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Abstract

The Traveling Salesman Problem (TSP) is a canoni-
cal NP-complete problem which is known to be MAX-
SNP hard even on (high-dimensional) Euclidean met-
rics [39]. In order to circumvent this hardness, re-
searchers have been developing approximation schemes
for low-dimensional metrics [4, 38] (under different no-
tions of dimension). However, a feature of most current
notions of metric dimension is that they are “local”: the
definitions require every local neighborhood to be well-
behaved. In this paper, we consider the case when the
metric is less restricted: it has a few “dense” regions,
but is “well-behaved on the average”?

To this end, we define a global notion of dimension
which we call the correlation dimension (denoted by
dim¢), which generalizes the popular notion of doubling
dimension. In fact, the class of metrics with dimg =
O(1) not only contains all doubling metrics, but also
contains some metrics containing uniform submetrics
of size \/n. We first show, using a somewhat “local”
argument, that one can solve TSP on these metrics
in time 2°0vV™); we then take advantage of the global
nature of TSP (and the global nature of our definition)
to give a (1 + ¢)-approximation algorithm that runs

—4dimg)
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in sub-exponential time: i.e., in 20(n"¢ -time for

every constant 0 < ¢ < 1.

1 Introduction

Distance functions are ubiquitous, arising as distances
from home to work, round-trip delays between hosts
on the Internet, dissimilarity measures between docu-
ments, and many other applications. As a simplifying
assumption, theoreticians often assume that the dis-
tance function in question satisfies the triangle inequal-
ity and hence is a metric.

However, some problems remain hard even when
the underlying distance function is a metric, an exam-
ple of which is the Traveling Salesman Problem (TSP).
Papadimitriou and Yannakakis [34] showed that TSP is
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MAX-SNP hard in general for metrics whose distances
are either 1 or 2. Indeed, even for more structured met-
rics such as Euclidean metrics, Trevisan [39] showed
that the problem remains MAX-SNP hard if the Eu-
clidean dimension is unbounded. On the other hand,
Arora [4] gave a PTAS for TSP on low dimensional Eu-
clidean metrics. A natural and basic question that arises
in the study of metric spaces is: How do we quantify the
complezity of metric spaces? More specifically, which
classes of metric spaces admit efficient algorithms for
TSP?

It is not surprising that metrics induced by special
classes of graphs admit efficient TSP algorithms. For
instance, for graphs with bounded treewidth, Arnborg
and Proskurowski [3] gave a dynamic program that
solves TSP on the induced metrics exactly in linear
time. For metrics induced by weighted planar graphs,
the best known algorithm is by Klein [23], who gave a
(14¢)-approximation algorithm that runs in linear time
O(c*¥’n), where ¢ > 0 is some constant. Grigni [17]
gave QPTAS’s for metrics induced by minor-forbidding
graphs and bounded-genus graphs.

An orthogonal line of recent work sought to extend
the notion of dimension in geometric spaces to capture
the complexity of arbitrary metric spaces. One of the
more popular concepts has been that of doubling dimen-
sion dimp (M) of a metric M [18], which generalizes
the notion of Euclidean dimension, i.e., dimp(R%,¢,) =
©(d). Doubling dimension has proved to be fairly useful:
over the past three years, several algorithms have since
been developed whose performance (run-time, space)
can be given by functions F(|V|],dimp(M)), which give
better quantification than those obtained for general
metrics. For instance, Talwar [38] gave a (1 + ¢)-
approximation algorithm for TSP such that for metrics
with doubling dimension dimp (M) at most k, the algo-
o)

rithm runs in time 2(< 10g7)

Despite its popularity, doubling dimension has some

drawbacks: perhaps the biggest one is being that a space

with low dimp cannot have “large dense clusters”.!

TMore precisely, the doubling dimension is defined so that any
set that is almost equilateral in a metric of dimension dimp can
only have 24™D points in it; the precise definition of doubling

appears in Section 2.
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Figure 1: Very simple examples of metrics with low
correlation dimension.

This strict definition makes it difficult to use it to model
real networks, which tend to be well-behaved “on the
average”, but often have a few regions of “high density”.
We define a new notion of dimension, the correlation
dimension which captures the idea of being “low-
dimensional on average”. We give structural results as
well as algorithms for spanners and TSP for metrics
with low correlation dimension. Our definitions are
inspired by work on the correlation fractal dimension
in physics [16] and in databases [7].

Our Results and Techniques. Given a finite metric
M = (V,d), let B(x,r) denote the ball around u of
radius . The correlation dimension is defined as the
smallest constant k£ such that

(11) Zx€V|B(‘x’2r)| S Qk ' Z:pEV|B(x7T)|7

and moreover, this inequality must hold under taking
any net of the metric M. (A more formal definition
is given in Section 2.) Note that this definition is
an “average” version of the bounded-growth rate used
by [35, 22], and hence should be more general than that
notion. We show that in fact, correlation dimension is
even more general than doubling dimension:

THEOREM 1.1. (CORRELATION GENERALIZES DOU-
BLING) Given a metric M, the correlation dimension
18 bounded above by a constant times the doubling di-
mension.

Moreover, correlation dimension is strictly more general

than doubling dimension: adding a clique of size O(y/n)
to a doubling metric does not change its correlation di-
mension by much, but completely destroys its doubling
dimension. (Some examples are given in Figure 1. One
can be convinced that each of these example metrics has
“low complexity on average,” which is precisely what
correlation dimension tries to capture.)

The following theorems show the algorithmic poten-
tial of this definition.

THEOREM 1.2. (EMBEDDING INTO SMALL
TREEWIDTH GRAPHS) Given any constant 0 < € < 1
and k, metrics with correlation dimension at most k
can be embedded into a distribution of graphs with
treewidth Oy, . (v/n) and distortion 1 + €.

