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Abstract. Gupta (SODA’01) considered the Steiner Point Removal
(SPR) problem on trees. Given an edge-weighted tree T and a subset
S of vertices called terminals in the tree, find an edge-weighted tree TS

on the vertex set S such that the distortion of the distances between ver-
tices in S is small. His algorithm guarantees that for any finite tree, the
distortion incurred is at most 8. Moreover, a family of trees, where the
leaves are the terminals, is presented such that the distortion incurred by
any algorithm for SPR is at least 4(1 − o(1)). In this paper, we close the
gap and show that the upper bound 8 is essentially tight. In particular,
for complete binary trees in which all edges have unit weight, we show
that the distortion incurred by any algorithm for the SPR problem must
be at least 8(1 − o(1)).

1 Introduction

The Steiner Point Removal (SPR) problem was first considered by Gupta [1].
An instance of the problem is given by an edge-weighted tree T = (V, E) and a
subset S ⊆ V of vertices called terminals. Informally, we would like to find an
edge-weighted tree TS on the terminal set S such that the new tree approximates
all the distances between terminal pairs in the original tree. Formally, we say
that a weighted tree TS on the set S has distortion at most α if for all u, v ∈ S,
the condition dT (u, v) ≤ dTS (u, v) ≤ α · dT (u, v) holds, where dG(u, v) is the
shortest path distance between two nodes u and v in the graph G. We say an
instance has distortion at most α if such a tree TS exists. The objective is to
find the smallest constant α > 0 such that every instance of the SPR Problem
has distortion at most α.

In Gupta’s original paper [1], it was shown that α ≤ 8, i.e., there exists a tree
TS with distortion at most 8. This shows that any submetric of a tree metric is

� Supported in part by the NSF CAREER award CCF-0448095, by an Alfred P.
Sloan Fellowship, and by a fellowship from the Croucher Foundation.

�� Supported in part by NSF grant CCR-0209138.
��� Supported in part by NSF CAREER grant CCR-9985284.

J. Diaz et al. (Eds.): APPROX 2006, LNCS 4110, pp. 70–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Tight Lower Bound for the Steiner Point Removal Problem on Trees 71

“close” to a tree metric. Such a result leads to the first combinatorial proof of
the fact that a graph of girth g embeds into a tree with distortion at least Ω(g),
as opposed to the topological proof given by Rabinovich and Raz [2].

Moreover, such a result has potential applications in end system multicast
[3,4,5,6]. In a multicast routing protocol, a routing tree T = (V, E) is defined
on hosts S, which correspond to the terminals, and routers that connect the
hosts and forward messages. The edges represent connections between hosts
and routers, and their weights correspond to transmission costs. However, most
routers are designed to handle only unicast, and hence a virtual routing tree TS

consisting of only the hosts is suggested for implementing the multicast protocol.
Thus, it is important that the virtual tree TS approximates the original costs
well, which is ensured by the upper bound result.

The result has also been used subsequently for embedding k-outerplanar met-
rics into �1 by Chekuri et al. [7], embedding general metrics into distributions of
tree metrics by Fakcharoenphol et al. [8], and solving the metric labeling problem
via tree-rounding by Archer et al. [9].

A natural question to ask is whether the upper bound of 8 is tight. The original
paper [1] only gives a lower bound of 4(1− o(1)) for some family of trees. In this
paper, we close this gap and prove the following theorem showing that the upper
bound of 8 is essentially tight.

Theorem 1. For any ε > 0, there exists an instance of the Steiner Point Re-
moval Problem with distortion at least 8 − ε.

We anticipate that the techniques presented in this paper may also be applicable
to the several open problems in this area, in particular, to the open problems
listed in Section 5.

1.1 Proof Strategy

Our lower bound examples will be complete binary trees with unit-weight edges,
with the leaves being the terminals. We first show in Section 3 that as far as com-
plete binary trees are concerned, the optimal distortion can always be achieved
by a minor TS of the original tree T = (V, E), i.e., the tree TS can be obtained by
contracting edges of tree T of the following form: (1) an edge between two non-
terminals; (2) an edge between a terminal x and a non-terminal node y, with the
resulting merged node keeping the same name (and terminal status) as x. The
weight assigned to each edge (x, y) in TS will be dT (x, y), the distance between
its two endpoints in the original tree T . Note that each node in V will eventually
be contracted into a terminal in S. Thus the minor tree TS can also be charac-
terized by a mapping f : V → S that maps each vertex in V to the terminal in
S to which it eventually contracts. We call such a mapping f a minor mapping.

