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Abstract. Distributed learning in expert referral networks is an emerging chal-
lenge in the intersection of Active Learning and Multi-Agent Reinforcement Learn-
ing, where experts—humans or automated agents—have varying skills across dif-
ferent topics and can redirect difficult problem instances to connected colleagues
with more appropriate expertise. The learning-to-refer challenge involves esti-
mating colleagues’ topic-conditioned skills for appropriate referrals. Prior re-
search has investigated different reinforcement learning algorithms both with
uninformative priors and partially available (potentially noisy) priors. However,
most human experts expect mutually-rewarding referrals, with return referrals on
their expertise areas so that both (or all) parties benefit from networking, rather
than one-sided referral flow. This paper analyzes the extent of referral reciprocity
imbalance present in high-performance referral-learning algorithms, specifically
multi-armed bandit (MAB) methods belonging to two broad categories – frequen-
tist and Bayesian – and demonstrate that both algorithms suffer considerably from
reciprocity imbalance. The paper proposes modifications to enable distributed
learning methods to better balance referral reciprocity and thus make referral
networks win-win for all parties. Extensive empirical evaluations demonstrate
substantial improvement in mitigating reciprocity imbalance, while maintaining
reasonably high overall solution performance.

Keywords: Referral networks · Reciprocity awareness · Active Learning.

1 Introduction

A referral network consists of multiple agents, human or autonomous, who learn to es-
timate the expertise of other known agents in order to optimize referral decisions when
they are unable to solve a problem instance. Learning-to-refer in multi-agent referral
networks has witnessed recent progress on several fronts, including distributed rein-
forcement learning algorithms [16], coping with some experts quitting the network and
others joining [15], addressing expertise drift [12], e.g., as some experts hone their pri-
mary skills over time or others atrophy when disused. Other practical issues addressed
include capacity constraints on how many problems an agent can address per unit of
time [15]. These lines of work, however, implicitly assume altruistic agents, intent on
solving problems collectively, rather than maximizing individual gain, where gain is
proportional to business volume, i.e., incoming clients and referrals.
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An extension beyond implicit altruism is the advent of resource-bounded proactive
skill advertisement [11, 13, 14] among agents, where each agent attempts to maxi-
mize gain by attracting the largest number of referrals, assuming incoming referrals for
problems an agent can solve result in economic gain. This extension required creating
incentive-compatible mechanisms to induce agents to accurately report their skill lev-
els (vs strategic lying), so that local economic gain would align with overall network
problem-solving accuracy.

Another extension beyond implicit altruism requires addressing referral reciprocity
among agents. Consider a network of physicians who know each other where A and B
are dermatologists with different skill levels and C and D are neurologists, also with
different skill levels. C might refer all patients with dermatological conditions to A if
she believes A is the more skilled dermatologist. If B refers patients with neurological
issues to C and D, and after a while notices that C never returns any referrals, a natural
reaction would be “Why should I refer anyone to C if she never returns the business?”
and henceforth B sends her neurological referrals only to D, even if she may believe
D is not the best or most appropriate neurologist. If the reader would prefer to think
that physicians act only in the patients’ best interests, substitute dermatologists and
neurologists with liability and tort lawyers, or with used car salesmen specializing in
different auto brands, or with automated agents programmed to optimize their economic
benefit. The key issue is reciprocity of referrals, or rather reciprocity imbalance, where
an agent, repeatedly slighted by a peer via highly imbalanced referrals, changes her
behavior in a manner that may not lead to optimal network referral behavior.

Reciprocity as a means to improve overall multi-agent cooperation has been stud-
ied in biological settings [26], economic settings [6], and AI-based multi-agent set-
tings [9, 18], but not in the context of referral networks. This paper focuses on reci-
procity imbalance (RI) which we define as the divergence from absolute reciprocity in
the [0,1] interval. Absolute reciprocity means the referral flow between two agents is
identical in both directions, in which case RI → 0. Total lack of reciprocity means that
either the first agent receives many referrals from the second agent but never recipro-
cates or vice versa (RI→ 1). The reasons for the arrows is that we measure empirical
reciprocity imbalance, and with few data points we regularize it to be close to 0, and ad-
just upwards if warranted by new observations. Hence, the actual challenge we address
in this paper is learning-to-refer in a multi-expert distributed setting taking reciprocity
of referrals into account. In a broader context, our work is an example of a distributed
AI application where a global goal (in our case, network-level task accuracy) is met via
self-interested agents locally maximizing their self-interest.