This immediately allows us to get 2°0(vV™_time algo-
rithms for all problems that can be solved efficiently
on small-treewidth graphs, including the traveling sales-
man problem. Moreover, Theorem 1.2 is tight, since
metrics with bounded dime can contain O(y/n)-sized
cliques.

However, we can do much better for the TSP
despite the presence of these O(y/n)-sized cliques (or
other complicated metrics of that size); we can make
use of the global nature of the TSP problem (and
the corresponding global nature of dimg) to get the
following result.

THEOREM 1.3. (APPROXIMATION SCHEMES FOR TSP)
Given any metric M with dimg(M) = k, the TSP can
be solved to within an expected (1 + €)-factor in time
20°s™) for any constant § > 0.

Hence, given constants ¢, k, the algorithm runs in sub-
exponential time. (Recall that sub-exponential time
is 05>ODTIME(2"6).) As we will see later, the best
exponent in the expression above that we can show is
(6712\/10gn10g10gn)4k.

We show that while metrics with bounded corre-
lation dimension cannot in general have (1 + ¢)-stretch
spanners with a linear number of edges, we can get some
improvement over general metrics.

THEOREM 1.4. (SPARSE SPANNERS) Given any 0 <
e < 1, any metric with correlation dimension k has a
spanner with O(n3/2e=O®)) edges and stretch (1 + €).
Moreover, there exist metrics with dimc = 2 and for
each of which any 1.5-stretch spanner has Q(n3/2) edges.

1.1 Related Work Many notions of dimension for
metric spaces (and for arbitrary measures) have been
proposed; see the survey by Clarkson [10] for the
definitions, and for their applicability to near-neighbor
(NN) search. Some of these give us strong algorithmic



properties which are useful beyond NN-searching. For
instance, the low-growth rate of a metric space requires
that for all z € V and all r, |B(z,2r)| is comparable
to |B(z,r)|. This was used in [35, 22, 21] to develop
algorithms for object location in general metrics, and
in [25, 2], for routing problems.

A large number of algorithms have been developed
for doubling metrics; we only mention a few of them
here. For example, the doubling dimension has been
considered in the context of near-neighbor searching [29,
30, 8, 19, 11, 10], for the TSP and other optimization
problems [38], for low-stretch compact routing [38, 9,
37, 1, 27, 28], for sparse spanners [9, 19], and for many
other applications [24, 31].

For Euclidean metrics, the first approximation
schemes for TSP and other problems were given by
Arora [4] and Mitchell [32]. See, for example [12, 5, 13,
26], for subsequent algorithms. The runtime of Arora’s
algorithm [4] was O(n(logn)°VE )" ™) which was im-
proved to 2097y 4 O(knlogn) [36]. For (1 + ¢)-
approximation for TSP on doubling metrics, the best
known running time is 2( logm " [38]. Here, the pa-
rameter k is the doubling dimension or the Euclidean
dimension in the corresponding cases.

1.2 Earlier Notions of Correlation Dimension
The concept of correlation fractal dimension [16] was
used by physicists to distinguish between a chaotic
source and a random source; while it is closely related to
other notions of fractal dimension, it has the advantage
of being easily computable. Let us define it here, since
it may be useful to compare our definitions with the
intuition behind the original definitions.

Consider an infinite set V. If ¢ = {z;};>1 is a
sequence of points in V| the correlation sum is defined
as Cn(r) = 5 |{(i,5) € [n]x[n] | d(z;,z;) < r}| (ie., the
fraction of pairs at distance at most r from each other).
The correlation integral is then C(r) = lim,_ o Cp(r),

and the correlation fractal dimension for o is defined

log C((14¢€)r)—log C(r)
log(1+e€)

set of points, the correlation fractal dimension quantifies

the rate of growth in the number of points which can
see each other as their range-of-sight increases. In the
next section, we will define a version of this definition
for finite sets.

These notions have been used before in algorithmic
contexts: the correlation fractal dimension was used
by Belussi and Faloutsos [7, 33] for estimating the
selectivity of spatial queries; Faloutsos and Kamel [15]
also used fractal dimension to analyze R-trees.

to be lim,_,¢ lim,._.q . Hence, given a

2 Correlation Dimension: Definition and

Motivation

Given a finite metric M = (V, d), we denote the number
of points |V| by n. For radius r > 0, we define the ball
B(z,r) ={y € V | d(z,y) <r}. Given U C V, define
By(z,7) = B(x,r) NU. Recall that a subset N C V
is an e-cover for V if for all points x € V, there is a
covering point y € N with d(z,y) <e. A subset N CV
is an e-packing if for all z,y € N such that z # vy,
d(x,y) >e. A subset N C V is an e-net if it is both an
e-cover and an e-packing. A set N C V is a net if it is
an e-net for some e.

Inspired by the definitions mentioned in Section 1.2,
we give the following definition:

DEFINITION 2.1. (CORRELATION DIMENSION) A met-
ric M = (V,d) has correlation dimension dimg (M) at
most k if for all v > 0, the inequality

(2:2)  Y,en/Bn(z2r)] <273 y[By(z,r)|
holds for all nets N C V.

In other words, we want to ensure that the average
growth rate of the metric M is not too large, and the
same holds for any net N of the metric. Recall that
the doubling dimension dimp(M) is the least k such
that every ball B(xz,r) of radius r can be covered by at
most 2% balls of radius /2 [18]. The strong doubling
dimension? is the least k such that

(2.3) |B(z,2r)| < 2%|B(z, )|

for all z € V and radius r. We know that the strong
doubling dimension is no more than 4dimp [18]. It
follows directly from the definition (2.3) that the cor-
relation dimension is no more than the strong doubling
dimension; more surprisingly, the following result is true
as well. We give its proof in the full version.

