks, if at least one pair of neurons satisfy three 
conditions in the last section, (i), (ii), and (iii), some 
oscillation will appear. 

When the weights of the inhibitions between the 
neurons are all equal (aij--a for every i and j), we can 
get a stronger result than Theorem 7. Since the net- 
work has a completely symmetric structure, we can 
suppose that s~ > s 2 ~ ..  . ~ S n without losing generality. 
Then, 

Theorem 8. I f  and only if a/(1 +b)<s2/s l  and a> 1 
+ l/T, Eq. (4) has no stable stationary solution. 

Proof (Necessity). It is obvious that if as1/(1 + b) > s2 
(accordingly, > s3 > s4...), there exists a stable station- 
ary solution; x ~ = sl/(1 + b) > 0 and x ~ < si 
- a s ~ / ( l + b ) < O  ( i=2 , . . . ,n ) .  Therefore, a/ ( l+b)  
< s2/sl must hold for the absence of stable stationary 
solutions. Then the number of elements of S, denoted 
by m, is greater than one and the characteristic Eq. (10) 
becomes (Appendix A): 

{T22 +(1 + T -  Ta)2+ (1 + b - a ) }  "-~ ( (T2+  1)(2+ 1) 

+ b + ( m - 1 ) ( T 2 + l ) a } = O  (m>2) .  (a) 

The condition for a root of the equation to have 
positive real part is a >  1 + 1/T [note that aN 1 + b  
from a/(1 + b)< s2/sl ~ 1]. 

(Sufficiency) If a/(1 + b) < Sz/Sl, then every S(~ S) 
includes more than two elements and the correspond- 
ing characteristic equation becomes (a). From 
a > l + l / T ,  a root of (a) must have positive real 
part. Q.E.D. 

2.5 Case III:  Cyclic Inhibition in a Circular Network 

Let us consider the matrix that has a cyclic structure as 

0 al . . . .  a,_x 
\ 

~n 1 0 \  \ \ an-  2 
I \ \ \ I 

A =  I ", \ \ I (14) 
\ I I \ "" \ a  

a2 ", \ N \ 1 

\ \ 0  a 1- - - a n _  1 

This type of mutual inhibition were investigated by 
many authors with various neuron models (Kling and 
Sz6kely, 1968; Suzuki et al., 1971; Morishita and 
Yajima, 1972; Nagashino et al., 1981). As for the 
present neuron model, the following theorem holds: 

T h e o r e m  9. I f  
(i) s l -  ~ a~sj > 0 for all i e N, and 

J 

(ii) a 1 cos(2nk/n) +. . .  + a,_ 1 cos(2rck(n- 1)/n) 
< - ( 1  + l /T) for some k ( = l ,  ..., n -  1), 
then Eq. (4) has no stable stationary solution. 

Proof. From Lemma 3 the only element of Sis N. The 
characteristic equation (10) is (Appendix A) 
n--1  

H {(4+ 1)+alco k 
k = 0  

+ a2co2k + . . .  + an_ 1CO(n- 1)k} = 0, (15) 

where co is a primitive root of co"= 1. Let 

Pk A= al cos(2rck/n) +. . .  + a,_ 1 cos (2rck(n- 1)/n) 

qg & al sin(2~zk/n) + ... + a,_ 1 sin(2rck(n- 1)/n) 

2 = iz (i is an imaginary unit) 

then (15) becomes 

n--1  

YI + iOn(z)) =0, 
k = 0  

where 

Oo(Z) = Tz 2 + TqkZ-- (1 + b +Pk), 

~bl(z ) = - ( 1  + T +  Tpk)z--qk. 

Constructing Strum sequence from fro(Z) and ~l(z) (see 
Appendix B), we obtain a series of algebraic functions: 

~ 0 ( Z ) ,  ~ I ( Z )  , 

~b2(z ) = 1 +b + Pk-- T2q~( 1 + Pk)/( 1 + T +  Tpk) 2 . 

Thus 

0o(OC) oo): 
~bl(oe) = - ( 1  + T +  Tpk)o% 

~bl(- oo) = (1 + r + Tpk ) 0% 

qi2(oo) = ~bz(- oo)= 1 +b+pk  

-- T2q2(1 +pk)/(1 + T +  Tpk) 2 . 

