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Abstract

We present a resolution complete path planner based
on an implicit grid in the configuration space. The plan-
ner can be described as a two-level process in which a
global planner restricts a local planner to certain sub-
sets of the grid. The global planner starts by letting the
local planner search in a coarse subset of the grid, and
successively refines the grid until a solution is found.
The local planner applies a scheme for lazy evaluation
on each subgrid in order to minimize collision checking
and thereby increase performance.’

Ezperimental results in an industrial application
show that lazy evaluation on a grid is very efficient in
practice. The algorithm is particularly useful in high
dimensional, relatively uncluttered configuration spaces,
especially when collision checking is computationally ez-
pensive. Single queries are handled quickly since no pre-
processing is required.

1 Introduction

Path planning for robots has received much atten-
tion over the last decades. The general problem is to
find collision-free paths for a robot in an environment
containing obstacles. Algorithms for its solution are,
however, rarely used in practice due to their computa-
tional complexity.

To be useful in practice the planner must be fast, in
particular for easy problems, and generate paths that
are short and smooth enough to be executed by a real
robot. In industrial applications, the geometry of the
robot and its environment is typically very complex,
making collision checking computationally expensive.
Since many existing planners rely on fast collision check-
ing, their practical use in these situations is limited.

Our aim with this paper is to meet the requirements
above and design a planner that is useful in industrial
applications. By using an implicit multi-resolution grid
combined with a lazy evaluation technique, we can re-
duce collision checking and thereby increase speed.

Before describing the algorithm, we introduce some
notation and give a brief overview of existing planners.
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1.1 Notation

We let W denote a subset of R? or R? in which a
robot 4 is moving. The position of A is described by
a configuration q such that the position of every point
on A can be determined relative to a fixed frame in W.
The set of all configurations is called the configuration
space and is denoted by C. For a configuration g € C,
A(qg) denotes the subset of W occupied by A.

The cardinality of C is generally infinite since the
robot is assumed to move continuously in W. In what
follows we assume that C can be identified with a subset
of R%, where d is equal to the number of degrees of
freedom (dof) of A. For convenience we let C also denote
this subset of R%, thus q also denotes a point in RY.
For example if A is an articulated robot arm, we can
let C =11 x - x Iy, where I; is the range of joint j.

The aim of path planning is to avoid a set of obstacles
O in W. If A intersects O we say that A collides with
the obstacles, and we define the mapping ® : ¢ — {0,1}
as

0 if A@NO#0

&(q) = { 1 otherwise 1)

This mapping, which is called the collision checker, di-
vides the configuration space into two disjoint sets £
and F such that £ = $~1(0) is the set of colliding con-
figurations and F = &71(1) is the set of collision-free
(or feasible) configurations.

Given an initial configuration gq;,;; € F and a final
configuration q,,, € F, we define the path planning
problem as follows: Find a continuous path v : [0,1] =
C such that 7(0) = Qinit» 7(1) = qgoal and 7(t) € F for
all ¢ € [0, 1], or determine that no such path exists. An
algorithm that solves this problem, or a variation of it,
is called a path planner or simply a planner.

To measure distances in C we need a metric ppgsh.
This metric is also used to measure lengths of paths.
For simplicity paths are ranked by length, and we prefer
short paths with respect to ppass. So, by defining this
metric, we decide which paths are of high quality and
which paths are of poor quality.



1.2 Previous work

The path planning problem has been extensively
studied in the last decades, and a number of different
approaches are proposed; see [7, 11, 15] for overviews.
An algorithm is called complete if it always will find a
solution or determine that none exists. However, due to
the complexity of the path planning problem, complete
planners are too slow to be useful in practice [5).

Another category of planners discretize the configu-
ration space. If these planners are complete in the limit
as the discretization approaches a continuum, they are
called resolution complete. See [6, 8, 14] for resolution
complete planners.

A general problem of discretizing the configuration
space is that the memory requirement grows rapidly
with the dimension. In [8], this problem is solved by
an implicit representation of a grid. A version of the
A*-algorithm [17] is then used to find a feasible path in
the grid. They also show different ways of choosing the
discretization of the configuration space.

Trading completeness for speed, randomized tech-
niques have been successfully applied to many problems
in high-dimensional configuration spaces. The Random-
ized Path Planner (RPP) in [2] uses a potential field as
guidance towards the goal, and random walks to escape
local minima.

The Ariadne’s clew algorithm in [18] incrementally
builds a tree of feasible paths using genetic optimiza-
tion. Considering the initial configuration as a land-
mark, the planner finds a path from one of the land-
marks to a point as far as possible from all previous
landmarks. A new landmark is placed at this point.
New landmarks are placed until the goal configuration
can be connected to the tree.