THEOREM 2.1. For any metric space M, dimc(M) <
O(dimp (M)).

Hence the class of bounded correlation dimension met-
rics contains the class of doubling metrics. The con-
verse is not true: metrics with bounded dimg can be
much richer. Consider, for instance, the unweighted 2-
d grid with dimp = dime = O(1). Now attaching an
unweighted clique (or, say, a metric with all distances
between 1 and 2) on O(y/n) vertices to one of the ver-
tices of the grid: one can verify that the induced metric
still has dime = O(1), but the dimp jumps to % logn.

The reader wondering about why the bounded
average growth property (2.2) is required to hold for

?This quantity has been described as the KR-dimension in [18];
we use this name due to [8] to keep matters simple.



every net of M in Definition 2.1 is referred to the full
version for detailed discussion: loosely, the definition
becomes too inclusive without this restriction.

A very useful property of correlation dimension is
that it still has “small” nets. (Of course, since we allow
large cliques, they cannot be as small as for doubling
dimension):

LeEMMA 2.1. (SMALL NETS) Consider a metric M =
(V,d) with dime (M) < k. Suppose S is an R-packing
with diameter D. If we add more points to S and obtain
an R-net N for (V,d), then the size of the packing

satisfies |S| < (2D/R)*/? . \/|N].

Proof. Observe that [S|* < > _y[Bn(z,D)|. By ap-
plying the definition of correlation dimension repeat-
edly, we have for each integer ¢ > 0,

Yeen!Bn(z, D) <2537 vIBn(z, D/2Y)].

Setting ¢t = [log,(D/R)] gives the required result. O

(2.4)

Hence, given any metric with dime = O(1), any
near-uniform set in the metric has size at most O(y/n),
and hence A, the doubling constant [18] of this metric
is also O(y/n).

At this point, it is worthwhile to mention that
because property (2.2) is required to hold for every net
of M in Definition 2.1, it is hard to approximate the
correlation dimension of a given metric.

THEOREM 2.2. Given a metric M = (V,d) with n

points, it is NP-hard to distinguish between the cases
dime (M) = O(1) and dime(M) = Q(logn).

The proof of Theorem 2.2 involves a reduction from
the MAXIMUM INDEPENDENT SET [20] problem, and is
given in the full version. Observe that this result rules
out any non-trivial approximation of the correlation
dimension; however, this does not necessarily rule out
using correlation dimension for the design of algorithms.
In particular, the algorithms we design do not require us
to know the correlation dimension of the input metric
up-front; while the TSP approximation algorithm of
Section 5 seems to require this information at first
glance, this issue can be resolved using standard “guess-
and-double” ideas.

3 Sparse Spanners

We begin our study of metrics with small correlation di-
mension with a simple construction of sparse spanners;
this will also serve to introduce the reader to some of the
basic concepts we will use later. In this section, we show
that metrics with bounded correlation dimension ad-
mit (1+4-¢)-stretch spanners with O, (min{n*® nlog A})

edges, where A = %Cw is the aspect ratio of the
z,y \Y)

metric. This should be contrasted with a trivial lower
bound for general metrics: any spanner with stretch less
than 3 for K, , requires Q(n?) edges.

THEOREM 3.1. (SPARSE SPANNER THEOREM)

Given a metric M = (V,d) with dimc(M) < kK,
and ¢ > 0, there exists a (1 + €)-spanner with
=" min{n'® nlog A} edges.

The algorithm for constructing sparse spanners for
metrics with bounded correlation dimension is the same
as that for doubling metrics in [9]; the proofs, of course,
are different, and are deferred to the full version.

Note that for metrics with bounded doubling di-
mension, one can get a (1-+¢)-spanners with O(ne=9*))
edges [9, 19]. However, in the full version of the paper,
we show that such a result is not possible with bounded
correlation dimension, and that the upper bound in
Theorem 3.1 is indeed tight.

THEOREM 3.2. (LOWER BOUND ON SPARSITY)

There exists a family of metrics with bounded cor-
relation dimension such that for each metric, any
1.5-stretch spanner has at least Q(n'®) edges.

4 Algorithms for Metrics with Bounded
Correlation Dimension

Having defined the notion of correlation dimension,
and having seen a simple warm-up (obtaining sparse
spanners), we now turn to devising algorithms for metric
spaces, whose performance is parameterized by the
correlation dimension of the underlying metric space.
This task is complicated by two issues:

(1) Global versus Local Properties. The notion
of correlation dimension is global, in the sense that
while there may be pockets of “high-complexity” in
a metric with low dime, the complexity is “low on
the average”. One should compare this to previous
notions of dimension like doubling, where the metric was
well-structured in every region and at every scale, and
thus local arguments would usually suffice to give good
algorithms. In sharp contrast, we are forced to develop
algorithms that take into account this global averaging.

As an example, consider the T'SP: suppose the input
graph consists of a max-SNP hard (1,2)-TSP instance
on +/n nodes, which is attached to one vertex of a unit
grid. If we want to obtain a (1 + &) approximation to
TSP, our algorithm would have to cluster the graph into
the “easy” part (the grid), and the “complicated” part
(the (1,2)-TSP instance), and perhaps run a (Q)PTAS
on the former part and a constant approximation algo-
rithm on the latter part. Of course, the input metric



with dime = O(1) may not have such an obvious clus-
tering.