Our work is different from extensive literature on trust and reputation [22, 23, 25]
on the following key aspects. First, reputation is trust in aggregate, in contrast for re-
ported work all rewards and referrals are fine-grained, how one agent models another
agents behavior; there is no explicit communication among agents on reciprocity, nor
any other requirements for global visibility. Second, unlike trust, reciprocity depends
on mutual interaction (concerning referrals, estimated expertise levels and skill com-
plementarities in each agents subnetwork etc.); an expert can be highly reciprocating to
some while being completely non-reciprocating to others.
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Key contributions: First, our extensive analysis on two high-performance referral learn-
ing algorithms that include the current state-of-the-art (a frequentist MAB algorithm
DIEL [15]), and Thompson Sampling [20] (a well-known Bayesian MAB algo-
rithm) reveals that both algorithms suffer from serious reciprocity imbalance and hence
may not be well-suited for practical settings. Second, we propose a simple technique
melding dual objectives that allows continual estimation of expertise of the colleagues
taking both historical performance and reciprocity into account achieving considerable
reduction in reciprocity imbalance at a small cost of overall performance. As baseline,
we compared against an algorithmic setting where after observing a certain number of
mutual referrals, an expert severs a connection with a colleague if the expert is unhappy
with the reciprocal behavior of the colleague and forges a new link with another expert
in the network. Our results indicate that such abrupt change in behavior is sub-optimal
and achieves less reciprocity and a worse referral-learning performance as compared
to our proposed solution. Third, we show that when all experts are reciprocity-aware,
strategic deviation to altruism or greed fetches lesser referrals in expectation. Finally,
we show that even when we start with the constrained referral-learning algorithm but
at a later stage, if we switch to the unconstrained version, the algorithms are able to
recover its performance and match the corresponding unconstrained version.

2 Background

2.1 Motivation

We illustrate the effectiveness of appropriate referrals with a small simplified exam-
ple of a referral network with five experts shown in Figure 1 (this example is taken
from [16]). The nodes of the graph represent the experts, and the edges indicate a po-
tential referral link, i.e., 5 the experts ‘know’ each other and can send or receive referrals
and communicate results. Consider three different topics – call them t1, t2, and t3 – and
the figures in brackets indicate an expert’s topical expertise (probability of solving a
given task) in each of these.

Fig. 1. A referral network with five experts.
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In the example, with a query belong-
ing to t2, without any referral, the client
may consult first v2 and then possibly e5,
leading to a solution probability of 0.2 +
(1 − 0.2) × 0.2 = 0.36. With referrals, an
expert handles a problem she knows how
to answer, and otherwise if she had knowl-
edge of all the other connected colleagues‘
expertise, v2 could refer to e3 for the best
skill in t2, leading to a solution probabil-
ity of 0.2 + (1 − 0.2) × 0.8 = 0.84. The
true topic-conditioned skills of the experts
in the network are initially unknown and the learning-to-refer challenge is to estimate
topical skills of the colleagues in a distributed setting with each expert independently
estimating colleagues’ topical expertise.
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2.2 Preliminaries and Notation

Referral network: Represented by a graph (V,E) of size k in which each vertex vi
(1 ≤ i ≤ k) corresponds to an expert and each bidirectional edge 〈vi, vj〉 indicates a
referral link which implies vi and vj can co-refer problem instances.
Subnetwork: of an expert vi: The set of experts linked to an expert vi by a referral link.
Referral scenario: Set of m instances (q1, . . . , qm) belonging to n topics (t1, . . . , tn)
addressed by the k experts (v1, . . . , vk) connected through a referral network (V,E).
Expertise: Expertise of an expert/instance pair 〈vi, ql〉 is the probability with which vi
can solve ql.
Referral mechanism: For a query budget Q = 2, and a given instance, ql, this consists
of the following steps.
1. A user issues an initial query to a randomly chosen initial expert vi.
2. The initial expert vi examines ql and solves it if possible. This depends on the

expertise of vi wrt. ql.
3. If not, a referral query is issued by vi to a referred expert vj within her subnetwork,

with a remaining query budget of Q− 2. Learning-to-refer involves improving the
estimate of who is most likely to solve the problem.