In Section 4, we show that there exists a complete binary tree such that its
minors must incur a large distortion, namely 8−o(1). Let us define some notation
before giving the general idea on how one can get such a lower bound:

1. Denote by Tn the complete binary tree of height n, having 2n leaves, with
unit-weight edges, and denote by rn the root of Tn.
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2. Expanding Parameter ρf (r): Suppose the tree T has its root r mapped under
f to leaf l, i.e. l = f(r). Suppose that w is a vertex furthest away from the
root r in the subtree rooted at the child of r that is not an ancestor of l and
f(w) = l. Set w to be r if no such vertex exists. The expanding parameter
ρf (r) at r with respect to f is defined to be the ratio dT (r, w)/dT (r, l). See
Figure 1(a).

3. For each complete binary tree Tn, let ρn be the maximum ρf (rn) for all
the minor mappings f for Tn with distortion no more than α. Then define
ρ := lim supn→∞ ρn.

First we show that 0 < ρ < 1 (See Claims 4 and 4.). Thus there exists an
arbitrarily small constant ε1 > 0 such that 0 < ρ − ε1 < ρ + ε1 < 1. Then by the
definition of ρ, there exists an arbitrarily large integer m such that ρ−ε1 < ρm <
ρ+ε1. Now consider the complete binary tree Tm and the minor mapping f with
distortion no more than α that achieves ρf (rm) = ρm. As shown in Figure 1(a),
let w be the lowest vertex that achieves the expanding parameter ρf (rm), vertices
x and y be the children of vertex w, and T (x) and T (y) be subtrees rooted at x
and y respectively.

The idea is to find leaves p and q in the subtrees T (x) and T (y) respectively
such that the distortion exhibited by the pair (p, q) is large. First observe that
the distance in Tm between any leaf in T (x) and any leaf in T (y) is 2m(1 −
ρm) < 2m(1 − (ρ − ε1)). Next, we want to argue that there is a leaf p in the
subtree T (x) such that the distance between p and f(rm) in the minor tree
f(Tm) is larger than 2m

ρ+ε1
(1 − ε2) for any constant ε2 > 0 if m is large enough.

Symmetrically, we can also find such a leaf q in the subtree T (y), thereby the
distance between p and q in the minor tree f(Tm) is larger than 4m

ρ+ε1
(1 − ε2)

Therefore the distortion according the minor mapping f must be larger than
2

(1−(ρ−ε1))(ρ+ε1)
(1 − ε2) ≥ 8(1 − ε2). Since the distortion of f is no more than α,

we get the lower bound α > 8 − o(1).
We still need to determine how to find such a leaf p in the subtree T (x). We

will use a recursive algorithm on the roots of the subtrees considered, starting
with the subtree T (x). First we limit p to be one of the leaves in T (x), whose
distances to f(rm) in Tm are all 2m. Then, we limit p to be one of the leaves
of T (x) in the subtree of x that does not contain f(x); the distances of those
leaves to f(x) in Tm are all 2m(1 − ρm) − 2 � 2m(1 − (ρ + ε1)). In general,
as shown in Figure 1(b), we limit p to be one of the leaves of the subtree of
T (z) (initially z = x) that does not contain f(z); we then let z be the root of
the corresponding subtree, and recurse. Roughly speaking, the heights of these
trees are no less than m, m(1 − (ρ + ε1)), m(1 − (ρ + ε1))2, m(1 − (ρ + ε1))3,
· · · , respectively, if m is large enough (See Lemma 1 for a formal proof). Thus
the distance between p and f(rm) in the minor tree f(Tm) must be larger than
2m

ρ+ε1
(1− ε2), where ε2 > 0 can be any constant and m is large enough. Therefore

our algorithm finds such a leaf p, and it follows that α > 8 − o(1).



