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Abstract

We present a new strategy for searching for a goal in a street. The
strategy works in two phases. First it follows an angular bisector, then it
uses circular arcs based only on one side of the street. A competitive factor
of 1.514 is achieved which is remarkably close to the lower bound of

√
2.

Secondly, we assume that the location of the goal is known to the robot.
We prove a lower bound of

√
2 on the competitive ratio of any deterministic

strategy for searching in streets with known destination.
Keywords : simple polygons; path planning; navigation; competitive

analysis; on-line algorithms; computational geometry.

1 Introduction

Many problems in computer science cannot be solved optimally simply because
of the lack of complete information. Nevertheless, we want to obtain solutions for
these problems which are as good as possible, compared to the perfect solution
which is obtained when complete information is available.

A strategy for solving a class of problems is an algorithm which, for any
possible situation and whenever a new piece of information becomes available,
gives instructions on how to proceed such that the problem is finally solved.

Generally, solutions are measured according to their consumption of resources,
e. g. time, space, energy, path length, or the like. Following the concept of Sleator
and Tarjan [24] we call a strategy competitive with factor c if any solution pro-
duced by this strategy is guaranteed to consume at most c times as much resources
as the perfect solution does.
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In this paper, we consider a fundamental 2-dimensional navigation problem.
An autonomous system (robot) with a vision system can move freely inside a
room with opaque walls, its aim is to find a goal t. Whenever the goal becomes
visible the robots goes there and its task is accomplished.

Our aim is to describe a strategy for searching this goal. The length of the
path travelled by our strategy will be compared to the perfect solution, i. e. the
length of the shortest path within the room from the start position to the goal,
which is not known in advance.

In Section 2 we recall the main facts about searching in streets, a subclass of
simple polygons. Section 3 explains how different strategies can be combined into
one and how our new strategy operates. In a first phase, it uses angular bisectors
to reach a certain intermediate position, from there it walks on circular arcs to
view the goal. Its competitive factor of 1.514 is remarkably close to the known
lower bound of

√
2 ≈ 1.414. Finally, in Section 4 we show that

√
2 remains a

lower bound for searching in orthogonal streets even if the location of the goal is
known in advance.

Competitive on-line searching has also been investigated in many other set-
tings such as searching in other classes of simple polygons [6, 7, 11, 18, 20], among
rectangles [2, 3, 4, 5, 21, 22], convex polygons [12], and on the real line [1, 8, 9].

2 Searching for a goal in a street

In our model the room is a simple polygon P in the plane, the robot is just a
point moving inside the polygon, and the start position s and the goal t are two
of P ’s vertices. Two points are mutually visible (see each other) if the connecting
line segment is contained within P . As usual, two sets of points are said to be
mutually weakly visible if each point of one set can see at least one point of the
other set.

It is easy to see that for general simple polygons a constant competitive strat-
egy can not exist. Therefore, it is an interesting question what type of polygons
admit competitive searching, and the street polygons defined by Klein [13] form
such a class.

Definition 1 A simple polygon P in the plane with two distinguished vertices s
and t is called a street if the two boundary chains from s to t are weakly mutually
visible, for an example see Figure 1.

Definition 2 A strategy is c-competitive for searching a goal in a street if its
path never is longer than c times the length of the shortest path from s to t.
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Figure 1: A street polygon.

In [13], the first strategy to search in streets called local absolute detour (lad)
was described and proven to have a competitive factor of at most 5.72. The
analysis of lad was later improved by Icking to ≈ 4.44 [10].

A number of other strategies have been presented since by Kleinberg [14] and
López-Ortiz and Schuierer [16, 17, 19]. The currently best known competitive
factor is ≈ 1.73 [19].

In the rest of this section we summarize other important facts about searching
in streets which also stem from [13].

The only important case for all strategies is how they behave in the so-called
funnel polygons. A funnel is a special street consisting of two chains of reflex1

vertices with a common start point s, see Figure 2 for an example. The two reflex
chains end in vertices tl and tr, respectively, and the line segment tl tr closes the
polygon. The goal t is either tl or tr, and the strategy will know which case applies
latest when the line segment tl tr is reached. For analyzing a strategy, both cases
have to be considered and the worse of them determines the competitive factor.

