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Abstract

We consider the simultaneous monitoring of a large number of spatially localized time series in order to detect emerging
spatial patterns. For example, in disease surveillance, we detect emerging outbreaks by monitoring electronically available
public health data, e.g. aggregate daily counts of Emergency Department visits. We propose a two-step approach based on the
expectation-based scan statistic: we first compute the expected count for each recent day for each spatial location, then find
spatial regions (groups of nearby locations) where the recent counts are significantly higher than expected. By aggregating
information across multiple time series rather than monitoring each series separately, we can improve the timeliness, accuracy,
and spatial resolution of detection. We evaluate several variants of the expectation-based scan statistic on the disease surveillance
task (using synthetic outbreaks injected into real-world hospital Emergency Department data), and draw conclusions about
which models and methods are most appropriate for which surveillance tasks.
c© 2008 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Many applications require the monitoring of time
series data in order to detect anomalous counts. A
traditional application of time series monitoring is the
use of statistical process control to ensure consistency
in manufacturing: the process is measured regularly
to ensure that the desired specifications (e.g. product
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size and weight) remain within an acceptable range.
More recently, time series monitoring has been
used in a variety of event detection systems: crime
surveillance systems (Gorr & Harries, 2003; Levine,
1999) detect emerging hot-spots of crime activity,
disease surveillance systems (Sabhnani et al., 2005)
monitor electronic public health data such as hospital
visits and medication sales in order to detect
emerging outbreaks, and environmental monitoring
systems (Ailamaki, Faloutsos, Fischbeck, Small, &
VanBriesen, 2003) detect abnormally high pollutant
levels in the air, water, and soil.
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In all of these event detection applications,
we wish to detect emerging spatial patterns as
quickly and accurately as possible, enabling a timely
and appropriate response to the detected events.
As a concrete example, we focus on the task
of detecting outbreaks of respiratory illness using
hospital Emergency Department (ED) data. In this
case, we can monitor the number of patients visiting
the ED with respiratory symptoms in each zip code
on each day. Each zip code si has a corresponding
time series of daily counts ct

i , and our goal is to detect
anomalous increases in counts that correspond to an
emerging outbreak of disease.

A variety of methods have been developed
to monitor time series data and detect emerging
anomalies. Control chart methods (Shewhart, 1931)
compare each observed count to its expected value
(a counterfactual forecast obtained from time series
analysis of the historical data), and detect any
observations outside a critical range. Cumulative sum
methods (Page, 1954) and tracking signals (Brown,
1959; Trigg, 1964) aggregate these deviations across
multiple time steps in order to detect shifts in a
process mean. When extending these techniques to
the simultaneous monitoring of multiple time series,
we have several options (Burkom, Murphy, Coberly,
& Hurt-Mullen, 2005). In the simplest, “parallel
monitoring” approach, we monitor each time series
separately and report any anomalous values. In the
“consensus monitoring” approach, we combine the
signals from multiple time series in order to achieve
higher detection power. To detect anomalies that
affect multiple time series simultaneously, we can
either combine the outputs of multiple univariate
detectors or treat the multiple time series as a single
multivariate quantity to be monitored. For example,
multivariate control charts (Hotelling, 1947) learn the
joint distribution of a set of signals from historical
data, and detect when the current multivariate signal
is sufficiently far from its expectation.

We note, however, that none of these time series
monitoring methods account for the spatial nature
of the event detection problem. We expect events
to be localized in space: if a given location is
affected by the event, nearby locations are more
likely to be affected than locations that are spatially
distant. For example, disease outbreaks tend to affect
spatially contiguous areas, either because of contagion
(e.g. human-to-human transmission) or because the
cases share a common source (e.g. contaminated
drinking water). Thus, we must consider alternate
methods of monitoring spatial time series data, where
we expect anomalies to affect the time series for some
spatially localized subset of locations.

A typical approach to the monitoring of spatial
time series data uses “fixed partitions”: we map the
locations to a Euclidean space (e.g. using the longitude
and latitude of each zip code centroid), partition the
search space such that each location is contained
in exactly one partition, and aggregate the counts
for each partition into a single time series. We then
monitor the time series for each partition separately,
and report any anomalous counts. One challenge is
deciding how to partition the search space: in the case
of zip code level data, we could consider each zip code
to be a separate partition, combine multiple adjacent
zip codes in a single partition, or even aggregate all of
the zip codes into a single time series. An alternative
is to form an “ad-hoc partitioning” by identifying
individual locations with high counts and using some
heuristic to cluster these locations (Corcoran, Wilson,
& Ware, 2003).