A Tight Lower Bound for the Steiner Point Removal Problem on Trees 73

T(    ) T(    )x y

w

r

p q

x y

(1 − ρ)

l

m

m

(a) Expanding parameter for the root
of Tm

x

p

w

(b) Select p in T (x)

Fig. 1. The Minor Construction for Tree Tm (Shadow areas refer to components con-
tracted to a terminal)

2 Notation

In this section, we will introduce and formalize some additional notation that
will be used in Sections 3 and 4. Suppose T is a tree with edge set E and
a positive distance associated with each edge. We denote the distance of the
unique shortest path between two vertices u and v by dT (u, v). We use L(T ) to
denote the set of leaves, i.e. the degree-one vertices in T .

As defined in Section 1.1, we denote by Tn the complete binary tree of height
n, having 2n leaves with unit weight edges. We denote by rn the root of Tn

and the terms child, parent, ancestor and descendant are used with their usual
meanings. From now on, we restrict the SPR Problem to such trees, with the
leaves being the terminals.

Formally, we say f is a transformation from T to ̂T , if ̂T = (L(T ), ̂E) is a
tree on the vertex set L(T ), and each edge (u, v) ∈ ̂E has weight dT (u, v). The
distortion of such a transformation is

D(f) := max
x �=y∈L(T )

d
̂T (x, y)

dT (x, y)
.

A transformation f from T to ̂T is minor if ̂T is a minor of T , i.e. ̂T can be
obtained from T by edge contractions. Note that a minor transformation f for
a tree T can be equivalently viewed as a mapping f : V(T ) → L(T ) that maps
each vertex to the terminal to which it eventually contracts. We call such f a
minor mapping.

3 Restricting to Minor Transformations

In this section, we show that in order to obtain a lower bound on the distor-
tion of transformations for complete binary trees, it suffices to consider minor
transformations.
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The radius of a tree T is given by R(T ) = minu∈V(T ) maxv∈V(T ) dT (u, v). A
center point of T is a vertex u0 ∈ V(T ) such that R(T ) = maxv∈V(T ) dT (u0, v).

Theorem 2. For any n ≥ 0 and for any transformation f of Tn, there exists a
minor transformation f ′ such that

(a) the distortion of f ′ does not increase, D(f ′) ≤ D(f);
(b) the radius does not increase, R(f ′(Tn)) ≤ R(f(Tn));
(c) the terminal f ′(rn) is a center point of f ′(Tn).

Proof: We argue by induction on n. The case n = 0 is trivial. For the case
n = 1, there is only one transformation for T1, which is minor and satisfies the
requirements.

Assume the result holds true for any Tk, where k < n. Consider some trans-
formation f : Tn → ̂Tn.

We denote by [n] the set of integers {0, 1, . . . , n}.
For any x ∈ L(Tn) and i ∈ [n], denote by Ti(x) the i-level complete binary

subtree of Tn which contains x; denote the root of Ti(x) by ri(x). For any
x ∈ L(Tn) and i ∈ [n], denote by Si(x) the minimal subtree of ̂Tn that includes
all the vertices in L(Ti(x)). Let k be the maximum integer such that for any
x ∈ L(Tn), V(Sk(x)) ⊆ L(Tn−1(x)). Since k = 0 satisfies the above conditions,
such a k exists. Note that k < n; otherwise, L(Tn(x)) ⊆ V(Sk(x)) ⊆ L(Tn−1(x)),
which is a contradiction.

From the maximality of k, there exists u ∈ L(Tn) such that V(Sk+1(u)) �
L(Tn−1(u)). Also, there exists v ∈ L(Tk+1(u)) such that Tk(v) �= Tk(u) and the
u-v path in ̂Tn uses some vertex not in L(Tn−1(u)). Let vertex w /∈ L(Tn−1(u))
be the first such vertex on the path from u to v, and u′ ∈ L(Tn−1(u)) be the
previous vertex of w on the path. Since Tn−1(u′) �= Tn−1(w), it follows that
(u′, w) has weight 2n.

Claim. Edge (u′, w) is an edge of weight 2n that separates Sk(u) and Sk(v) in
̂Tn.