The Probabilistic Roadmap Method (PRM) [12, 13,
20] is a method that has been shown to work well in
practice in high-dimensional configuration spaces. The
idea is to represent and capture the connectivity of F by
a random network, a roadmap, whose nodes correspond
to randomly selected configurations. If a local planner
finds a feasible path between two nodes, they are con-
nected by an edge. See also [1, 9] for methods to increase
the connectivity of the roadmap. If the start and goal
configurations can be connected to the same component
of the roadmap, then a solution has been found. PRM
is particularly useful for multiple queries, since once an
adequate roadmap has been created, queries can be an-
swered very quickly. :

Lazy PRM in [3] is a probabilistic roadmap planner
well suited for single queries. The underlying idea is to
minimize collision checking by introducing a scheme for
lazy evaluation of the nodes and edges in the roadmap.
The scheme is particularly useful when collision check-
ing is expensive, for example in industrial applications
with complex geometry. See also {19] for a related tech-
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nique. A recent approach using quasi-random sampling
is described in [4]

Other methods, described in [10] and [16}, build two
trees rooted at the initial and goal configurations re-
spectively. In [10}, the trees are expanded by generating
new nodes randomly in the vicinity of the two trees, and
connecting them to the trees by a local planner. The
planner in [16] iteratively generates a configuration, an
attractor, uniformly at random in C. Then, for both
trees, the node closest to the attractor is selected and a
local planner searches for a path of a certain maximum
length towards the attractor. A new node is placed at
the end of both paths. The process stops when the two
trees intersect.

1.3 Information collection

A path planner may obtain information about the
configuration space, or rather the obstacles in the con-
figuration space, in different ways. Canny [5] represents
the boundary of F by a set of algebraic equations giving
complete information about the obstacles in C. Unfor-
tunately, they are very complex, and are difficult to use
in practice.

A simpler, but much less informative way, is to sam-
ple at certain points in C. To evaluate ® at a configura-
tion g, we determine the position and orientation of all
links of the robot and check whether or not they inter-
sect the obstacles O. The minimum distance § to the
obstacles gives somewhat more information. If § > 0,
then it is possible to determine a ball around ¢ which
is entirely in F, and if § < 0, then g € £.

Most of the resolution complete planners and
roadmap planners mentioned in Section 1.2 use either
of the two sampling methods above. For simple robots
and obstacles they are relatively straightforward, but
for robots and obstacles with complex geometric de-
scriptions (e.g. thousands of polyhedra) they are com-
putationally expensive. In particular the latter method,
to find the minimum distance to the obstacles, become
very complex when the geometric model contains curved
surfaces.

The planner we describe in this paper can be used
with either of the above sampling methods. Qur aim,
however, is to keep the planner as simple and general
as possible. Therefore we only calculate intersections in
W and not distances, i.e., we require that the planner
only obtains information by evaluating ® point-wise.

2 The Algorithm

The path planner presented in this paper is based
on a discretization of the configuration space. A dense
graph (a grid) G is placed in C, and only paths contained
in the graph are considered. We assume that g;,;, and
Q4041 have been specified, and for simplicity we assume
that they coincide with two nodes (also denoted g;,,;,



Figure 1: Example of a 35 x 25 grid defining G in a
two-dimensional configuration space. Thick lines show
enabled hyper planes and thin lines show diagonal edges
of G'. Edges of G are omitted.

and g,,,) in G. Unless otherwise stated, a path will
always refer to a path in G connecting g;,;; and ggoq-

The planner is resolution complete in the sense that
if a feasible path exists in the graph, it will be found.
The essential is to find a feasible path in a minimum
number of evaluations of &.

2.1 Algorithm overview

The approach to search in G for a feasible path can,
as many other planners (e.g. [6, 13, 18]), be described
as a two-level planning process. A global planner on the
top level restricts the local planner on the lower level to
a certain subset G’ of G. The subset G’ is successively
extended until a solution is found or ' = G. If the local
planner still fails in the latter case, then no solution
exists in G and the planner returns failure.

The motivation for using subsets of G is to let the lo-
cal planner search for simple solutions first. A relatively
coarse subset of G is often sufficient to find a solution
in many practical situations, so the scheme of refining
G’ makes the planner efficient for simple as well as more
difficult planning tasks. Before going into the details of
the global and local planners, we need to describe the
representation of G and G'.

2.2 Configuration space representation

To simplify the presentation, we assume that C is an
axis aligned rectangle in R¢. The nodes in G are defined
by the points in a rectangular grid of size n; x --- x nq4.
We would like to traverse G parallel with the coordinate
axes as well as along diagonals, so we add the appro-
priate edges. That is, each interior node gets 3¢ —1
neighbors.

The resolution specified by the parameters {n;}%,
is the finest resolution that will be used in C, and de-
termines, for example, the step size with which path
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segments are checked; if adjacent nodes are in F, we
consider the edge between them as being feasible. This
means that @ is only evaluated at nodes in G.