(2) Doubling results may not be directly appli-
cable. As noted in the discussion after Lemma 2.1,
metrics with dime = O(1) cannot have near-uniform
sets of size w(y/n), and hence their doubling dimen-
sion is at most % log,n + O(1). Hence, while we can
conceivably use results for doubling metrics, most of
the current results are no longer interesting for such
a high value of doubling dimension : e.g., the result
for TSP on doubling metrics has a running time of
exp{ (e logn)?dimp)Y "and hence plugging in dimp =
% logy n does worse than 20(") the running time for an
exact algorithm. Again, our algorithms will try to avoid
this simple-minded reduction to doubling, even though
they will rely on many ideas developed in the doubling
metrics literature.

In the rest of the paper, the two main algorithmic
results we present are:

(1) Weak TSP Approximation & Embedding
into Small Treewidth Graphs. We first show how to
solve the TSP on metrics with low correlation dimension
within (1 + ¢) in time 2V7(e7 g7 Ag 5
product, we also get Theorem 1.2: a random embedding
of the original metric into a graph with treewidth
V- (7' logn)@dime) - Details of this result appear
in Section 4.1. To prove these results, we adapt the
ideas of Arora [4] and Talwar [38]. Observe that all
the previous proofs use “O(1)-padded decompositions,”
and metrics with small dimc may not admit such
good padded decompositions, since padding is a local
property, and our metric may have some dense regions.
We show how to get around this requirement: we
use known padded decompositions with poorer padding
guarantees. Moreover, we will see that we also need to
carefully alter the boundaries of clusters to serve our
purpose.

(2) (1 + ¢)-Approximations in Sub-exponential
Time. The ideas we use for the previous algorithm are
still fairly local, and hence do not fully use the power
of having small correlation dimension. In Section 5, we
show how to improve our partitioning scheme, and use
an improved global charging scheme to get our main
result Theorem 1.3: an approximation scheme for TSP
that runs in sub-exponential time.

4.1 An Algorithm for TSP in Time 2°V?) Given
an £ < 1, we consider randomized (1+¢)-approximation
algorithms for TSP on a metric M = (V,d) on n points
and dimg = k. Let OPT be the cost of the optimal T'SP.
As is well-known, we can assume the aspect ratio is n/e
(see, e.g., [4, 38]), Moreover, we assume that ¢ > 1/n,

. . -1 —1y .
or else we can solve it exactly in 20(7 102577 )_time.

We use the following main ideas, which were also
used in obtaining known (Q)PTAS’s for TSP [4, 38]:

(a) We find a good probabilistic hierarchical decom-
position into clusters with geometrically decreasing di-
ameters, (b) we choose small set of portals in each clus-
ter in this decomposition by taking a suitably fine net
of the cluster, and force the tour to enter and leave the
cluster using only these portals, i.e., the tour is portal-
respecting. The main structure lemma shows that the
expected cost of the best portal-respecting tour is at
most (1 + ¢) times its original cost. Finally, (c) we find
the best portal respecting tour using dynamic program-
ming in a way similar to those used by Arnbourg and
Proskurowski [3] and Arora [4]. For a cluster C, if there
are only B portals among all its child clusters, the time
to build the table for C is at most BO(B) = 20(BlogB)
Since the total number of clusters is poly(n), total run-
time is poly(n)29(B1°8B)  Note that for doubling met-
rics, since each cluster had only 2°(dimp) child clusters,
each with O(e~"logn)@d™p) portals, the runtime is
quasi-polynomial [38].

The main technical problem we face is that while we
can ensure the number of portals in any single cluster
are at most ~ O(y/n) using Lemma 2.1, each cluster
may have as many as y/n child clusters, and hence the
size B of the union of portals for all the child clusters
may be close to ©(n). To take care of this problem, we
need to find a new partitioning and portaling scheme,
such that the union of the portals in each cluster and
in all its child clusters has size only O(y/n); clearly this
will require us to do the partitioning and portal-creation
steps in a dependent fashion, with each step guiding the
other.

4.2 A Partitioning and Portaling Algorithm In
this section we give a concrete construction of a proba-
bilistic hierarchical decomposition and portaling scheme
such that both the padding parameter and the num-
ber of child portals for each cluster are small. Observe
that if the child portals of each cluster form a packing,
then using the bounded correlation dimension assump-
tion and Lemma 2.1, we can show that B is small for
each cluster. If we use a standard hierarchical decom-
position (e.g., the one by Bartal [6] or Fakcharoenphol
et al. [14]) and choose an appropriate net for each clus-
ter to be its portals, then the child portals of a cluster
need not be a packing, because portals near the bound-
ary of different clusters might be too close together. We
resolve this by using Bartal’s decomposition [6] a sec-
ond time. After obtaining a standard decomposition,
we apply the decomposition technique again to make
minor adjustment to the boundaries of clusters. Here



is the main result that describes the properties of the
hierarchical decomposition and portaling scheme.

THEOREM 4.1. (MAIN PARTITION-&-PORTAL THEOREM)

Given a metric (V,d) with dimg = k, and a parameter
0 < 1, there is a polynomial-time procedure that returns
a probabilistic hierarchical partition of the metric with
(A1) The diameter of a height-i cluster is guaran-
teed to be at most D; + BD;_1, where D; = 4.
(A2) The probability of (u,v) being separated at
height i is at most O(log® n) x w.
Moreover, each cluster C is equz’ppegl with a set of
portals U(C) such that the following properties hold:
(B1) For each non-root cluster C' at height-i, the set
of portals U(C) forms a 8 D;-covering of C.
(B2) Moreover, the set of portals in C and all its
children form a (8/4) D;_1-packing.

4.2.1 The Randomized Partitioning and Por-
taling Algorithm Consider the metric (V, d) with unit
minimum distance, and hence the aspect ratio being
the diameter A of the metric. (Moreover, A < n/e,
as noted before.) Let H := 4, and L := [logy(n/e)].
Set Dy := A, and D;_; := D;/4, as discussed before.
We now give a hierarchical decomposition of (V, d) such
that for each height-i cluster cluster C, the set U(C) of
portals is a is a BD;-covering of C and its child portals
is a % BD;_1-packing, as described in the statement of
Theorem 4.1.