If l + T + T p k < O  (the second assumption in the 
theorem), then ~bl(oo)= oo and ~bl(-oo)= - o 0 .  Thus 
V(oe ) -  V ( -  oe), defined in Appendix B, is less than 2 
regardless of the sign of ~b2(~)=~b2(-oe), which im- 
plies that a root of(15) has positive real part. Q.E.D. 

2.6 Examples 

This section presents some examples of oscillations 
generated by cyclic inhibition networks consisting of 
two to five neurons. 

All neurons of a network receive the same input 
(si = 1, i e N). Parameters T and b are given the values 
that satisfy (3); T = 12 and b = 2.5. Parameters ai are all 
equal for every inhibition if it works from a neuron to 
another neuron and are zero if not. They are deter- 
mined such that they satisfy Theorems 8 or 9 (the 
parameters a, in Fig. 5b does not satisfy the first 
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0 5 I0 15 20 25 30 35 40 45 5'0 
Fig. 2. A neuron ring consisting of  two neurons and its rhythmic activity. The neurons receive the same magnitude of excitatory stimuli 
from the outside of the network, and inhibitory stimuli from the inside neurons, at = 2.5 
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Fig. 3a and b. Neuron rings consisting of three neurons 
and their rhythmic activities. The neurons receive the 
same magnitude of excitatory stimuli from the outside of 
the network, and inhibitory stimuli from the inside 
neurons, a a 1 =2.5 and a2=0;  b at =a2=2 .5  
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Fig .  4a-d, Neuron rings consisting of four neurons and 
their rhythmic activities. The neurons receive the same 
magnitude of excitatory stimuli from the outside of the 
network, and inhibitory stimuli from the inside neurons. 
a a t=2.5,  a z = a 3 = 0 ;  b a l = a 2 = l . 5  and a3=0;  
c a 1=a3=1.5  and az=0 ;  d a s = a 2 = a 3 = 2 . 5  
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Fig. 5a-e. Neuron rings consisting of five 
neurons and their rhythmic activities. The 
neurons receive the same magnitude of 
excitatory stimuli from the outside of the 
network, and inhibitory stimuli from the 
inside neurons, a a 1 =2.5 and a2 =a3 
=a4.=O; b al =a2=2.27,  a 3 =a4.=O; 
e a l = a 4 = l . 5  and a / = a 3 = O ;  dal=az 
= a 3 = 1  and a4=O; e a l = a 2 = a 3 = a 4 = 2 . 5  
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condition of Theorem 9 or Lemma 3, but it satisfies 
Lemma 4). 

The results by computer simulation (Runge-Kutta- 
Gill method) are presented in Figs. 2-5. They all 
exhibit oscillation and most of them are periodic. The 
oscillation of Fig. 2 could be considered as a (figura- 
tive) model for central activities in respiration, heart 
beat, bipedal locomotion, flapping of bird wings, etc. 
Figure 4b and d might suggest locomotion of quad- 
rupeds. (Figure 4a and c are essentially the same as 
Fig. 2.) Figure 5 could explain the mechanism of the 
movements of starfish. Only the case of Fig. 5e does not 
show periodic oscillation, but it is not clear whether it 
is a periodic oscillation with a very long period or is 
really a nonperiodic oscillation. 

It shoud be noted that Kling and Sz~kely inves- 
tigated networks of the same structures but their 
models did not produce rhythms in the case of Fig. 2, 
Fig. 3b, Fig. 4a, c, d, and Fig. 5c and e. This might 
correspond to the fact that if there is not the adaptation 
effect (b = 0), any value of ai does not satisfy Theorem 8 
nor 9 in these cases. 

Indeed, we can prove that, if b = 0 and si = s for all i, 
the following cases give at least one stable stationary 
solution for any value of aF 

(i) a 1 = a2 . . . . .  an- 1 = a (Fig. 2, Fig. 3b, Fig. 4d, 
Fig. 5el; 

(ii) n is an even number and a2 = a3 . . . . .  an- 1 = 0 
(Fig. 4a); 

(iii) n is an even number and al =an-1 = a  and 
az . . . . .  an - 2 = 0 (Fig. 4c); 

(iv) n = 5 ,  at =a4=a,  and a 2 = a 3 = 0  (Fig. 5c). 
It is evident from Theorem 8 that the first case (i) 

has a stable stationary solution for any a. 
In the second case, if a 1 < 1, then a stationary 

solution x/~ = s/(1 + aO ( i = 1 . . . . .  n) is stable because its 
n - 1  

characteristic equation I-I (2 + 1 + alc~ k) = 0 [see (15)] 
k = 0  

does not have a root with positive real part. If a 1 ~ 1, 
t h e n x O = x O =  _ o o o o 1 

. . .  - - X n _  1 = S  and X 2 ~ X 4 =  . . .  ~ X  n = 

-a~s<__O is obviously a stable stationary solution. 
Therefore the case (ii) also has a stable stationary 
solution for any as. 