A strategy which achieves a competitive factor c in each funnel can easily be
extended to a c-competitive strategy for searching in streets, using the so-called
high level strategy in [13].

There is a lower bound of
√

2 ≈ 1.414 for the competitive factor of any strategy
for searching streets. To see this, consider a right-angled, isosceles triangle with s
at the right angle and tl and tr at the other vertices.

It remains the open question if there is an optimal competitive strategy, i. e. a
strategy whose competitive factor matches such a lower bound.

1A vertex of a polygon is called reflex if its internal angle exceeds 180◦, as opposed to convex.
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Figure 2: A funnel polygon.

3 A strategy in two phases

3.1 Putting strategies together

As mentioned above, we only consider funnel polygons. While a strategy pro-
ceeds, we always denote the most advanced visible point on the left chain with vl

and the corresponding vertex on the right chain with vr. The visible boundary’s
length from s to the actual vl is called l, and r from s to vr. Let dl and dr denote
the distances from the actual position to vl and vr, resp., cf. Figure 2.

We define the opening angle to be the angle between the directions from the
actual position to vl and to vr, see γ in Figure 2.

As already proposed in [13], all reasonable strategies select a direction within
the opening angle, in other words they always aim at something in between vl

and vr. Other directions obviously produce unnecessary detours. As a conse-
quence, the opening angle is always strictly increasing, it starts as the angle
between the two edges adjacent to s and reaches, but never exceeds, 180◦ when
finally the goal can be seen. By this property, the opening angle is predetermined
as the natural choice for parameterizing the strategies.

Definition 3 We say a strategy holds a competitive factor c up to an angle γ if
for each funnel we have for the strategy’s path length, w, from s to the position
with opening angle γ

w ≤ c · min(l − dl, r − dr) .

Note that the condition of Definition 3 is somewhat stronger than that for
competitiveness; in particular, holding a factor up to 180◦, that is, when the goal
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is finally seen, implies the same overall competitive factor, but not the converse.
In the following lemma we see how this definition can be applied.

Lemma 4 Suppose we have a strategy A which holds a competitive factor cA up
to an angle γA.

(i) If we have a second strategy B which holds factor cB up to an angle γB

for any funnel with initial opening angle ≥ γA then there is a combined strategy
which holds the competitive factor max(cA, cB) up to γB.

(ii) Similarly, if we have a strategy B which is cB-competitive for all funnels
with initial opening angle ≥ γA then there is a max(cA, cB)-competitive strategy.

Proof. We assume a funnel with opening angle < γA, otherwise the claims are
obviously true. We give a proof only for the first one, it is nearly identical for
the second.

The combined strategy works as follows. We use strategy A until the opening
angle equals γA at a position p, see Figure 3. Let l1 and r1 be the lengths of the
visible left and right chains at this point, and let dl1 and dr1 be the distances to
their endpoints vl1 and vr1.

s

dl1

vr1

l2

r2

dr1

r1l1
wA

vl1

p

γA

γB

vr2dr2

dl2

vl2

q
wB

Figure 3: Combining two strategies.

From p we proceed with strategy B as if we have a funnel starting at p with
visible edges p vl and p vr and which continues with the (yet invisible) edges
of the original funnel. At some point q the angle γB is reached. Here, we have
endpoints vl2 and vr2 of the visible chains and corresponding distances dl2 and dr2.
The length of the left boundary from vl1 to vl2 is called l2 and analogously for r2.

Let wA be the path length generated by strategy A from s to p and wB the
path length from p to q.

From Definition 3 we know that wA ≤ cA · min(l1 − dl1 , r1 − dr1) as well as
wB ≤ cB · min(dl1 + l2 − dl2, dr1 + r2 − dr2). If we add the two inequalities and
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use instead of cA and cB their maximum, we get

wA + wB

≤ max(cA, cB) ·
(

min(l1 − dl1 , r1 − dr1) + min(dl1 + l2 − dl2 , dr1 + r2 − dr2)
)

≤ max(cA, cB) · min(l1 + l2 − dl2, r1 + r2 − dr2)

which is what we were looking for. 2

3.2 Walking on angular bisectors

A very natural idea for a strategy is the following [15, 23].