Partitioning and Portaling Algorithm

1. Let P, ={V} and U(V) = 0.
2. For t = L — 1 down to 0,
For each height-(i + 1) cluster C' € P41,

(a) Apply Bartal’s probabilistic decomposition [6]
on cluster C, using n as an upper bound on the
number of points in C, such that the diameter
of each resulting sub-cluster is at most D;.
This induces an initial partition P; on C.

(b) Adjust the boundaries as follows:

i. Note that U(C) is a §8D;1-packing and
D;t1 = 4D;. Augment U(C) to a 8D;-
net U(C) of C. Let Z be the set of points
z in C that has no point in U(C) N P;(2)
within distance 8D;.

ii. Let W:=2Z2, X :=C, and U(C) := 0.

iii. While W is non-empty,

A) Pick any point u from W. Let r :=
BD;/Alnn. Pick z € [0,18D;] ran-
domly from the distribution p(z) :=

. Le=#/r Let B:= B(u,18D; +

B) If B contains some point ¢ in U(C),
then all points in BN X are moved to
the height-i cluster currently contain-
ing ¢, otherwise, add u to U(C), and
move all points in BNX to the height-
1 cluster currently containing wu.

C. Remove points in B from both X and
wW.

iv. Let the new partition on C be P;. For
each new height-i cluster C’, let U(C") :=

C'n(U(C)uT(C)).

4.2.2 Properties of the Decomposition The
proofs of the following results are given in the full ver-
sion.

LEMMA 4.1. (CORRECTNESS) For ¢ < L, for any
height-(i + 1) cluster C' produced by the Decomposition
Algorithm, then (1) for any child cluster C' of C, the
set U(C") is a BD;-covering of C', and (2) the union of
U(C")’s, over all the child clusters C' of C, is a iﬁDi-
packing.

LEMMA 4.2. (SEPARATION PROBABILITY) For each

level i, Pr[(u,v) separated by P;] < O(log? n)d(g—’i”).

In the following lemma, we use the definition of
correlation dimension to bound the number of child
portals in a cluster.

LEMMA 4.3. (SMALL NUMBER OF CHILD PORTALS)

Suppose the metric space (V,d) has correlation di-
mension at most k. For all clusters C, the union of
U(C") over all child clusters C' of C has size at most

(16/8 + 4)"/2 /.

Proof. Suppose cluster C' is at height ¢ + 1. By
Lemma 4.1, the union S of U(C”) over all child clusters
C'of Cis a %BDi—packing. Hence, it can be extended
to a iﬁDi—net N for the whole space V. Observe that
from the construction, all points in C' is contained in
a ball with radius at most (D;+1 + 8D;)/2, though
not necessarily centered at a point in N. Since N is
a 4'3-net, C is contained in a ball of radius at most
D;11 + BD; centered at some net point v € N. Hence,
S C Bn(u,Djy1 + BD;), which by Lemma 2.1 has size
at most (16/3 + 4)*/2\/IN| < (16/8 + 4)*/2/n.

4.3 The First TSP Algorithm Using the parti-
tioning and portaling scheme described in Section 4.2
and the dynamic program as described in [4], we have
an algorithm for approximating TSP.



THEOREM 4.2. (THE FIRST TSP ALGORITHM)

There is a randomized algorithm for metric TSP, which
for metrics with dimeg = k, returns a tour of expected
length at most (1 + &)OPT in time 2((logn)/2)? M v,

Proof. Since the aspect ratio of the metric is at most
n/e, the height of the decomposition is L = O(log Z).
By Theorem 4.1, each edge (u,v) of the optimal tour
is cut at height-i with probability ad(gi’i”)
O(log®n), in which case it suffers a length increase of
O(B D;) to make it portal-respecting.

We set 3 := O(+5) to ensure that the total increase
in length is at most a8 L = ed(u,v). Summing over all
edges of OPT implies that the the expected length of
this tour (and hence the length of the optimal portal-
respecting tour) is at most (1 4 ¢)OPT.

We need to also bound the running time of the
dynamic program: recall that an upper bound B for
the number of portals in each cluster and its children
would imply a B9 runtime.

By Lemma 4.3, it follows that B < (16/3+4)%/2\/n.
Hence, the runtime of the algorithm is nL-20(Blog B) —
exp{(e~logn)°®)/n}, as required. O

with o =

4.4 Embedding into Small Treewidth Graphs
Observe that our probabilistic hierarchical decomposi-
tion procedure actually gives an embedding into a distri-
bution of low treewidth graphs. Suppose we are given a
particular hierarchical decomposition together with the
portals for each cluster. We start with the complete
weighted graph consistent with the metric, and delete
any edge that is going out of a cluster but not via a
portal. If the number of child portals for each cluster is
at most B, then the treewidth of the resulting graph is
at most B. From the padding property of the decompo-
sition, the expected distortion of the distance between
any pair of points is small. Using the same parameters
as in the proof of Theorem 4.2, we have the following
theorem.

THEOREM 4.3. (EMBEDDING INTO SMALL
TREEWIDTH GRAPHS) Given any constant 0 < ¢ < 1
and k, metrics with correlation dimension at most k
can be embedded into a distribution of graphs with
treewidth ((logn)/e)°*)/n) and distortion 1+ .

5 A Sub-Exponential
Approximation for TSP

Time 1 + e-
In the previous section, we saw how to get a (1 +
¢)-approximation algorithm for TSP on metrics with
bounded correlation dimension, essentially using the
idea of random embeddings into small treewidth graphs.
The approach gives approximations for any problem on

metric spaces which can be solved for small-treewidth
graphs: however, it is limited by the fact that the /n-
lollipop graph metric has bounded correlation dimen-
sion, and randomly (1 + £)-approximating this graph
requires the use of graphs with large treewidth.