Proof of Claim 3: By the definition of k, V(Sk(u)) ⊆ L(Tn−1(u)) and
V(Sk(v)) ⊆ L(Tn−1(v)). Since w /∈ L(Tn−1(u)), edge (u′, w) separates Sk(u)
and v. Since u′ ∈ L(Tn−1(u)) and w /∈ L(Tn−1(u)), then exactly one of them is
not in L(Tn−1(v)). Since V(Sk(v)) ⊆ L(Tn−1(v)), edge (u′, w) separates Sk(v)
and u. Therefore edge (u′, w) separates Sk(u) and Sk(v). �	

Thus in the tree ̂Tn, there is a unique path connecting Sk(u) and Sk(v) with
all its intermediate vertices not in V(Sk(u)) ∪ V(Sk(v)). Let u0 ∈ V(Sk(u)) and
v0 ∈ V(Sk(v)) be the two endpoints of the path. Then, vertex w is on the u0-v0
path and d

̂Tn
(u0, w) ≥ 2n.

If k + 1 < n, then v ∈ L(Tk+1(u)) ⊆ L(Tn−1(u)), thereby d
̂Tn

(v0, w) ≥ 2n; if
k + 1 = n, we have the trivial bound d

̂Tn
(v0, w) ≥ 0.
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Consider vertices u1 ∈ V(Sk(u)) and v1 ∈ V(Sk(v)), which are furthest
away from u0 and v0 respectively. Hence, we have d

̂Tn
(u0, u1) ≥ R(Sk(u))

and d
̂Tn

(v0, v1) ≥ R(Sk(v)). Without loss of generality, assume R(Sk(u)) ≤
R(Sk(v)).

Observing that d
̂Tn

(u1, v1) = d
̂Tn

(u1, u0) + d
̂Tn

(u0, w) + d
̂Tn

(w, v0) +
d

̂Tn
(v0, v1), we have

D(f) ≥
d

̂Tn
(u1, v1)

dTn(u1, v1)
≥

{

4n+2R(Sk(u))
2(k+1) if k + 1 < n;

2n+2R(Sk(u))
2(k+1) if k + 1 = n

(3.1)

Also,
R(f(Tn)) ≥ 2n + R(Sk(u)) (3.2)

Next, we construct a transformation g for the subtree Tk(u). We obtain
the transformed tree ̂Tk(u) from Sk(u), the minimal subtree in ̂Tn containing
L(Tk(u)), by contracting all the vertices v /∈ L(Tk(u)) as follows:

1. Contract any edge neither of whose endpoints is in L(Tk(u)).
2. For each remaining vertex x /∈ L(Tk(u)), contract one of the edges incident

to x.
3. For each edge (x, y) in ̂Tk(u) set its weight as dTk(u)(x, y), i.e. dTn(x, y).

The following claim states the properties of the transformation g. Its proof is
technical and will be deferred to the end of the section.

Claim. Suppose the transformation g from Tk(u) to the tree ̂Tk(u) =
(L(Tk(u)), ̂E) is as described above. Then, the distortion D(g) ≤ D(f) and the
radius
R(g(Tk(u))) ≤ R(Sk(u)).

By the induction hypothesis , there exists a minor transformation g′ for Tk(u)
such that D(g′) ≤ D(g), R(g′(Tk(u))) ≤ R(g(Tk(u))), and rk(u) is contracted
into a center point of g′(Tk(u)). By Claim 3, we also have D(g) ≤ D(f) and
R(g(Tk(u))) ≤ R(Sk(u)). Hence, we have D(g′) ≤ D(f) and R(g′(Tk(u))) ≤
R(Sk(u)).