The dimension d of C is often high and the number of
grid points grows rapidly with the dimension, so there
is no way to explicitly represent G in a computer. (In
our experiments presented in the next section we let n;
be up to 255, giving more than 10'* nodes.) A con-
venient way of implicitly representing the underlying
grid is to define each grid point as the intersection of
d hyper planes. For each dimension %, place n; planes
equally spaced in C and pers)endicula.r to the i:th coor-
dinate axis. Then we get [];_; n: intersections between
d planes which define the grid points.

2.3 Subgraphs

We can get a sparser graph G’ by disabling some of
the planes in the underlying grid, and define the nodes
in G' as the intersections of the enabled planes only,
see Figure 1. Note that the only planes that must be
enabled are the planes that contain g, Or @goq; if
these planes are disabled, g;,;; and gy, Wwill not be
nodes in G'.

In G’ we also introduce edges so that we can traverse
the graph parallel with the coordinate axes and along
diagonals. Note that since we introduced a number of
new edges, G' is no longer a subgraph of G, but if we
instead associate each edge of G' with the sequence of
nodes in G that is “covered” by the edge, we can con-
sider G’ as a subgraph of G, see Figure 1.

2.4 Evaluated nodes

As the planning process proceeds ® will be evaluated
at more and more nodes, but since G is implicitly repre-
sented we cannot associate unique information to each
node. However, only evaluated nodes need to be repre-
sented; one set of feasible nodes and one set of colliding
nodes. These sets are kept updated at any time in order
to avoid any node being evaluated more than once. The
colliding nodes can be seen as nodes deleted from G.

Since evaluating ® is expensive (= 0.08 seconds on
average in our test example in Section 3), the number
of nodes that within reasonable running time can be
evaluated is only a small fraction of the total number of
nodes in G. Thus, these sets of nodes will never be too
large.

2.5 Global Planning

The global planner controls to which subgraph G’ the
local planner is restricted. By starting with a sparse
subgraph G’ defined by a only a few enabled planes, the
local planner quickly solves many easy planning tasks.
If no solution exists in G’, the global planner refines
the grid by enabling a few more planes. If all planes
are enabled and the local planner still cannot find a
solution, then there is no feasible path in G.



In our experiments presented in Section 3, we apply
the planner to an articulated robot arm with six dof.
The following simple strategy of enabling hyper planes
show great performance. Initially, we enable the planes
containing g;,;; and g, and in each of the dimensions
1,2 and 3, we enable another six planes as evenly as
possible. (This generally gives (2+6)%-2% = 4096 nodes
in G'.) Each time the local planner fails, we enable the
plane in G that is furthest from an enabled plane. Here,
of course, the distances are measured between parallel
planes only.

2.6 Local Planning

The local planner is given a subgraph ¢' C G from
the global planner and starts an exhaustive search for a
solution. The technique is similar to the scheme of lazy
evaluation presented in [3], i.e., the aim is to find the
shortest (with respect to the metric ppa:s) feasible path
in G' in a minimum number of evaluations of ®.

Based on the current status of §’, in which some
nodes have been evaluated and others have not, the lo-
cal planner picks the shortest path P, called a candidate
path. Recall that all nodes that have been evaluated to
collision are deleted from G. The candidate path is then
checked for collision according to a certain scheme de-
scribed below. As soon as a collision is detected, we
know that this is not the path we are looking for, so
we delete the colliding node and pick a new candidate
path. This procedure is repeated until a feasible path
is found or no candidate path exists in G'.

When checking the path, we first evaluate the nodes.
Starting respectively with the first and the last node on
P and working toward the center, we alternately eval-
uate the nodes along the path. If all nodes are feasible
then we check the edges on P, first with a coarse resolu-
tion and then we do stepwise refinements until all edges
are feasible. As soon as a collision is found, we delete
the corresponding node from G (recall that edges of G’
refers to a sequence of nodes of G, see Figure 1), and
reject P.

The hope when applying this scheme to a candidate
path is of course that it is feasible. On the other hand, if
it is not feasible, we would like to detect that as quickly
as possible in order to avoid evaluating nodes on a path
that will be rejected anyway. At the same time we want
to reject as many other colliding candidate paths as pos-
sible. The following two observations motivate the pro-
cedure of evaluating nodes before edges, and checking
nodes from outside in. First, a colliding node in G’ will
cut away more than a colliding edge in G’. Second, a
node close to g;,;; Or @, is likely to cut away a larger
portion of the colliding candidate paths than a node far
away from Qinit and 9g0al-
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Figure 2: The workcell used in our experiments. The

robot is in its home configuration denoted by A.

2.7 Tree of shortest paths

A question is how the local planner finds a candidate
path in an implicitly represented graph. Common for
all graph search algorithms like Dijkstra’s and A* [17] is
that they visit nodes one by one and insert them into a
tree whose root is the start node. The tree contains the
shortest path from each of the visited nodes to the root.
New nodes are visited until the goal node is reached.
Then the shortest path can be found by tracing the
way back to the root.