4. If the referred expert succeeds, she sends the solution to the initial expert, who
sends it to the user.
The first two steps are identical to Active Learning [19]; step 3 and 4 are the exten-

sion to the Active Learning setting. Understandably, with a higher per-instance query
budget, the referred expert can re-refer instances to other experts as long as the budget
permits. Following [15], in addition to single-hop referral (Q = 2), we also considered
bounded multi-hop referrals with Q = 3 (two-hop) and Q = 4 (three-hop). Further
details regarding expertise, network parameters, and simulation details can be found
in [13, 15, 16].

2.3 Assumptions

We follow the same set of assumptions made in [15, 16]. Some of the important assump-
tions are: the network connectivity depends on (cosine) similarity between the topical
expertise, and the distribution of topical-expertise across experts can be characterized
by a mixture of Gaussian distributions; for any given instance, we assume that any of
the k experts is equally likely to be the initial expert receiving the problem (query) ex-
ternally. The network connectivity assumption is guided by the observation that experts
with similar expertise are more likely to know each other. For topical-expertise distribu-
tion, a mixture of two Gaussians is considered. Gaussian distributions are widely used
to model real-valued random variables (e.g., height, weight, expertise) in natural and
social sciences. A mixture of two Gaussians was used to represent the expertise of ex-
perts with specific training for the given topic (higher mean, lower variance), contrasted
with the lower-level expertise (lower mean, higher variance) of the layman population.

From the point of view of a single expert, for a given topic, learning referral policy
maps to the classic MAB setting where each arm corresponds to a referral choice, and
similar to the unknown reward distributions of the arms, the expertise of the colleagues
is not initially known. In order to learn an effective referral strategy, depending on the
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outcome of a referred task, the initial expert assigns a reward to the referred colleague.
All our rewards are

– bounded: In all our experiments, we considered binary rewards, with a failed and
successful tasks receiving a reward of 0 and 1, respectively.

– i.i.d: The reward for a given expert on a specific instance belonging to a topic
is independent of any reward observed from any other experts and any reward or
sequence of rewards belonging to that topic or any other topic by the same expert.

– locally assigned and locally visible: reward(vi, t, vj), a function of initial expert
vi, referred expert vj and topic t, is assigned by vi and visible to vi only.

2.4 Distributed Referral Learning

In a distributed setting, each expert maintains an action selection thread for each topic
in parallel. In order to describe an action selection thread, we first name the topic T
and expert v. Let q1, . . . , qN be the first N referred queries belonging to topic T issued
by expert v to any of her K colleagues denoted by v1, . . . , vK . For each colleague vi,
v maintains a reward vector ri,ni

where ri,ni
= (ri,1, . . . , ri,ni

), i.e., the sequence of
rewards observed from expert vi on issued ni referred queries. Understandably, N =∑K

i=1 ni. Let m(vi) and s(vi) denote the sample mean and sample standard deviation
of these reward vectors. Additional to the reward vectors, for each expert vi, v maintains
Svi and Fvi where Svi denotes the number of observed successes (reward = 1) and Fvi

denotes the number of observed failures (reward = 0).

Algorithm 1: DIEL(v, T )
Initialization: ∀i, ni ← 2, ri,ni ← (0, 1)
Loop: Select expert vi who maximizes

score(vi) = m(vi) +
s(vi)√

ni

Observe reward reward
Update ri,ni with reward, ni ← ni + 1

We next focus on two well-established referral-learning algorithms that have ex-
tensive use in other reinforcement learning and MAB contexts. These algorithms are
reciprocity-agnostic, i.e., they do not consider reciprocity while making any referral
decision.
DIEL: Distributed Interval Estimation Learning (DIEL) is the known state-of-the-art
referral learning algorithm [15]. First proposed in [10], Interval Estimation Learning
(IEL) has been extensively used in stochastic optimization [7] and action selection
problems [4, 24]. As described in Algorithm 1, at each step, DIEL selects the expert
vi with highest m(vi) +

s(vi)√
ni

(recall that, m(vi) and s(vi) denote the sample mean
and sample standard deviation of the reward vector of expert vi, respectively) . Every
expert is initialized with two rewards of 0 and 1, allowing us to initialize the mean and
variance.