Strategy AB (angular bisector):
Choose the angular bisector of the initial opening angle and walk
straight in that direction. After some distance, but at least whenever
one of vl and vr changes, determine the new angular bisector of the
actual opening angle and continue.

As we will see in the analysis, how often we choose a new direction is not
so important as long as we do this at least at any change of the most advanced
visible vertices. Let us analyze the first step of this strategy.

Lemma 5 As long as vl and vr do not change, strategy AB holds the competitive
factor 1/ cos γ

2
up to an opening angle γ, for any γ < 180◦.

Proof. Let γ0 be the initial opening angle. Since vl and vr do not change during
this step, we have a quadrilateral as shown in Figure 4. Let w be the length of
the angular bisector segment from s to the point p where angle γ is reached. The
remaining angles of the quadrilateral on the right and the left are called ρ and λ,
we have γ = γ0 + ρ + λ.

First, we concentrate on the quantities on the right, r being the length of the
right side and dr the distance from p to vr. We rotate segment vr p about vr onto
the right side and obtain an isosceles triangle with angle ρ. The adjacent triangle
has edge lengths w and r − dr and an angle γ0

2
in between. The other two angles

in this triangle are φ = π+ρ
2

and π−γ0−ρ
2

.
Using the law of sines for this triangle we get

w

r − dr
=

sin π+ρ
2

sin π−γ0−ρ
2

=
cos ρ

2

cos γ0+ρ
2

≤ 1

cos γ0+ρ
2

≤ 1

cos γ0+ρ+λ
2

=
1

cos γ
2

.

With symmetric arguments we get w ≤ 1/ cos γ
2
· (l − dl), and the claim follows.

2

Combining several steps of strategy AB we get the same behavior, as the next
lemma shows.

6



l

γ

p

w

vr

vl

dr

drdl
π−ρ

2

γ0

2
γ0

2

r−dr

λ

ρ

φ r

s

Figure 4: One step along the angular bisector.

Lemma 6 Strategy AB holds the competitive factor 1/ cos γ
2

up to an opening
angle γ, for any γ < 180◦.

Proof. First let us observe what happens when one of the most advanced visible
points, say vl, changes at an opening angle γ. At this point the distance dl from
the actual position to the new vl increases by exactly the same amount as the
length, l, of the visible chain, but in Definition 3 only their difference is taken
into account. Thus, if a competitive factor is held up to all angles strictly smaller
than γ then this property also remains true for γ itself.

It remains to handle the direction changes, here we proceed by induction on
the number of line segments in our path. The induction base holds because of
Lemma 5, and for concluding from n segments to n + 1 we apply Lemma 4 (i)
to the (n + 1)st step. The claim follows from the fact that 1/ cos γ

2
is increasing

with γ. 2

Unfortunately, if γ approaches 180◦, then 1/ cos γ
2

tends to infinity, so we
have not proven that AB is overall competitive. On the other hand, the above
analysis is based on Definition 3 which is a much stronger requirement than
competitiveness alone; indeed, it can be shown that strategy AB is at most 3-
competitive [15]. Moreover, if we modify it just a little bit, the competitive
ratio can be significantly improved: Proceed as described until the opening angle
equals 120◦, then, without taking care of new vertices becoming visible, walk
straight along the angular bisector until the goal becomes visible. It can be
shown that this is a 2-competitive strategy, the simple proof is omitted here
because of the better bound in Section 3.3.

It is also interesting to note that all funnels with initial opening angle γ < 90◦

are completely settled, in a sense: If we have a c-competitive strategy C for the
funnels starting with γ ≥ 90◦ then C can be combined with strategy AB to search
all funnels with the same factor c because AB holds the competitive factor

√
2
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up to a right angle and
√

2 is a lower bound for c anyway. The same result was
also obtained for the strategy clad by López-Ortiz and Schuierer [19].