We next use the transformation g′ to construct a minor transformation f ′

for Tn. Since all the k-level complete binary subtrees Tk of Tn are isomorphic
to Tk(u), the transformation g′ also defines a minor transformation for each of
these subtrees Tk. Then a minor transformation f ′ for Tn can be obtained by
edge contractions as follows:

1. Remove internal nodes in each Tk via edge contraction using minor trans-
formation g′.

2. Since the (n − k − 1)-level complete binary subtree rooted at rn is the re-
maining component for contraction, we just contract the whole subtree into
its adjacent vertex in g′(Tk(u)).
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Therefore, rn and rk(u) are contracted to the same leaf. Hence, rn is con-
tracted into a center point of g′(Tk(u)). In fact, the tree f ′(Tn) consists of com-
ponents g′(Tk) and additional edges connecting the center point of g′(Tk(u)) to
the center points of the other components. Moreover if k + 1 = n, f ′(Tn) only
has two components g′(Tk), thereby its diameter is 2n + 2 · R(g′(Tk(u))). And if
k + 1 < n, f ′(Tn) has more than two components g′(Tk), thereby its diameter is
4n + 2 · R(g′(Tk(u))). Thus

D(f ′) =

{

max(D(g′), 4n+2·R(g′(Tk(u)))
2(k+1) ) if k + 1 < n;

max(D(g′), 2n+2·R(g′(Tk(u)))
2(k+1) ) if k + 1 = n;

(3.3)

Thus, by Equation (3.1) and the relationship between the transformations g′

and f , we have D(f ′) ≤ D(f), proving part (a) of the theorem. Moreover, by
Equation (3.2), we obtain part(b)

R(f ′(Tn)) = 2n + R(g′(Tk(u))) ≤ R(f(Tn)), (3.4)

and rn is contracted into a center point of g′(Tk(u)), which can be verified to be
a center point of R(f ′(Tn)), hence proving part(c). �	

We next give the proof of Claim 3, as promised earlier.
Proof of Claim 3: We first observe that any maximal connected component C
in the tree Sk(u) that does not contain any vertex in L(Tk(u)) will be contracted
into a vertex of L(Tk(u)).

We will use the following fact about distances between leaves.
Fact 3. Any edge between two leaves in L(Tk(u)) has weight at most 2k; and any
edge between a leaf in L(Tk(u)) and one outside it has weight at least 2(k + 1).

1. To show D(g) ≤ D(f), we prove that d
̂Tk(u)(x, y) ≤ d

̂Tn
(x, y) for any x, y ∈

L(Tk(u)).
Fix any x, y ∈ L(Tk(u)). Let P be the x-y path in ̂Tk(u) and Q be the x-y
path in Sk(u).
Since any maximal connected component C excluding vertices in L(Tk(u)) in
the tree Sk(u) is contracted into one vertex of L(Tk(u)), any maximal subpath
Q′ of Q excluding vertices in L(Tk(u)) is contracted into some vertex c of
L(Tk(u)). By maximality of Q′, there exists a, b ∈ L(Tk(u)) on path Q such
that a-Q′-b is a subpath of Q, which would become a subpath a-c-b in P . By
Fact 3, the length of this subpath decreases.
On the other hand, an edge in Q that joins two vertices in L(Tk(u)) remains
in P and its weight does not change.
Hence, it follows that the length of P is at most that of Q.
Therefore,

d
̂Tk(u)(x, y) ≤ d

̂Tn
(x, y) for any x, y ∈ L(Tk(u)) (3.5)

Thus D(g) ≤ D(f).
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2. Next we show that R(g(Tk(u))) ≤ R(Sk(u)).
Let u0 ∈ V(Sk(u)) be the center point of Sk(u). By the minimality of Sk(u),
this radius must be realized by some vertex in L(Tk(u)).

R(Sk(u)) = max
x∈Lk(u)

(d
̂Tn

(u0, x)) (3.6)

If u0 ∈ L(Tk(u)) = V( ̂Tk(u)), then by Equations (3.5) and (3.6),

R(̂Tk(u)) ≤ max
x∈L(Tk(u))

d
̂Tk(u)(u0, x) ≤ max

x∈L(Tk(u))
(d

̂Tn
(u0, x)) = R(Sk(u)).