In this section, we get an improved approximation
for TSP using another useful observation. Consider
the bad examples in Figure 1: the contribution to
OPT due to the dense structure is much smaller than
that from the low-dimensional ambient structure. For
example, for the sub-grid with a (1,2)-TSP instance
tacked onto it (Figure 1(b)), we can obtain a (1 + ¢)-
approximation to TSP on the grid (which contributes
about ©(n) to OPT), and stitch it together with a
naive 2-approximation to the hard instance (which only
contributes ©(y/n) to OPT). Of course, this is a simple
case where the clustering is obvious; our algorithm
must do some kind of clustering for all instances.
Moreover, this indicates that we need to do a global
accounting of cost: the sloppy approximation of the
“hard” subproblem needs to be charged to the entire
OPT, and not just the optimal tour on the subproblem.

Here are some of the issues we need to address (most
of which are tied to each other), along with descriptions
of how we handle them:

(a) Avoiding Large Tables. The immediate hurdle
to a better runtime is that some cluster may have

©(y/n) child portals and we have to spend \/ﬁ\/ﬁ
time to compute the tables. Our idea here is to set
a threshold By such that in the dynamic program,
if a cluster has more than B > By portals among
its children, we compute, in linear time, a tour on
C that only enters and leaves C once, but now we
incur an extra length of O(B x diam(C)) in the final
tour we compute. In the sequel, we call this extra
length the “MST-loss”. This step implies that we need
only spend min{O(B),2°Polos Bo)1 time on any table
computation. The patching procedure used here is
reminiscent of the patching from [4], and is described
in Section 5.2.

(b) Paying for this Loss. In contrast to previous
works, the “MST-loss” due to patching cannot be
charged locally, and hence we need to charge this to
the cost of the global OPT. Using bounded correlation
dimension, we can charge all the MST-losses over the
entire run of the algorithm to eOPT.

(c) A Potential Charging Scheme. To be able to
charge MST-losses in a global manner, we look at the
hierarchical decomposition. The extra length incurred
for patching height-i clusters is proportional to the
number of child portals of the clusters to which patching
is applied. If the union of all the height-(i — 1) portals



in the decomposition satisfied some packing condition,
we could use Lemma 2.1 to bound the number of
them, and hence the total MST-loss at height-i¢ of the
decomposition tree. However, the techniques developed
so far (in Section 4.1) can only ensure that the child
portals of a single cluster form a packing: we clearly
need new techniques.

(d) A New Partitioning & Portaling Procedure.
The method in the last section took a cluster C' at
height-(i + 1), cut it up, and then adjusted the bound-
aries of the subclusters created at height-i to ensure that
the union of the portals in these subclusters formed a
packing. However, the portals in all the grand-children
of C' (i.e., all the clusters at height-(: — 1) below C)
may not form a packing: hence we have to re-adjust the
boundaries created at height-i yet again. In fact, when
clusters at a certain level are created, the boundaries
for clusters in all higher levels have to be readjusted.
This can potentially increase the probability that a pair
of points are separated at each level. This is resolved
by ensuring that cluster diameters fall by logarithmic
factors instead of by constants.

(e) Avoiding Computation of Correlation Di-
mension. As given in Theorem 2.2, it is hard to ap-
proximate the correlation dimension of a given metric.
However, the algorithm can guess the correlation dimen-
sion k of the input metric. It starts from small values
of k and for each net encountered, it takes polynomial
time to verify the bounded average growth rate prop-
erty (2.2). Whenever property (2.2) is violated for some
net, we know the current estimation of the correlation
dimension is too small. The value of k is increased and
the algorithm is restarted. Since the correlation dimen-
sion is at most O(logn) and the running time is doubly
exponential in k, the extra time incurred for trying out
smaller values of k would not affect the asymptotic run-
ning time.

The general framework of using hierarchical decom-
position and portals to approximate the TSP still ap-
plies here. We give the properties of a more sophisti-
cated partitioning and portaling scheme in Section 5.1,
and analyze the MST-loss incurred from patching in
Section 5.2.

5.1 The Modified Partitioning and Portaling
Algorithm The main difference is that when a height-
i partition is performed, all higher height partitions are
modified, in order to ensure that all height-i portals
form a packing. Let H > 4 be a parameter (possibly
depending on n) that will be determined later. Let
L :=[logy(n/e)]. Set Dy, := A, the diameter of (V,d);
D;_ 1 := D;/H. As before, the diameter of a height-

1 cluster is at most D;. The details of the modified
construction appear in the full version.

Properties of the Modified Decomposition
Scheme. The proofs of the following lemmas appear
in the full version.

LEMMA 5.1. The probability that a pair (u,v) of points

is separated by the height-i partition P; is at most
d(u,v d(u,v

(4tlogn)L - —(D’i ) — O(logn)* - —(D’i ) |

LEMMA 5.2. For each height i, the set U; of height-i
portals is a iﬁDi,l-packing and for each height-i cluster
C, the set U; N C of portals is a BD;-covering of C.

5.2 Handling Large Portal Sets via Patching
(A) Patching a single cluster. If a cluster C has
many child portals (say about /n portals), it is too
expensive to compute the entries corresponding to C.
In particular, computing the standard TSP table for
this cluster would require O(\/ﬁﬁ) = 200V7) time,
which in itself would dash all hopes of obtaining a sub-
exponential time algorithm. To avoid this, we do a two
step patching described in the following.