3.3 Walking on circular arcs

Now let us assume that we are given a funnel with initial opening angle γ ≥ 90◦.
We describe a non-symmetric strategy which depends only on the right side of
the street.

Strategy CA-θ (circular arcs with constant angle θ):2

Walk along the curve with the property that each point p of the curve
sees the visible part of the right side at a constant angle θ.

In other words, at a point p of the path the line to the most advanced visible
point vr and the line to the least advanced but still visible point (point s in most
cases) intersect at an angle θ.

It is a well-known fact that such a curve consists of circular arcs. We switch
from one circle to another whenever the visible chain changes, see Figure 5 for
an example.

l

γ

s

α1+α2+α3 = π−θ

tl
θ

α3

θ

trθ

r1

r2

α1

α2

Figure 5: Circular arcs with constant angle θ to the right side.

Lemma 7 Let γ = 1.698 ≈ 97.3◦ and θ = 1.631 ≈ 93.5◦. Then strategy CA-θ is
1.514-competitive for all funnels starting with an opening angle ≥ γ.

2The strategy CA-π/2 and its analysis are already contained in [23].
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Proof. Two cases have to be distinguished.
Case 1: t = tr, the goal is on the right side.
We estimate the length of a completed path of circular arcs which goes from s
to t, each point p of the path sees the visible part of the right side at a constant
angle θ. We neglect the fact that the real path is shorter because the goal t will
actually be visible at some time before being reached.

From elementary geometry we obtain that the length of one circular arc equals
the distance between the two spanning vertices (the most and the least advanced
visible points) times α/ sin θ, where α is the angle of rotation, see Figure 5. The
mentioned distance is not greater than the length of the boundary between the
two points. The complete path length, w, is the sum over all such arcs.

w ≤∑
i

αi

sin θ
(rix + · · · + riy)

Here, the αi are the subsequent angles of rotation, and rix, . . . , riy are the lengths
of the edges which are visible from a particular arc. After reordering the sum by
collecting the terms in r1, r2, etc., we obtain the form

w ≤ 1

sin θ

∑
j

rj(αjx + · · · + αjy ) .

A particular edge rj is visible from a certain interval on the path of circular arcs.
We observe a moving angle θ whose sides always pass through the least and the
most advanced visible points. From the first position where rj is visible to the
last one the angle θ is rotated by exactly π− θ. This is because initially the right
side of the angle lies on rj while finally the left side does.

This means that for any j the angles αjx , . . . , αjy add up to exactly π− θ, see
edge r1 and the angles α1, α2, and α3 in Figure 5. As a consequence, length w
is not greater than (π − θ)/ sin θ times the length of the right boundary. For the
given value of θ this factor is nearly 1.514.

Case 2: t = tl, the goal is on the left side.
In this case we try to simplify the path while maintaining or increasing its length.
If the right side has only two edges, r1 and r2, and corresponding angles of rotation
α1 and α2, see Figure 6, we can argue as follows.

The strategy’s path consists of two circular arcs and a line segment from
point q, where the goal is discovered, to t. The first arc measures 1/ sin θ · r1α1

while the second is shorter than 1/ sin θ · (r1 + r2)α2. For the sum we have

1

sin θ

(
r1α1 + (r1 + r2)α2

)
=

1

sin θ

(
r1(α1 + α2) + a

sin(α1 + α2)

sinα2
α2

)

≤ 1

sin θ
(r1 + a)(α1 + α2).

Here, a is the prolongation of edge r1 to the line t tr. The last inequality is based
on α2/ sin α2 ≤ (α1 + α2)/ sin(α1 + α2).
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Figure 6: Estimating the detour to the left side.

We have bounded the length of the two arcs by the length of one arc with
angle α1 +α2 over the edge prolongation r1 +a without changing the endpoints s
and q. The new arc is just the path of our strategy if the right side would consist
of r1 and its prolongation a.

If there are more than two edges on the right side, this procedure can be
repeated for all subsequent edges until only one arc remains. Note that the fact
θ < γ implies that s remains visible all the time until t is seen.