If u0 /∈ L(Tk(u)) = V( ̂Tk(u)), then let u′
0 ∈ V( ̂Tk(u)) be the vertex into which

u0 is contracted. For any x ∈ L(Tk(u)) = V( ̂Tk(u)), let P be the u′
0-x path

in ̂Tk(u) and Q be the u0-x path in Sk(u).
Observe that the initial maximal subpath Q′ of Q excluding vertices in
L(Tk(u)) is contracted into u′

0. Let u1 be the first vertex on Q in the di-
rection from u0 to x such that u1 ∈ L(Tk(u)). Hence, the subpath Q′-u1
becomes a subpath u′

0-u1 in P , whose length decreases by Fact 3. By Equa-
tion (3.5), the length of the remaining subpath of P is at most that of the
remaining subpath of Q. Hence, the length of P is at most that of Q.
Therefore,

R(̂Tk(u)) ≤ max
x∈V( ̂Tk(u))

d
̂Tk(u)(u

′
0, x) ≤ max

x∈V(Sk(u))
d

̂Tn
(u0, x) = R(Sk(u))

Thus, we also have R(g(Tk(u))) ≤ R(Sk(u)) in this case. �	

4 A Lower Bound for Minor Transformations

In view of Theorem 2 in the previous section, we consider only minor transfor-
mations for complete binary trees.

Definition 4 (Optimal distortion for minor transformation) . We define
α ≥ 1 to be the smallest constant such that for any instance of the SPR Problem,
there exists a minor transformation that achieves distortion at most α.

Observe that the algorithm given by Gupta [1] indeed produces a minor with
distortion at most 8. Hence, the constant α is at most 8. We prove the following
theorem, which implies that the constant α ≥ 8.

Theorem 5. For any ε > 0, the constant α ≥ 8 − ε.

Hence, combining Theorems 2 and 5, we obtain the result of Theorem 1, which
states that:

For any ε > 0, there exists an instance of the Steiner Point Removal
Problem with distortion at least 8 − ε.
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We first introduce some notation. Without causing ambiguity, we use d(u, v) to
denote the distance between nodes u and v in the original tree T , and path(u, v)
to denote the subset of vertices lying on the unique path between u and v in T .
Let v be a vertex in Tn. We denote the subtree rooted at v by T (v), which is
identical to Tn−d(rn,v). For u, v ∈ L(T ), we use df (u, v) to denote the distance
between them after the transformation f is applied to the tree.

Definition 6. Given a minor mapping f : V(T ) → L(T ), a vertex v is a normal
vertex (with respect to f) if v is an ancestor of f(v).

Consider a normal vertex v and suppose u = f(v). Then, v is an ancestor of u
and all the vertices along the path from v to u are mapped to u. Recall that
T (v) has two branches rooted at v. We wish to measure how far vertices down
the branch not containing u are mapped to u under f .

Definition 7. For each normal vertex v, its expanding parameter with respect
to some minor mapping f is defined to be

ρf (v) := max{ d(v,w)
d(v,f(v)) : w ∈ T (v), f(w) = f(v),

path(v, f(v)) ∩ path(v, w) = {v}}.

Since our lower bound is obtained from large trees, we consider how the expand-
ing parameter behaves for large values of n.

Definition 8. For each n ∈ N, let

ρn := max{ρf (rn) | minor mapping f : Tn → L(Tn), D(f) ≤ α}.

Define
ρ := lim sup

n→∞
ρn. (4.7)

Observe that since ρn ∈ [0, 1], it follows the limit supremum ρ ∈ [0, 1]. We show
in the next claim that ρ is strictly less than 1.

Claim. The limit supremum ρ < 1.

Proof: Assume on the contrary that ρ = 1. Then, by the definition of limit
supremum ρ, there exists an integer n such that ρn ≥ 7/8. Thus by the definition
of ρn, there exists a minor mapping f on Tn with D(f) ≤ α such that ρf (rn) ≥
7/8.

Let w be a vertex that attains ρf (rn). Since every leaf of Tn is mapped into
itself and w �= f(w), w is not a leaf. Then let p and q be two leaves from different
branches of the subtree T (w). Thus d(p, q) = 2(1−ρf(rn))n ≤ n/4. On the other
hand, df (p, q) = df (p, f(w)) + df (f(w), q) ≥ 4n. Thus D(f) ≥ df (p,q)

d(p,q) ≥ 4n
n/4 ≥

16, contradicting D(f) ≤ α ≤ 8. Thus ρ < 1. �	

The following lemma shows the relationship between the expanding parameter
ρn and the distorted distance df . Intuitively, if the expanding parameters for
normal vertices of large heights are small, then there exists some vertex whose
distorted distance to the image of the root is large.
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Lemma 1. Suppose 0 < β < 1 and N0 ∈ N such that for any integer n > N0,
the expanding parameter ρn ≤ β. Then, for any real 0 < ε < 1, there exists
integer N > N0 such that for any integer m ≥ N and any minor mapping f
on tree Tm with distortion D(f) ≤ α, there exists a leaf p in Tm such that the
distorted distance

df (p, f(rm)) ≥ 2m

β
(1 − ε).

