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Introduction to Paper

A mobile robot operating among beacons (ad
hoc sensor network)

— Robot has beacon too
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Introduction to Paper

A mobile robot operating among beacons (ad
hoc sensor network)

— Robot has beacon too
Everything communicates using radio
Measure range to other beacons using sonar

— No practical implementations of radio-based
ranging available

The beacons can also move



Extended Kalman Filter (Review)

Noise-corrupted process: g, = f (g4, Uy, W, ,)
Noise-corrupted measurements:  y, =h(g.v,)

Predict (project state forward)
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Introduction to SLAM

e Scenario
— Landmarks & sensor to detect them

e Localization

— Landmark locations known

— Use successive measurements to derive position
* Mapping

— Robot position known

— Use successive measurements to determine
landmark locations



Introduction to SLAM

e Simultaneous Localization & Mapping
— Know neither robot nor landmark locations

— Use successive measurements to derive position
of robot and landmarks



Range-only SLAM

e In “typical SLAM,” get range & bearing
(displacement vector)

 May only get range readings
— Often, no line of sight

 Underwater

 |nside buildings

e Emergency response: smoky, flame-filled areas
— Sensors: radio, sonar, ...

 Range from signal strength, time of flight, etc.



Related: Bearing-only SLAM

e Monocular structure from motion in
computer vision

— Each point in camera image corresponds to a ray
In space



EKF Localization
(assuming landmark locations known)

e Robot state: g,

— Position & orientation

o MOtiOn mOdel: qk+1:F(qk)+G(uk)+V(qk)

— System dynamics, control input, noise

e Measurement model:

— Sensing of relative landmark

— |n 2-D:

JO =X )2+ (Y - Y, )?

atan2(y; — ¥, % = X;)

y, =H(q,) +w(q,)

ocations, noise



Extending EKF for SLAM

Localize with Kalman filter as before
Discover landmarks while moving

Add landmark locations to state estimate
—In2-D: a=[% Yo G X Ya o X Vil

Need some initial estimate of landmark locations

Dreaded data association problem
— Landmark <> measurement?



Paper Contribution

Comparative study of five different algorithms

— Just range-only localization
e EKF on robot measuring distances to known beacon locations

— Basic range-only SLAM

e Same EKF, beacon locations unknown

— Extensions
e Add beacon-to-beacon measurements to EKF
e Offline optimization of robot path & beacon locations
e Robot as virtual node, solve submaps with MDS, patch together



Range-only Localization

EKF model used in paper:

Robot state (Position and Orientation): 0 = [Xk Yi Hk]T

Dynamics of the wheeled robot: X, +AD, cos(6,) |
O =| Yx +AD,SIN(G,) |+V
BCREAY) |
where v, is a noise vector,AD, is the odometric distance traveled

A6, is the orientation change

Control input vector: u, =[AD, A4, [




Range-only Localization

EKF measurement model in paper:

Range Measurement: I, = \/(Xk —X%.)°+ (Y, —V,)" +7,
where T, is the estimate of the range from the beacon to the current

state, (X ¥s)is the location of the beacon from which the
measurement was received,7, is the zero mean Gaussian noise.
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Range-only SLAM

e Same as general SLAM formalism, just no
bearings
— Use same EKF as localization
— Add beacon locations to state

e State vector now: qk:[xk Yo G X Yoo o X ybn]T

e Still need decent initial estimates!



Range-only SLAM

To find initial beacon location estimates...
Drive around a bit and build 2-D probability grid:




Adding Beacon-to-Beacon Measurements

 Extending SLAM

Beacon-to-Beacon measurements are used to update the states of the
beacons that create the measurement

The measurement model is modified to include the beacon-to-beacon as
well as robot-to-beacon measurements

The estimation process then proceeds via a standard application of the
EKF



Adding Beacon-to-Beacon Measurements

* Improving SLAM Map

Uses a post-processing step to improve the map that results from a SLAM
run

Finds the state that minimizes the cost function, which is Mahalanobis
distance from SLAM map added to the sum of squares of beacon-to-
beacon range innovations
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Adding Beacon-to-Beacon Measurements