DIEL addresses the classic exploration-exploitation trade-off [3] present in MAB
algorithm design in the following way. A large variance implies greater uncertainty,
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indicating that the expert has not been sampled with sufficient frequency to obtain reli-
able skill estimates. Selecting such an expert is an exploration step which will increase
the confidence of v in her estimate. Also, such steps have the potential of identifying a
highly skilled expert, whose earlier skill estimate may have been too low. Selecting an
expert with a highm(vi) amounts to exploitation. Initially, choices made by v tend to be
explorative since the intervals are large due to the uncertainty of the reward estimates.
With an increased number of samples, the intervals shrink and the referrals become
more exploitative.

Algorithm 2: TS(v, T )
Initialization: ∀i, Svi ← 0, Fvi ← 0
Loop: Select expert vi who maximizes

score(vi) = θi
Observe reward reward
Svi ← Svi + reward
Fvi ← Fvi + 1− reward

Thompson Sampling (TS): First proposed in the 1930’s [20], finite-time regret
bound of Thompson Sampling (TS) remained unsolved for decades [1] until re-
cent results on its competitiveness with algorithms that exhibit provable regret bounds
renewed interest [5, 8]. As described in Algorithm 2, at each step, for each expert vi,
TS first samples θi from Beta(Svi + 1, Fvi + 1) (recall that, Svi denotes the number
of observed successes and Fvi denotes the number of observed failures of expert vi,
respectively). Next, TS selects the action with highest θi. When the number of observa-
tions is 0, θi is sampled from Beta(1, 1), which is U(0, 1) which makes all colleagues
equally likely to receive referral. As the number of observations increases, the distri-
bution for a given expert becomes more and more centered around the empirical mean
favoring experts with better historical performance.

3 Incorporating Reciprocity-awareness
We first introduce a quantitative measure of reciprocity imbalance in referrals start-

ing with the definitions required to formalize the measure.
Interaction: At any given point, interaction of a referral link 〈vi, vj〉, denoted as
interaction(〈vi, vj〉), is measured as interaction(〈vi, vj〉) = R(vj → vi)+R(vi → vj),
where R(vi → vj) denotes the total number of referrals (across all topics) vj has so
far received from vi. Since interaction(〈vi, vj〉) is used as a denominator in referral
share (defined next), in order to avoid any divide-by-zero boundary condition, ∀i, j,
R(vi → vj) is initialized to 1, effectively initializing interaction(〈vi, vj〉) ∀i, j to 2.
Referral share: At any given point, the referral share of an expert vi in a referral link,
〈vi, vj〉, denoted as refShare(vi, 〈vi, vj〉), is measured as
refShare(vi, 〈vi, vj〉) = R(vj→vi)

interaction(〈vi,vj〉) . In a reciprocal setting, for every expert in a re-
ferral link, we would like the referral share to be close to 1

2 .
Reciprocity imbalance of a referral link: For a given referral link, 〈vi, vj〉, the reci-
procity imbalance, denoted as RI(〈vi, vj〉), is measured as
RI(〈vi, vj〉) = | 12 − refShare(vi, 〈vi, vj〉)|+ | 12 − refShare(vj , 〈vi, vj〉)|.
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For every referral link, RI(〈vi, vj〉) is initialized to zero. For any referral link, reci-
procity imbalance is bounded within the range [0, 1] with 0 being a case of perfect
reciprocity and 1 being the extreme case where one expert in a referral link does not
receive any referrals from her colleague. Say, v1 and v2 have referred 100 instances
between each other of which v2 received 80 instances, the reciprocity of the link will
be | 12 −

80
100 |+ |

1
2 −

20
100 | = |0.5− 0.8|+ |0.5− 0.2| = 0.6.