Furthermore, if ρf (rm) > 0, then D(f) ≥ 2(1−ε)
β(1−ρf (rm)) .

Proof: Given any real ε > 0, fix a large enough integer k such that (1−β)k ≤ ε
2 .

Let N be large enough such that k
N ≤ ε

2 and (1 − β)k(N + 1
β ) − 1

β > N0.
Let m ≥ N and let f be a minor mapping on Tm with D(f) ≤ α. We define

sequences of vertices {vi}k
i=0 and {wi}k−1

i=0 in Tm as follows. Let v0 = rm, and w0
be the vertex that attains ρf (v0) under the minor mapping f with D(f) ≤ α.
For 1 ≤ i ≤ k, let vi be a child of vertex wi−1 such that f(wi−1) /∈ T (vi), and
hence vi is normal. Let wi be the vertex that attains ρf (vi), for 1 ≤ i < k. Let
hi be the height of T (vi) for 0 ≤ i ≤ k.

Claim. For 0 ≤ i < k, the height hi ≥ (1 − β)i(m + 1
β ) − 1

β > N0.

Proof of Claim 4: The claim is trivial for i = 0. Assume that hi−1 ≥ (1 −
β)i−1(m+ 1

β )− 1
β > N0, for some 0 < i < k. Observe that hi+1+ρf(vi−1)hi−1 =

hi−1 and ρf (vi−1) ≤ β, since hi−1 > N0. Then hi = (1 − ρf (vi−1))hi−1 − 1 ≥
(1 − β){(1 − β)i−1(m + 1

β ) − 1
β } − 1 = (1 − β)i(m + 1

β ) − 1
β > N0.

�	
Thus, we set p := f(vk) and from Claim 4, we have

df (f(rm), p) = 2
k−1
∑

i=0

hi ≥ 2
k−1
∑

i=0

{(1 − β)i(m +
1
β

) − 1
β

}

= 2(m +
1
β

)
1 − (1 − β)k

β
− 2k

β
≥ 2m

β
· {1 − (1 − β)k − k

m
}

≥ 2m

β
(1 − ε),

(4.8)

where the last inequality follows from (1 − β)k ≤ ε
2 and k

m ≤ k
N ≤ ε

2 .
Furthermore, if ρf (rm) > 0, then m · ρf(rm) > 0. Thus w0 is a proper descen-

dant of rm. Note that p is a leaf of T (w0) and T (w0) has two branches. Thus
by symmetry, there exists another leaf q such that p and q are in the different
branches of T (w0) and df (q, f(rm)) ≥ 2m

β (1−ε). Observing that f(w0) = f(rm),
the distorted distance df (p, q) = df (p, f(rm)) + df (f(rm), q) ≥ 4m

β (1 − ε),
and the original distance d(p, q) = 2m(1 − ρf (rm)). Therefore, the distortion
D(f) ≥ df (p,q)

d(p,q) ≥ 2(1−ε)
β(1−ρf (rm)) . �	

Using Lemma 1, we can show that the limit supremum ρ > 0.
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Claim. The limit supremum ρ > 0.

Proof of Lemma 4: On the contrary, suppose ρ = 0. Let β = 1/32. By
the definition of limit supremum ρ, there exists N0 such that for any n > N0,
ρn < β. Then by Lemma 1, for ε = 1/2, there exists m > N0 such that for any
minor mapping f on Tm with D(f) ≤ α, there exists a leaf p in Tm such that
df (p, f(rm)) ≥ 2m

β (1 − ε) = m
β . Thus D(f) ≥ df (p,f(rm))

d(p,f(rm)) ≥ m
2mβ = 1

2β = 16,
which contradicts D(f) ≤ α ≤ 8. Thus ρ > 0. �	
Now, we are ready to prove the main theorem of this section.