By standard trigonometry we get for the length of the arc

w =
(π − γ − λ) sin λ

sin θ sin(γ + λ)
l

and z = sin(θ− λ)/ sin θ · l for the line segment q t. Here, l denotes the length of
segment s t which is certainly not longer than the left side of the funnel, and λ
is the angle between s t and q t, angle λ may vary from 0 to π − γ.

Altogether, we have a competitive factor of

sup
λ

w + z

l
=

1

sin θ
· sup

λ

( sinλ

sin(γ + λ)
(π − γ − λ) + sin(θ − λ)

)
.

The angles γ and θ are constants, and the supremum can easily be determined by
numerical methods. For the given values of γ and θ we obtain a factor of nearly
1.514 just as in Case 1. 2

3.4 The main result

It remains to put strategies AB and CA-θ together.

Theorem 8 Using strategy AB (angular bisector) up to an angle of γ = 1.698
and continuing with strategy CA-θ (circular arcs with constant angle θ = 1.631)
is 1.514-competitive for searching a goal in a street.
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Proof. The values for γ and θ in Lemma 7 have been chosen not only such
that the factors for both cases of the previous proof are the same but also such
that strategy AB holds the same factor 1.514 up to γ, which can be verified by
calculating 1/ cos γ

2
.

By applying Lemma 4 (ii) we obtain this factor also for the combined strategy.

2

4 Known Destination Search

In the previous sections we have always assumed that the position of the goal is
not known to the robot in the beginning. A natural question to ask is if there
is a strategy with a better competitive ratio if the location of the goal is known.
Clearly, the polygon shown in Figure 7a3 no longer provides a lower bound since
the robot knows the position of the goal and can move directly to it; however, by
connecting a number of these polygons, it is still possible to show a lower bound
of

√
2 on the competitive ratio of any strategy to search in streets even if the

position of the goal is known in advance.
We construct a family F of streets such that, for all n ≥ 0 and for all on-line

strategies S, there is a street P in F such that the competitive ratio of S in P is√
2 − O(1/

√
n).4

We call the polygon of Figure 7a an eared-rectangle. Eared-rectangles can
be connected to create larger polygons. This is shown in Figure 7b. In the

(a) (b)

shortest
path

s

the robot’s path

connecting alley

entry point

dead
alley

Figure 7: (a) An eared-rectangle. (b) Connecting two eared-rectangles

construction of Figure 7 each eared-rectangle has a connecting alley and a dead-
alley. The entry point is the point where the robot enters an eared-rectangle.

If the robot is located inside an eared-rectangle and wants to decide which
of the two alleys is dead and which is connecting, then it has to move up to a
point in the eared-rectangle from which one of the alleys is completely visible. By

3For now, the paths drawn in the figure should be disregarded.
4A preliminary version of the proof has appeared in [16].
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making the alleys very narrow, we can force the robot to move arbitrarily close
to the horizontal line that connects the alleys before it can decide which alley is
dead and which is connecting.

Assume we are given a strategy S to search in an orthogonal street with known
destination. In the beginning the robot is located in an eared-rectangle of width
2 units and height 1 unit. The goal is located directly above s at a distance of n
units.

We present the strategy of an adversary to S that constructs a polygon con-
sisting of at most n2/2 connected eared-rectangles in which the path traversed
by the robot using S is at least

√
2 − O(1/

√
n) times longer than the shortest

path from s to t.
The adversary’s strategy is as follows. If the robot moves into the left half

of the eared-rectangle in order to find out which alley is connecting, then the
adversary opens the right alley and connects a new eared-rectangle to it and vice
versa. If the robot travels in the middle of the eared-rectangle, then the adversary
opens an arbitrary alley. In this way the length of the path generated by S in
one eared-rectangle has a length of 2 − ε where ε depends on the width of the
alleys whereas the shortest path has a length of

√
2 (see Figure 7b).

The adversary puts one eared-rectangle on top of the other until the top edge
of the current eared-rectangle has the same height as t. In this case the next eared-
rectangle is rotated by 90◦ and placed on the side of the current eared-rectangle
that is closer to t. We denote the entry point of this rotated eared-rectangle by s2

(see Figure 8a).