Reciprocity imbalance of a referral scenario: The reciprocity imbalance of a referral
scenario is the average reciprocity imbalance present in its referral links.
Reciprocity-aware algorithm: We are now ready to define our reciprocity-aware al-
gorithms. For any action selection algorithm A, the corresponding reciprocity-aware
(denoted as ARA) variant will only differ in the following way: The reciprocity-aware
score of an expert colleague vi of v for a given topic T , denoted as RAscorev,TA (vi), is
a function of its actual algorithmic score and referral share.
RAscorev,TA (vi) = scorev,TA (vi) + refScorevA(vi),
where refScorevA(vi) = refShare(vi, 〈v, vi〉) ζ(interaction(〈v, vi〉)), ζ(n) = n

n+C , a fac-
tor ramping up to 1 in the steady state and C is a configurable parameter. In all our
experiments, we set the value of C to 101. Our proposed technique to incorporate reci-
procity into existing algorithms melding dual objectives is fairly general; the overall ex-
pression of RAscorev,TA (vi) depends on the algorithmic score, scorev,TA (vi). For DIEL,
RAscorev,TDIEL(vi) = m(vi) +

s(vi)√
ni

+ refScorevDIEL(vi), while for TS,

RAscorev,TTS (vi) = θi + refScorevTS(vi), where m(vi),
s(vi)√

ni
and θi all are computed with

respect to topic T . Since both the algorithmic score for DIEL and TS and refScore have
identical range [0, 1], RAscorev,TA (vi) has range [0, 2].

For any algorithm A, if two colleagues vi and vj have identical scores scorev,TA (vi)

and scorev,TA (vj) and interactions, the reciprocity-aware variant will select the col-
league with greater referral share thus favoring colleagues who return the favor more
often. As the value of interaction(v, vi) increases, v becomes more sure of its esti-
mate of the referral share thus putting more weight to referral share in its combined
reciprocity-aware score computation. Note that, for a given expert, both RAscorev,TA (vi)

and scorev,TA (vi) are computed for a specific topic, however, refShare and interaction
are computed across all topics. While the underlying approach to combine reciprocity
with performance is simple, in a distributed multi-agent setting, several such threads
of continual estimation and updates of referral shares and expertise of their colleagues
are happening in parallel, thus creating a complicated mesh of interaction guided by
self-interest, i.e., maximizing incoming referrals.

4 Experimental Setup

Performance measure: We considered two different performance measures. Following
previous literature [12, 15], our first performance measure is the overall task accuracy
of our multi-expert system. If a network receives n tasks of which m tasks are solved

1 Additionally, we present experimental results in Table 3 indicating that the performance is not
sensitive to the choice of C over a reasonable set of values.
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(either by the initial expert or a referred expert), the overall task accuracy is m
n . Q, the

per-instance query budget, is set to 2, 3 and 4. Each algorithm is run on a data set of
200 referral scenarios and the average over such 200 scenarios is reported in our re-
sults section. Similarly, we report the average reciprocity imbalance over 200 referral
scenarios. We summarize each algorithm’s performance with a pair 〈a, b〉 where ‘a’
denotes the overall task accuracy at the horizon (5000 samples per subnetwork) and ‘b’
denotes the reciprocity imbalance.
Algorithm class, upper bound and baseline: We define an algorithm class, A ∈
{DIELQ,TSQ}, with per-instance query budgetQ ∈ {2, 3, 4}. For a proposed reciprocity-
aware algorithm, the upper bound is its underlying reciprocity-agnostic action selection
algorithm class, A. We chose this upper bound to answer the following research ques-
tions: a) how much reciprocity imbalance is present in existing algorithms? b) and to
what extent of improvement our modification brings in (in terms of reciprocity imbal-
ance) at what cost of performance (in terms of overall task accuracy)?

For an algorithm class A, we propose the following switching variant, Aswitching ,
as baseline. Similar to A, Aswitching uses scorev,TA (vi) (as opposed to RAscorev,TA (vi)
used by ARA). However, for any referral link, after the interaction crosses a certain
threshold (expressed through a parameter interactionthresh), if the referral share of any
of the participating two experts in the link falls below a threshold (expressed through a
parameter refSharethresh), the expert with smaller referral share disconnects and forms
a new connection with another expert in the network. Essentially, this means after cer-
tain number of interactions between an expert pair, if an expert is unhappy with the
reciprocity imbalance, she decides to form a new connection with another expert. Since
every time a referral link is deleted a new referral link is formed, at any given point,
the total number of referral links in network remains unchanged. For our experiments,
refSharethresh is set to 0.3 and interactionthresh is set to 50.