In the third case, if a <  1/2, then a stationary 
solution x ~  ( i = l  . . . .  ,n) is stable, 

n - - 1  

because its characteristic equation, ]-I (2+ 1 
k = 0  

+2acos(2r~k/n))=O, does not have a root  with posi- 
tive real part. If a_>_ 1/2 there exists a stable stationary 
solution x O = x O = . . . _  o o o _ o 

- -  X n _  I = S , a 2  : x 4  : . . . - -  x n 

= ( 1 - 2 a ) s < O .  

In the last case, if a < 1/(2 cos(re/5)), then a station- 
ary solution x ~  ( i=1  . . . .  ,5) is stable, 

4 
because the characteristic equation, [ I  (2 + 1 

k 0 

+ 2a cos(27rk/5))= 0, does not have a root with posi- 
tive real part. If a~l/(2cos(rc/5)),  X~ x ~  ~ 
=s/(1 + a ) > 0 ,  x~176 + a ) - a ) s < O  is a stable 
stationary solution. 

3 Concluding Remarks 

From Theorems 5 to 9 we can in general conclude that 
the mutual inhibition network generates and sustains 
oscillation when it has the following properties: 

(i) part of(or the whole) neurons receive the same 
degrees of inputs; 

(ii) those neurons mutually inhibit their excita- 
tions with a medium strength; 

(iii) the neurons have a strong adaptation effect. 
The most important result is that the adaptation 

plays a very important  role on the generation of the 
oscillation. If there were not the adaptation, oscillation 
could only occur in networks of special structures; as 
for the examples in 2.6 only half of those oscillation 
would be "stable" in the sense that the state of the 
network does not fall into some stable stationary state 
for any disturbance. On the other hand, if a network 
has a strong adaptation, it can easily generate stable 
oscillation. 

In this paper we have only derived some conditions 
in which there is no stable stationary solution, but 
some important  and difficult problems remain un- 
solved; for example, 

(i) In what condition does a periodic or non- 
periodic oscillation appear? 

(ii) Are there more than one patterns of stable 
periodic oscillation for a network? 

Appendix A 

Some formula on determinants 

p r O  0 
I , .  \ i I  \ \ \ 

q- .  \ \ \  "" I n 

0 \ ..\ \ \ \ 0 1= I~ {p-2lf~cos(rci/(n+l))}, 
I \ \  \ \ \ \ \  i=i 

Ii \ "-.. .. r ]  

\ x x /0 0 q  p/ 
\ \q\ q 

P\ \ \  I 
\ \ l[=(p--ql"-l{p+(n--t)q}, 

i \ \ \11 \ \ P  q 
- q  p 

I a~ ::::i::-:l 
a n - i  - -  - -  - -  - n - 1  

= I] {ao+alcok+.-.+a,,-lco (" 1)k}, 
k=O 

a 1 a 2 -  - -  - - a  o [ 

where n is the order of the determinants and co is a primitive root 
of co" = 1. 
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Appendix B 

A condition for a root of an algebraic equation with complex 
coefficients to have positive real part (Marden, 1966). 

Let f(2) be an algebraic function of degree m and divide f(iz) 
(i is the imaginary unit) to two parts according to real and 
imaginary parts of the coefficients: 

f(iz) = Co(Z) + iOn(z). 

Applying the Euclidean algorithm to Co(Z) and ~bl(z), 

e h -  l ( z )  : ~oh(z) ~h(z)  - ~ + 1, 

we obtain a series of algebraic functions (Strum sequence) 

Co(Z), ~l(z) . . . . .  r 

Further we define V(x) as the total number ofneighbouring 
pairs of eh-l(x) and eh(x) whose signs are different to each 
other's, where x is a real number. Then, if 

v ( ~ ) -  v ( - ~ ) < m ,  

at least one root of f()~) exists on the right half of the complex 
plane. 
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