The first idea is simple: we can convert any given
tour such that it enters the cluster C' through some
portal x, performs a traveling salesperson tour on points
in cluster C, and leaves cluster C' through x, incurring
an extra length of BD. However, computing such a tour
within the cluster C requires work as well, and we need
to ensure that this computation can be done fast: if
cluster C' has too many child portals, it would be too
expensive to compute the optimal tour inside C'. Hence,
we need a second patching step. We defer the details
to the full version and state the result of the patching
process.

PROPOSITION 5.1. Suppose cluster C' has diameter D,
and that there are at most B child portals in the cluster
C'. Then, given any tour on the vertices V, the tour can
be modified such that it enters and leaves the cluster C
through a single portal; moreover, such a tour within
cluster C' can be computed in time O(B), from the
entries in the child clusters of C, such that the total
cost of patching cluster C' is at most 2BD.

(B) Patching All Dense Clusters. We set a thresh-
old By and apply patching to all clusters having more
than By child portals. Using the fact that the correla-
tion dimension is bounded and from Lemma 5.2 that all
the portals in one level form a packing, we can bound
the cost of patching. We defer the details to the full
version and state the following result.



LEMMA 5.3. Suppose the metric has correlation dimen-
ston at most k and patching is applied whenever a clus-
ter has more than By child portals. Then, the total extra
cost incurred by patching is at most BLO(%)’““OPT,

5.3 The Second TSP Algorithm

THEOREM 5.1. (SUB-EXPONENTIAL TIME ALGORITHM
FOR TSP) For any metric with correlation dimension
k, we can give a randomized (1 + €)-approzimation for
TSP in time exp{(s’QW)%} = 20&’“(”5), for
any § > 0.

Proof. We create a probabilistic hierarchical decompo-
sition, where the diameter at height-i is D; = H' for
some parameter H > 4. Hence the depth of the tree is
L := O(logg(n/e)). As indicated above (and proved in
Lemma 5.1), the probability that (u,v) are separated at
level-7 is at most a%, with a = O(logn)*. More-
over, portals in clusters of diameter D; form a BD;-
covering and since there are L levels, the total increase
in the TSP length is O(a8L)OPT. To make this at
most €/2, we set § = O(e/La).

Finally, from Lemma 5.3, the length increase from
patching (the “MST-loss”) is z=(*F)**'OPT. To make
this at most /2 as well, we set pick By such that
BL(%)IHl _ 6/2_

0

The only parameter left to be chosen is H. Observe
that the running time depends on By and so H is chosen
to minimize By. Note that By = (£)*20(Ha)" .
Observe that Ha is the dominating term, and also that
as H increases, a decreases. It happens that in this case
the best value is attained when H = «. This is satisfied
when log H = /log % loglog n.

It follows that it suffices to set the threshold By =
e~ (k+1)92(k+1)/log ¢ loglogn  _ Gk 2W)3k7
recalling € > % Hence, we obtain a tour with expected
length (1+4¢) times that of the optimal tour in time nL-
20(Blog B) " which for the above settings of parameters
is

exp{(s_l . 2\/10gn10g10gn)4k} _ 2Oe,k(n5)

b

for any § > 0.

6 Summary and Conclusions

We have considered a global notion of dimension, which
tries to capture the “average” complexity of metrics:
our notion of correlation dimension captures metrics
that potentially contain small dense clusters (of size up
to O(y/n)) but have small average growth-rate. We
show that metrics with a low correlation dimension
do indeed admit efficient algorithms for a variety of
problems.

Many questions remain open: can we improve the
running time of our algorithm for TSP? A more open-
ended question is defining other notions of dimension
for metric spaces: it is fairly unlikely that one notion
can capture the complexity of metrics (both the local
complexity, as in doubling, as well as the global behav-
ior). Since one definition may not fit all situations, it
seems reasonable to consider several definitions, whose
properties can then be exploited under the appropriate
circumstances.

References

[1] Ittai Abraham, Cyril Gavoille, Andrew Goldberg, and
Dahlia Malkhi. Routing in networks with low doubling
dimension. In 26th ICDCS, page 75, 2006.

[2] Ittai Abraham and Dahlia Malkhi. Name independent
routing for growth bounded networks. In 17th SPAA,
pages 49-55, 2005.

[3] Stefan Arnborg and Andrzej Proskurowski. Linear
time algorithms for NP-hard problems restricted to
partial k-trees. Discrete Appl. Math., 23(1):11-24,
1989.

[4] S. Arora. Polynomial time approximation schemes
for Euclidean traveling salesman and other geometric
problems. J. ACM, 45(5):753-782, 1998.

[5] Sanjeev Arora, Prabhakar Raghavan, and Satish Rao.
Approximation schemes for Euclidean k-medians and
related problems. In STOC ’98 (Dallas, TX), pages
106-113. ACM, New York, 1999.

[6] Yair Bartal. Probabilistic approximations of metric
spaces and its algorithmic applications. In 87th FOCS,
pages 184-193, 1996.

[7] Alberto Belussi and Christos Faloutsos. Estimating
the selectivity of spatial queries using the ‘correlation’
fractal dimension. In 21st VLDB, pages 299-310, 1995.

[8] Alina Beygelzimer, Sham Kakade, and John Langford.
Cover trees for nearest neighbor. In 28rd International
Conference on Machine Learning, pages 97-104, 2006.

[9] Hubert T-H. Chan, Anupam Gupta, Bruce M. Maggs,

and Shuheng Zhou. On hierarchical routing in DOu-

bling metrics. In 16th SODA, pages 762-771, 2005.

Kenneth L. Clarkson. Nearest-neighbor searching and

metric space dimensions. In G. Shakhnarovich, T. Dar-

rell, and P. Indyk, editors, Nearest-Neighbor Methods
for Learning and Vision: Theory and Practice, pages

15-59. MIT Press, 2006.

