I nteractive Manipulation Planning for Animated Characters

James Kuffner, Jr.

Jean-Claude Latombe

Department of Computer Science

Stanford University, Stanford, CA 94305 USA
{kuffner, latombe}@cs.stanford.edu
http://robotics.stanford.edu/"kuffner/anim/

Abstract

We present a brief overview of an algorithm for interac-
tively animating object grasping and manipulation tasks for
human figures. The technique is designed to efficiently gen-
erate feasible single-arm manipulation motions given high-
level task commands. For moving an object, the motions
necessary for a human arm to reach and grasp the object,
reposition it, and return the arm to rest are generated auto-
matically within a few seconds on average.

The method synthesizes motion *““on-the-fly”” by directly
searching the configuration space of the arm. Goal config-
urations for the arm are computed using an inverse kine-
matics algorithm that attempts to select a natural posture.
A collision-free trajectory connecting the arm initial con-
figuration to the goal configuration is computed using a
randomized path planner. A high-level description of the
methods is given along with results from some computed
examples using a human character model.

1. Introduction

Object manipulation is an important class of motions for
interactive animated characters. Manipulation tasks can en-
compass a virtually unlimited combination of object and ob-
stacle geometries. Thus, it seems unlikely that one would be
able to successfully enumerate all possibilities and simply
store thousands of pre-recorded motion sequences. Instead,
a flexible strategy that can accommodate a wide range of
situations is needed.

This paper briefly describes a motion synthesis strategy
that combines inverse kinematics and path planning to in-
teractively animate reaching and object manipulation tasks.
The human arm is modeled as a kinematic chain with seven
degrees of freedom, and motion trajectories are computed
directly within the configuration space. Because of high-
dimensionality, the space cannot be explicitly represented.
Instead, the space is sampled using a randomized planner
that has been specifically tailored to quickly solving com-
mon planning queries involving human arms.

4)Re
@5

“4'.‘\;,

Figure 1. Repositioning a bottle.

For testing and evaluation purposes, we have designed an
interactive application involving human characters that can
autonomously manipulate objects. The software is able to
generate collision-free motions for typical single-arm ma-
nipulation tasks at interactive rates. Though many improve-
ments can be made, the generated animation looks fairly
realistic.

2. Synthesizing M anipulation M otions

Unlike motion capture editing methods which require an
existing motion sequence as input[3, 9], our manipulation
planning algorithm synthesizes motion from scratch. We
previously presented a path planner suitable for computing
dual-arm manipulation motions offline[6]. The single-arm
planner described here is fast enough for interactive applica-
tions, where manipulation motions for human figures must
be computed “on-the-fly” from high-level task commands.

Given a task command to reposition an object in the envi-
ronment, the planner will attempt to compute three trajecto-
ries (Figure 1): 1)Reach: Move the arm to grasp the object.
2)Transfer: After grasping, transfer the object to the target
location. 3)Return: Once the object has been placed at the

target location, release it and return the arm to its rest posi-
tion. An inverse kinematics algorithm for the arm is used to
compute the goal configurations for the Reach and Transfer
tasks. The path planner searches for a collision-free trajec-
tory connecting the initial and the goal configurations.

Inverse Kinematics. We use an inverse kinematics algo-
rithm based on neurophysiological data to resolve the re-
dundancy in a 7DOF model of the human arm[6]. The cur-
rent implementation uses only the arm joints, but the torso
and hip joints could also be used if an appropriate inverse
kinematics algorithm is available.

Path Planning: For path planning, we used a monte carlo
search algorithm based on rapidly-exploring random trees
(RRTS) in the configuration space[7]. This algorithm was
selected for its speed in solving single-query path planning
problems, particularly in character animation[8]. How-
ever, other successful single-query path planning techniques
could potentially be used[2, 5].

3. Experiments

Figure 2 shows some example manipulation tasks solved
by the planner. All motions were computed in 1 to 3 sec-
onds on average on a 270 MHz SGI O2 running Irix 6.5 (see
table below). The human arm is modeled as a 7-DOF kine-
matic chain, and each scene contains over 10,000 triangle
primitives. The 3D collision checking software used was
the RAPID library based on OBB-Trees developed by the
University of North Carolina[4].

Task Description Computation Time (seconds)

min | max || avg | stdev

Reposition coffeepot 044 | 312 || 1.43 | 0.77
Move chess piece 0.17 | 1.84 || 0.78 | 0.48
Reach and move hammer || 0.92 | 6.88 || 2.79 | 1.74

4, Summary

For planning single-arm manipulation tasks for human
characters, we have proposed a motion generation strat-
egy that relies primarily on inverse kinematics and path
planning software. Our algorithm synthesizes from scratch
realistic-looking, relatively complex manipulation motions
for human figures at interactive rates. The planner has the
desirable characteristics of requiring no pre-processing, no
“magic numbers” to tweak, and has been shown to con-
verge towards a uniform exploration of the configuration
space[7]. Future work includes extending the planner to
handle dual-arm manipulation tasks, and incorporating ad-
ditional degrees of freedom.

Acknowledgments: This research was supported in part by a Na-
tiona Science Foundation Graduate Fellowship in Engineering, and MURI
grant DAAHO04-96-1-007 (Army). We also thank Steve LaVvalle and David
Hsu for many useful discussions regarding path planning.

Moving a coffee pot around a lamp obstacle.

Playing a game of virtual chess.

Ak

Withdrawing a hammer from within a box.

Figure 2. Some computed examples.

References

[1] S. Bandi. Discrete Object Space Methods for Computer An-
imation. PhD thesis, Swiss Federal Institute of Technology,
Lausanne, Switzerland, 1998.

[2] R. Bohlin and L. Kavraki. Path planning using lazy PRM.
In In Proc. IEEE Int'l Conf. on Robotics and Automation
(ICRA' 2000), Apr. 2000.

[3] M. Gleicher. Retargetting motion to new characters. In Proc.
S GGRAPH ' 98, 1998.

[4] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTREE: A
hierarchical structure for rapid interference detection. In Proc.

S GGRAPH ' 96, 1996.
[5] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in

expansive configuration spaces. Int. J. of Computational Ge-
ometry and Applications, 9(4-5):495-512, 1997.

[6] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning
motions with intentions. In Proc. SGGRAPH 94, 1994.

[7] J. Kuffner and S. LaValle. RRT-Connect: An efficient ap-
proach to single-query path planning. In In Proc. |EEE Int’|
Conf. on Robotics and Automation (ICRA’ 2000), Apr. 2000.

[8] J. Kuffner Jr. Autonomous Agents for Real-time Animation.
PhD thesis, Stanford University, 1999.

[9] A. Witkin and Z. Popovic. Motion warping. In Proc. SG-
GRAPH ’95, 1995.