For any algorithm class A, we compare the performance of three algorithms: our
proposed reciprocity-aware variant ARA, a baseline Aswitching, and an unconstrained
upper bound. For instance, for DIEL2 class, we compare DIEL2 (the upper bound),
DIEL2

RA (proposed reciprocity-aware algorithm) and the switching variant DIEL2
switching.

Data set: We used the same data set used in [12]. The data set comprises of 200 referral
scenarios. Each referral scenario consists of 100 experts connected through a referral
network with a connection density of 16 ± 4.96 and 10 topics (for further details, see,
e.g., [13, 15]).

5 Results

Substantial improvement in reciprocity imbalance at small performance cost: As
the first step to establish the significance of this work, we need to analyze to what extent
reciprocity is lacking in existing algorithms. For each algorithm class, Table 1 summa-
rizes the reciprocity imbalance present in the upper bound, proposed corresponding
reciprocity-aware versions and baseline switching variants. We first note that DIEL,
the state-of-the-art referral learning algorithm and the upper bound for DIEL algorithm
class, exhibits a substantially high reciprocity imbalance. In fact, both algorithms with-



Toward Reciprocity-aware Distributed Learning in Referral Networks 9

0 1000 2000 3000 4000 5000

#Samples per subnetwork

55

60

65

70

75

80

T
a
s
k
 a

c
c
u
ra

c
y

DIEL2 (upper bound)

DIEL2
RA

DIEL2
switching

 (baseline)

(a) DIEL2

0 1000 2000 3000 4000 5000

#Samples per subnetwork

50

55

60

65

70

75

80

T
a
s
k
 a

c
c
u
ra

c
y

TS2 (upper bound)

TS2
RA

TS2
switching

 (baseline)

(b) TS2

0 1000 2000 3000 4000 5000

#Samples per subnetwork

75

80

85

90

95

100

T
a
s
k
 a

c
c
u
ra

c
y

DIEL4 (upper bound)

DIEL4
RA

DIEL4
switching

 (baseline)

(c) DIEL4

0 1000 2000 3000 4000 5000

#Samples per subnetwork

75

80

85

90

95

100

T
a
s
k
 a

c
c
u
ra

c
y

TS4 (upper bound)

TS4
RA

TS4
switching

 (baseline)

(d) TS4

Fig. 2. Performance comparison between reciprocity-aware referral-learning algorithms, corre-
sponding unconstrained counterpart (upper bound) and switching variant (baseline). Qualitatively
similar results for per-instance query budget Q = 3 are omitted due to space constraint.

out a mechanism to account for reciprocity suffer from high reciprocity imbalance and
this phenomenon is independent of the per-instance query budget Q.

For both DIEL and TS, the improvement in reciprocity imbalance is highly no-
ticeable in its corresponding reciprocity-aware version; each reciprocity-aware version
brought about a 2-fold or better improvement in reducing the reciprocity imbalance (a
5x improvement in DIEL4). While the switching variants are in general useful in reduc-
ing the reciprocity imbalance, our results indicate that our proposed reciprocity-aware
solutions substantially outperform the switching variants. With an increase in query-
budget, the imbalance inA orAswitching show no visible improvement, whileARA’s per-
formance slightly improves. Since referrals are indivisible, with more budget, allocation
gets smoother, and this accounts forARA’s slight performance boost. ForAswitching, each
switch requires estimating the new connections (and implicitly its subnetworks) exper-
tise from scratch, which affects the reciprocity.