* Improving SLAM Map

Cost Function\ 7 Mahalanobis Distance

s M M ~MAT 1—1 AT AN
Iq")=(q" —q¢" ) Pyy(a" —q")

n Z (‘":’j — ”ﬂ’:ﬂf — ‘}'_?IH)Q
y rTE
'i',_.;_,'i—:R b
where,
(g, P) — Kalman Filter SLAM estimate at the end of a run; P is the Kalman

covariance matrix for the state §
(gM, P,,) —portions of § and P that correspond to the beacon locations
qM — part of the state that corresponds to (x,y) location of the ith beacon
r. —range measurement between beacons iand j

0,2 — covariance of the error in range measurements



Adding Beacon-to-Beacon Measurements

e Self-Localization with Virtual Nodes

— Adds virtual nodes (different robot locations) as a
part of the beacon network

— Distances between virtual nodes are calculated
using robot odometry and they form edges in the
network



Self-Localization

e |f each beacon can obtain measurements to enough of its
neighbors, then it is theoretically possible to build a map
using only beacon-to-beacon measurements

e Self-Localization techniques available in literature require
cligues (fully interconnected subgraphs) of degree four or
higher

 Multidimensional scaling (MDS) is used to determine the
relative locations of the clique nodes



Multidimensional Scaling (MDS)

e Set of related statistical techniques often used in data
visualization for exploring similarities or dissimilarities in data

e An MDS algorithm starts with a matrix of item-item
similarities, then assigns a location of each item in a low-
dimensional space, suitable for graphing or 3D visualization

e Applications include scientific visualization and data mining in
fields such as cognitive science, information science,
psychophysics, psychometrics, marketing and ecology



MDS (of our interest)

Given
— n points in m-D space (usually n > 3 for m = 2)
— distances between these

Returns “best” estimate of locations of points
— (up to arigid transformation)

Even if some distances are unknown, it can still be applied by
optimizing over these



Adding Beacon-to-Beacon Measurements

e Self-Localization with Virtual Nodes

— The robot follows a path and the corners (places
where it stops and turns) of the path are taken as
virtual nodes

— First clique appears at the third robot corner

— At the seventh robot corner, there is enough
information in the graph to uniquely localize every
beacon



e Self-Localization with Virtual Nodes
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Results and Summary

Loc. SLAM; | SLAM, | IMP. MAP | VIR N.
. 0.143 0.189 0.184 0.160 0.189
XTE & o ; - :
- 0.110 0.160 0.148 0.139 0.161
RMS _ 0.177 0.171 0.124 0.224

where, (All in meters)
1 : Mean absolute Cross Track Error (XTE)

o : Standard Deviation
RMS : Root Mean Square error

Cross Track Error : Distance off track




Results and Summary
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Localization using Kalman Filter (KF) and the reference ground truth (GT)
Location of the beacons is known apriori



Results and Summary
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Kalman Filter (KF) SLAM and the reference ground truth (GT)
Location of the beacons is unknown at the start of SLAM

The path and beacon estimates shown include an affine transform that re-
aligned the local solution into a global coordinate frame



Results and Summary
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Kalman Filter (KF) SLAM with inter-beacon measurements and the
reference ground truth (GT)

Location of the beacons is unknown at the start of SLAM

The path and beacon estimates shown include an affine transform that re-
aligned the local solution into a global coordinate frame



Results and Summary
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Localization on a map from Kalman Filter (KF) SLAM after offline
optimization step

The map from Kalman Filter SLAM is used as initial conditions for the
optimization process



Results and Summary
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e Kalman Filter (KF) SLAM with beacons initialized through self-localization
method with virtual nodes

 The path and beacon estimates shown include an affine transform that re-
aligned the local solution into a global coordinate frame

e The sudden jumps seen in the Kalman Filter result is an artifact that can
be observed when the filter switches its behavior to not only use
odometric information but also any range measurements it receives from
any initialized beacon



Questions ?