(a)

n2

n = n1

(b)

s2

s

t
s2

s

t

Figure 8: (a) Constructing a new polygon with eared-rectangles. (b) The situa-
tion at s2 is analogous to the situation at s.

First of all we note that at s2 the situation is exactly analogous to the situation
at s just rotated by 90◦. This is due to the fact that the shaded region in Figure 8b
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does not contain any eared-rectangles and the goal t is again on an axis-parallel
line through s2. Hence, the adversary can apply the same strategy recursively
now starting at s2. Since the distance of s2 to t is at least one less than the
distance of s to t, this construction ends after at most k ≤ n iterations. We
denote the starting point of the ith iteration si, for 1 ≤ i ≤ k, where s1 = s.

We now analyse the distance traveled by the robot. As we observed above,
the length of the path generated by S in one eared-rectangle is at least 2−ε units
whereas the length of the shortest path is

√
2 units. This is true for all eared-

rectangles except for the last eared-rectangle of an iteration whose top edge has
the same height as t. In this case the action of the adversary does not depend
on S, but the adversary always rotates the new eared-rectangle and opens the
alley that is closer to t. We assume that S is given this knowledge in advance
and, hence, S is able to choose the shortest path in the last eared-rectangle
of an iteration. Note that if the distance of si to t is ni, then the adversary
places ni eared-rectangles on top of each other until the horizontal or vertical
line through t is reached. Hence, the distance traveled by the robot in the ith
iteration is (ni − 1)(2− ε) +

√
2 whereas the length of the shortest path is ni

√
2,

and the competitive ratio of S is at least

∑k
i=1(ni − 1)(2 − ε) +

√
2√

2
∑k

i=1 ni

=

(√
2 − ε√

2

)
− (2 −√

2 − ε)k√
2
∑k

i=1 ni

≥
(√

2 − ε√
2

)
− k∑k

i=1 ni

(1)

with 1 ≤ nk < nk−1 < · · · < n2 < n1 = n. The Strategy S can choose the
numbers ni in order to minimize Expression 1. It is minimized if

∑k
i=1 ni is as

small as possible, that is, if nk = 1, nk−1 = 2, and so on. Therefore, Expression 1
is bounded by

(√
2 − ε√

2

)
− k∑k−1

i=1 i + n
=

(√
2 − ε√

2

)
− k

(k − 1)k/2 + n
.

This is minimized for k =
√

n, and the competitive ratio of S is at least

√
2 − ε√

2
− 1√

n
,

for n ≥ 4. By choosing the alleys so small that ε = 1/
√

n, the claim follows.
Since n can be arbitrarily large, we have shown the following result.

Theorem 9 If S is a deterministic strategy to search in streets with known lo-
cation of the goal, then the competitive ratio of S is at least

√
2.
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5 Conclusions

We have considered two problems in this paper. First, we have presented two
strategies for a robot to search in streets. In the strategy AB the robot follows the
bisector of its current opening angle. A minor modification of this strategy has a
competitive factor of two. In particular, the strategy AB can be shown to hold
a competitive factor of

√
2 up to an angle of π/2 which is optimal. The second

strategy CA-θ is an asymmetric strategy where the robot walks along circular
arcs with the property that each point p on an arc sees the visible part of the
right side at a constant angle θ. Strategy CA-θ is 1.514-competitive if θ = 1.631.
Since strategy AB holds a competitive factor of 1.514 up to an angle of 1.631,
combining strategies AB and CA-θ yields a strategy with an overall competitive
factor of 1.514 which is remarkably close to the lower bound of

√
2.

Secondly, we provide a lower bound of
√

2−O(1/
√

n) for the competitive ratio
of any deterministic strategy that a robot may use to search in a rectilinear street
if the coordinates of the target are given in advance to the robot. This implies
that knowledge of the location of the target does not provide any advantage even
for searching in rectilinear streets.

The major open problem is, of course, to design and analyse a strategy for
searching in arbitrarily oriented streets that achieves an optimal competitive fac-
tor of

√
2. The bounds obtained in this paper suggest that such a strategy exists.
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