Understandably, the unconstrained upper bound achieved better task accuracy than
our proposed solution as indicated in Figure 2 and Table 1. However, the performance
gap is small and as we have already seen in Table 1, the resulting reduction in reciprocity
imbalance is substantial. When compared with the switching baseline, mimicking a re-
alistic algorithmic setting in which slighted peers disconnect from non-reciprocating
colleagues and forge new links in the network, we found that our reciprocity-aware ver-
sions always performed better than the switching baseline on both performance mea-
sures. In terms of task accuracy, a paired t-test reveals that for all A, beyond 1000
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Algorithm class A ARA Aswitching

DIEL2 〈 77.92, 0.51 〉 〈 75.13, 0.19 〉 〈 70.84, 0.33 〉
DIEL3 〈 92.45, 0.55 〉 〈 89.71, 0.15 〉 〈 86.21, 0.34 〉
DIEL4 〈 96.67, 0.55 〉 〈 94.44, 0.11 〉 〈 92.95, 0.33 〉
TS2 〈 75.24, 0.36 〉 〈 72.44, 0.16 〉 〈 69.58, 0.28 〉
TS3 〈 92.00, 0.36 〉 〈 88.30, 0.13 〉 〈 85.39, 0.29 〉
TS4 〈 96.64, 0.36 〉 〈 94.17, 0.09 〉 〈 92.47, 0.29 〉

Table 1. Performance comparison of referral-learning algorithms. For any given algorithm class,
the best task accuracy and reciprocity imbalance are highlighted in bold.

P1 P2 DIEL2
switching DIEL2

RA DIEL2

0.35 20 〈68.31, 0.33〉

〈 75.13, 0.19 〉 〈 77.92, 0.51〉

0.35 50 〈 68.89, 0.28 〉
0.35 100 〈 69.53, 0.33 〉
0.30 20 〈 70.83, 0.37 〉
0.30 50 〈 70.84, 0.33 〉
0.30 100 〈 71.10, 0.36 〉
0.25 20 〈 72.15, 0.42 〉
0.25 50 〈 72.23, 0.38 〉
0.25 100 〈 72.13, 0.39 〉

Table 2. Performance analysis of different parameter configurations of DIEL2
switching. Each row

represents a parameter configuration with the left-most two columns indicating the parameter
values. P1 denotes refSharethresh and P2 denotes interactionthresh. The performance of DIEL2

RA

and DIEL2 is presented for reference. The best task accuracy and reciprocity imbalance are high-
lighted in bold.

samples or more per subnetwork, ARA outperforms its switching counterpart, Aswitching,
with p-value less than 0.0001. For every referral-learning algorithm class, our proposed
solution achieved both better task accuracy and improved reciprocity than the corre-
sponding switching baseline.
Robustness to parameter configurations: Aswitching has two parameters: refSharethresh

(set to 0.3), a threshold for the referral share, and interactionthresh (set to 50), a thresh-
old on the interaction of a given referral link before the disgruntled expert decides to
sever connection. ARA has only one parameter, C set to 10. Table 2 demonstrates that
for DIEL2, when evaluated across a wide range of configurations, the reciprocity-aware
DIEL2

RA consistently outperforms the corresponding switching variant; Table 3 demon-
strates that the performance of DIEL2

RA and TS2
RA is not sensitive to choice of C over a

reasonable set of values.

C DIEL2
RA TS2

RA
5 〈 75.15, 0.1893 〉 〈 72.25, 0.1604 〉
10 〈 75.13, 0.1891 〉 〈 72.44, 0.1616 〉
15 〈 74.92, 0.1875 〉 〈 72.32, 0.1625 〉
20 〈 74.98, 0.1879 〉 〈 72.45, 0.1633 〉

Table 3. Robustness to parameter C
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Algorithm class Fgreed Faltruism

DIEL2 1.10 1.16
DIEL3 1.60 1.12
DIEL4 1.85 1.08
TS2 1.08 1.07
TS3 1.50 1.05
TS4 1.64 1.04

Table 4. Strategic referral behavior

Reciprocity-awareness fetches more referrals in expectation: At network level, sub-
stantial improvement in reciprocity imbalance can be obtained at a small cost of task
accuracy. However, the more important questions are

– What is the individual incentive to meld dual objectives while making referral de-
cisions?

– Can an expert benefit from not following the protocol either by showing extreme
altruism or unfettered greed?