Proof of Theorem 5: Let ε > 0. Without loss of generality, we can assume
ε < 1. Suppose on the contrary, we have α < 8 − ε.

Since 0 < ρ < 1, let ε1 < min{ε/48, ρ} be a positive small constant such that
ρ + ε1 < 1. By the definition of limit supremum ρ, there exists N0 > 0 such that
for all n > N0, ρn < ρ + ε1. Then by Lemma 1, for ε2 = ε/24 there exists N
such that for any m ≥ N and any minor mapping f on tree Tm with distortion
D(f) ≤ α and ρf (rm) > 0 we have D(f) ≥ 2(1−ε2)

(ρ+ε1)(1−ρf (rm)) .
By the definition of limit supremum ρ, there exists arbitrarily large m such

that ρm > ρ − ε1 > 0. Hence, we can choose m such that m > N . By the
definition of ρm, there exists a minor mapping f on tree Tm with distortion
D(f) ≤ α and ρf (rm) = ρm > ρ − ε1 > 0. Thus, the constant α is at least

D(f) ≥ 2(1−ε2)
(ρ+ε1)(1−ρf (rm))

≥ 2(1−ε2)
(ρ+ε1)(1−(ρ−ε1))

≥ 8(1−ε2)
(1+2ε1)2

(The denominator is min when ρ = 1
2 .)

≥ 8(1−ε2)
(1+ε2)2

≥ 8(1 − 3ε2) (Note: 2ε1 ≤ ε2; as ε2 ≥ 0, 1−ε2
(1+ε2)2

≥ 1 − 3ε2)
= 8 − ε,

obtaining the desired contradiction. Hence, for all ε > 0, the constant α ≥ 8− ε.
�	

5 Open Problems

We conclude the paper by outlining some directions for future work.

1. Of course one final goal would be to consider the SPR problem on general
graphs. Formally, there are two main questions to be addressed: (1) we would
like to determine what is the smallest α (possibly depending on the size of
input), such that given any edge weighted graph G = (V, E) and a set of
terminals S ⊂ V , there is a way to remove non-terminals by edge contrac-
tions to produce a minor H = (S, E′) where for any pair of terminals (u, v),
dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v); and (2) we would like to devise a con-
structive algorithm that outputs such a minor H = (S, E′) with distortion
at most α. Since this task may prove to be quite hard to accomplish on
general graphs, one could first consider other restricted classes of graphs —
such as outerplanar graphs, planar graphs, series-parallel graphs, etc. — as
an intermediate step. Note that no algorithm with proven nontrivial bounds
on distortion for these classes of graphs is known.
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2. Another interesting question is to be able to determine the approximation
bound on the optimal distortion of a given algorithm for the SPR problem.
For example, it would be interesting to determine, given any instance of the
SPR problem on trees, how far from the optimal distortion for that instance
can the distortion obtained by Gupta’s algorithm [1] be (in that paper, Gupta
only shows an absolute bound on the distortion of his algorithm; this paper
confirms that for some instances of the problem, this is the best distortion
possible).

3. We can also ask a similar question as that in Problem 1 in a probabilis-
tic framework. What is the smallest α such that given any weighted graph
G = (V, E) and a set of terminals T ⊂ V , there exists a distribution H of
minors {H = (T, E′)} such that dG(u, v) ≤ EH[dH(u, v)] ≤ α · dG(u, v)?
This task may be easier to accomplish than that in Problem 1, since some
upper bounds on α under a probabilistic framework exist in the literature.
For example, it follows from [7] that k-outerplanar graph can be embed-
ded into a probability distribution over spanning trees with O(ck) distortion
for some absolute constant c, implying that α = O(ck) for k-outerplanar
graphs; and a recent result by Elkin et. al. [10] shows that for general graphs,
α = O(log2 n log log n), which is later improved to O(log2 n) by Dhamdhere
et. al. [11], shows that for general graphs, α = O(log2 n). Can we do any
better?
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