Our local planner uses the A* algorithm. Unfortu-
nately one cannot avoid an explicit representation of the
tree, which in the worst case can contain every node in
the graph. The iterative behavior of the local planner
makes the candidate paths longer and longer, so the
tree grows over larger and larger portion of G'. How-
ever, what seems to be a problem is also a solution; in
each iteration one node is deleted, so the growth will
be impeded as well. In practice only a fraction of the
nodes will be visited.

Each time a candidate path is rejected, the tree of
shortest paths becomes invalid because a deleted node
is contained in the tree. Instead of rebuilding the entire
tree, we can update the part of the tree that is affected.
Only the subtree whose root is the deleted node needs
to be updated, which saves much time.

3 Experimental Results

The planner described in previous section has been
implemented in C++ as a plug-in module to RobotStu-
dio? - a simulation and off-line programming software
running under Windows NT. The collision checks are
handled internally in RobotStudio. The experiments
have been run on a PC with a 400 MHz Pentium IT
processor and 512 MB RAM.

1RobotStudio is developed by ABB Robotics, Gdteborg, Swe-
den.
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Figure 3: Configurations B to J used in the experiments.

Our test example is a part of a manufacturing process
in which an ABB 4400 robot is tending press breaking.
In this particular case, plane sheets of metal are picked
from a pallet, bent twice by the hydraulic press shown
in Figure 2, and then placed at another pallet.

Ten different configurations denoted A to J are
shown in Figures 2 and 3. These are used as either
initial or goal configurations in eight planning tasks,
denoted for example A — B, where A is the initial con-
figuration and B is the goal configuration. This setting
is identical with the experiments reported in [3] and we
have chosen the parameters {n;}%_; to conform to the
parameters in [3]. Our aim is to compare our planner
with Lazy PRM.

Table 1 shows the total number of collision checks
and the total planning time required to solve each of
the tasks. The number of collision checks on the solu-
tion path and the time spent on collision checking are
also shown. Within parenthesis are the corresponding
results for Lazy PRM reported in [3]. Since Lazy PRM
is a probabilistic planner, we use the average values over
20 consecutive runs.

In Table 1 we find a significant difference between
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the planners. The number of collision checks to solve
all eight tasks is clearly reduced (1671 compared with
2730). This also reduces the planning time to the same
extent (139 seconds compared with 289 seconds).

To be a randomized planner, Lazy PRM is very ef-
ficient since as much as 26% of the collision checks are
on the solution path. QOur new planner is even more
efficient, 43% are on the solution path. Moreover, our
planner spends less time building and searching in the
graph. As much as 93% of the planning time is spent
on collision checking, whereas Lazy PRM spends 80%
on collision checking.

The underlying principle that makes the new plan-
ner better in many situations is that the nodes are dis-
tributed on a grid. Sparse regions and dense clusters
certainly occur if the nodes are randomly distributed,
but on a grid (or a subgrid) these can be avoided, or
even controlled to improve planning.

4 Summary

We have presented a resolution complete path plan-
ner based on an implicit multi-resolution graph in C. To
minimize collision checking, and thereby increase per-



Collision checks Planning time

Task Total On returned path Total Collision checking
A-B | 127 (92 92 (78) 76 (12.7) 74 (6.1)
BC| 63 (166) | 59 ( 60) 50 (20.2) 4.9 (13.3)
C—-D | 364 (445) | 103 ( 86) 326 (36.8) | 27.8 (35.4)
E-F || 282 (499) | 80 (82) 243 (52.0) | 235 (42.3)
F5 G| 333 (412) | 131 (121) 264 (45.7) | 25.9 (38.3)
G-H | 67 (293) | 54 ( 80) 50 (32.5) 4.9 (24.7)
I J | 337 (682) | 111 (114) 315 (71.0) | 28.8 (59.8)
J—o A 98 (142) | 87 (82) 6.8 (18.2) 6.4 (11.6)
Sum: 1671 (2730) | 717 (704) 139.2 (289.0) | 129.8 (231.6)
43% (26%) 93% (80%)

Table 1: Performance data for our planner in a test environment. Within parenthesis are corresponding data for

Lazy PRM based on 20 consecutive runs for each task.

formance, a scheme for lazy evaluation is applied to the
graph.

The algorithm is particularly useful in high dimen-
sional, relatively uncluttered configuration spaces, espe-
cially when collision checking is an expensive operation.
Single queries are handled very quickly since no prepro-
cessing is required. The planner uses only a boolean
collision checker which makes the planner easy to apply
even in situations with complex geometry, like in indus-
try. A comparison with Lazy PRM shows significant
improvements in terms of planning time.
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