Recall that, the reciprocity-aware score melds dual objective by combining algorithmic
score and reciprocity:
RAscorev,TA (vi) = scorev,TA (vi) + refScorevA(vi). We now consider two extreme con-
ditions: an expert showing absolute altruism and only using scorev,TA (vi); an expert
showing unfettered greed and only using refScorevA(vi). Accordingly, we define the
following strategy set of an expert S = {altruism, greed, reciprocity-awareness}.
For a given scenario scenarioi, we first fix one expert, say vil . Apart from vil , all other
experts always adopt the same reciprocity-awareness strategy. Let Rs(vil ) denote the
number of referrals received by vil in scenarioi when she adopts strategy s ∈ S. We
now calculate the following two factors:

Fgreed =

200∑
i=1

Rs=reciprocity-awareness(vi
l )

200∑
i=1

Rs=greed(vi
l )

, and Faltruism =

200∑
i=1

Rs=reciprocity-awareness(vi
l )

200∑
i=1

Rs=altruism(vi
l )

.

Table 4 shows that ∀A, Fgreed > 1 and Faltruism > 1. This implies that when all
other experts follow the reciprocity-awareness strategy, deviating to altruism or greed
fetches lesser number of referrals in expectation. It is straight-forward why greed would
fetch less referrals as Q increases. Intuitively, if vil adopts altruism, and the rest of
the field requires reciprocity, connected colleagues will balance reciprocity with those
colleagues at vil ’s expense.
Teasing apart different factors in learning: In order to separate the effects of learn-
ing behavior from reciprocity considerations, we first consider a hypothetical situa-
tion where perfect knowledge about expertise is available. Acknowledging both that
this situation is unlikely in a real setting and in our work we focus on a much harder
problem of joint learning of reciprocity imbalance and expertise, this particular ex-
periment allows us to take a cleaner look at the effect of reciprocity considerations.
Specifically, we consider an algorithm, ORACLE2, where each expert has an access to
an oracle that accurately estimates the topical expertise of all expert/topic pairs. The
〈Accuracy, Reciprocity Imbalance〉 of ORACLE2 and corresponding reciprocity aware
version ORACLE2

RA are respectively: 〈79.43, 0.54〉 and 〈76.27, 0.24〉, i.e., we obtained
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Fig. 3. Recovery performance

greater than 200% improvement in reciprocity imbalance at 3.98% loss of task accu-
racy.
Recovery performance: In terms of task accuracy, the performance gap betweenA and
ARA indicates reciprocity comes at a modest performance cost. However, it is impor-
tant to analyze how much does learning-to-refer get affected because of this additional
reciprocity constraint. In particular, we were interested in observing the performance
of a learning algorithm that starts as constrained ARA, and somewhere in the process
abruptly shifts to the unconstrained version A, for instance in a crisis where task per-
formance trumps all other considerations. We evaluate the following research question:
can such learning algorithm identify the ‘true’ expert colleagues as well as a learn-
ing algorithm unconstrained from the start? The practical significance of this research
question is there could be certain mission critical instances for which the network must
find the best expert possible, regardless of reciprocity. If so, how fast can the algorithm
match its performance with the unconstrained version? In Figure 3, after a randomly
chosen point in the operation of the algorithm,ARA switches toA (we denote this algo-
rithm as Arecovery). Our results indicate that neither DIEL2

recovery nor TS2
recovery had any

difficulty in quickly re-establishing the performance of unconstrained DIEL2 or TS2

from the beginning. Note that, we opted for the same fixed point in time for all experts
for clearer visualization; we obtained qualitatively similar performance even when the
shifts are distributed across time-steps.

6 Conclusions and Future Work

In this paper, we argue that in the real-world, reciprocity in referral is a crucial practi-
cal factor. First we performed an extensive empirical evaluation focusing on two high-
performance referral-learning algorithms and found that both of them suffer from sub-
stantial reciprocity imbalance. Second, we proposed algorithmic modifications to ad-
dress reciprocity imbalance and we determined its efficacy empirically. Finally, we have
shown our technique is extensible, and without any modification can be effectively ap-
plied to other algorithms or settings. Future lines of work include (1) expanding our
investigation into other referral settings (e.g., [13]) and other active learning settings
involving multiple teachers (e.g., [2, 17, 21, 27]), (2) addressing malicious agents and
(3) considering fine-grained referrals.
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