Richard Cole and Lee-Ad Gottlieb. Searching dynamic

point sets in spaces with bounded doubling dimension.

In 38th STOC, pages 574-583, 2006.

Artur Czumaj and Andrzej Lingas. Fast approxima-

tion schemes for Euclidean multi-connectivity prob-

lems (extended abstract). In Automata, languages
and programming (Geneva, 2000), volume 1853 of Lec-
ture Notes in Comput. Sci., pages 856-868. Springer,

Berlin, 2000.

(10]

(1]

(12]



(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

22]

23]

24]

(25]

[26]

27]

(28]

29]

Artur Czumaj, Andrzej Lingas, and Hairong Zhao.
Polynomial-time approximation schemes for the Eu-
clidean survivable network design problem. In Au-
tomata, languages and programming, volume 2380
of Lecture Notes in Comput. Sci., pages 973-984.
Springer, Berlin, 2002.

Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar.
A tight bound on approximating arbitrary metrics by
tree metrics. J. Comput. System Sci., 69(3):485-497,
2004.

Christos Faloutsos and Ibrahim Kamel. Beyond uni-
formity and independence: Analysis of r-trees using
the concept of fractal dimension. In 13th PODS, pages
4-13, 1994.

Peter Grassberger and Itamar Procaccia. Measuring
the strangeness of strange attractors. Physica D,
9:189-208, 1983.

Michelangelo Grigni. Approximate tsp in graphs with
forbidden minors. In 27st ICALP, pages 869-877,
2000.

Anupam Gupta, Robert Krauthgamer, and James R.
Lee. Bounded geometries, fractals, and low—distortion
embeddings. In 44th FOCS, pages 534-543, 2003.
Sariel Har-Peled and Manor Mendel. Fast construc-
tions of nets in low dimensional metrics, and their ap-
plications. In 21st SOCG, pages 150-158, 2005.
Johan Hastad. Clique is hard to approximate within
n'~¢. In 87th FOCS, pages 627-636, 1996.

K. Hildrum, J. D. Kubiatowicz, S. Rao, and B. Y. Zhao.
Distributed object location in a dynamic network. In
14th SPAA, pages 41-52, August 2002.

David R. Karger and Matthias Ruhl. Finding nearest
neighbors in growth-restricted metrics. In 34th STOC,
pages 63-66, 2002.

Philip N. Klein. A linear-time approximation scheme
for planar weighted tsp. In 46th FOCS, pages 647—657,
2005.

Jon M. Kleinberg, Aleksandrs Slivkins, and Tom
Wexler. Triangulation and embedding using small sets
of beacons. In 45th FOCS, pages 444-453, 2004.
Leonard Kleinrock and Farouk Kamoun. Hierarchical
routing for large networks. Performance evaluation
and optimization. Comput. Networks, 1(3):155-174,
1976/77.

Stavros G. Kolliopoulos and Satish Rao. A nearly
linear-time approximation scheme for the Euclidean k-
median problem. In Algorithms—ESA ’99 (Prague),
volume 1643 of Lecture Notes in Comput. Sci., pages
378-389. Springer, Berlin, 1999.

Goran Konjevod, Andréa W. Richa, and Donglin Xia.
On sampling in higher-dimensional peer-to-peer sys-
tems. In LATIN 2006: Theoretical informatics, volume
3887 of Lecture Notes in Comput. Sci., pages 641-652,
Berlin, 2006. Springer.

Goran Konjevod, Andréa W. Richa, and Donglin Xia.
Optimal-stretch name-independent compact routing in
doubling metrics. In 25th PODC, pages 198-207, 2006.
Robert Krauthgamer and James R. Lee. Navigating

(30]

(31]

32]

33]

34]

(35]

(36]

37]

(38]

39]

nets: simple algorithms for proximity search. In 15th
SODA, pages 798-807, 2004.

Robert Krauthgamer and James R. Lee. The black-
box complexity of nearest-neighbor search. Theoret.
Comput. Sci., 348(2-3):262-276, 2005.

F. Kuhn, T. Moscibroda, and R. Wattenhofer. On the
locality of bounded growth. In 24th PODC, pages 60—
68, 2005.

Joseph S. B. Mitchell. Guillotine subdivisions approxi-
mate polygonal subdivisions: a simple polynomial-time
approximation scheme for geometric TSP, k-MST, and
related problems. SIAM J. Comput., 28(4):1298-1309,
1999.

Bernd-Uwe Pagel, Flip Korn, and Christos Faloutsos.
Deflating the dimensionality curse using multiple frac-
tal dimensions. In ICDE, pages 589-598, 2000.
Christos H. Papadimitriou and Mihalis Yannakakis.
The traveling salesman problem with distances one and
two. Math. Oper. Res., 18(1):1-11, 1993.

C. G. Plaxton, R. Rajaraman, and A. W. Richa.
Accessing nearby copies of replicated objects in a
distributed environment. Theory Comput. Syst.,
32(3):241-280, 1999. ACM Symposium on Parallel Al-
gorithms and Architectures (Padua, 1996).

Satish B. Rao and Warren D. Smith. Approximating
geometrical graphs via “spanners” and “banyans”. In
STOC 98 (Dallas, TX), pages 540-550. ACM, New
York, 1999.

Aleksandrs Slivkins. Distance estimation and object
location via rings of neighbors. In 24th PODC, pages
41-50, 2005.

Kunal Talwar. Bypassing the embedding: Algorithms
for low-dimensional metrics. In 36th STOC, pages 281—
290, 2004.

Luca Trevisan. When Hamming meets Euclid: the
approximability of geometric TSP and Steiner tree.
SIAM J. Comput., 30(2):475-485, 2000.