Any choice of partitioning scheme creates a set
of potential problems, which we call the “curse
of fixed partitions”. In general, we do not have a
priori knowledge of how many locations will be
affected by an event, and we wish to maintain high
detection power whether the event affects a single
location, all locations, or anything in between. A
coarse partitioning of the search space will lose power
to detect events that affect a small number of locations,
since the anomalous time series will be aggregated
with other counts that are not anomalous. A fine
partitioning of the search space will lose power to
detect events that affect many locations, since only a
small number of anomalous time series are considered
in each partition. Partitions of intermediate size will
lose some power to detect both very small and very
large events. Moreover, even if the partition size
corresponds well to the event size, the fixed partition
approach will lose power if the affected set of locations
is divided between multiple partitions rather than
corresponding to a single partition. While ad-hoc
partitioning methods allow partitions to vary in size,
the chosen set of partitions still may not correspond to
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the actual set of locations affected, resulting in a loss
of detection power.

Our solution to the “curse of fixed partitions” is
a multi-resolution approach in which we search over
a large and overlapping set of spatial regions, each
containing some subset of the spatial locations, and
find the most significant clusters of anomalous counts.
Because we search over both large regions (coarse
resolutions) and small regions (fine resolutions), this
method has high power to detect both large and small
clusters. Similarly, by searching over regions with
varying shape, size, and duration, we can achieve high
detection power for clusters with a wide range of
spatial and temporal characteristics.

More precisely, we propose an “expectation-based
scan statistic” approach with two distinct steps. First,
we compute the “expected count” for each spatial
location for each recent day of data. Each expected
count is a counterfactual forecast assuming that no
clusters are present, and is obtained from time series
analysis of the historical counts for that spatial
location. The second step is to detect space–time
clusters, i.e. groups of nearby locations where the
recent counts are significantly higher than expected.
To do so, we develop a new variant of the spatial
and space–time scan statistics (Kulldorff, 1997, 2001;
Neill & Moore, 2005) which searches over space–time
regions, compute a likelihood ratio statistic for each
region, and detect the most significant clusters.

In the remainder of this paper, we describe the
expectation-based scan statistic, and evaluate the
performance of this method on the disease surveillance
task. In Section 2, we present an overview of the
expectation-based scan approach, and in Sections 3
and 4 we discuss each of the two steps (computing
expected counts, and finding clusters with higher than
expected counts) in detail. Finally, Sections 5 and
6 present and discuss our set of evaluations using
hospital Emergency Department data, comparing
several variants of the expectation-based scan and
demonstrating large performance improvements as
compared to traditional fixed partition and spatial scan
approaches.

2. The expectation-based scan statistic

As noted above, the event detection problem
requires us to monitor a set of spatially localized time
series in order to detect emerging spatial clusters of
anomalous counts. We assume a given set of spatial
locations {si }, where each location si corresponds to a
point in Euclidean space. For example, in our disease
surveillance task, each zip code is mapped to a two-
dimensional space using the longitude and latitude of
the zip code centroid. For each location si , we are
given a time series of non-negative integer counts ct

i ,
where t = 0 represents the current time step and
t = 1 . . . tmax represent the historical data from 1 to
tmax time steps ago respectively. For example, each
count ct

i could represent the number of respiratory
Emergency Department visits in zip code si on day t .

Given this data, our goal is to detect any spatial
region where the recent counts are significantly higher
than expected. More precisely, we define a set of
“space–time regions” S, where each region S ∈ S
contains a subset of spatial locations {si : si ∈ S},
and also has a time duration w(S), meaning that the
given set of spatial locations has been affected for
the most recent w time steps (t = 0 . . . w − 1). We
search over space–time regions with durations w =
1 . . .W , where W is the “maximum temporal window
size”; i.e., we are only interested in clusters that have
emerged within the past W time steps.

The expectation-based scan statistic has two
distinct steps: we first compute the “expected count”
(or “baseline”) bt

i for each spatial location si and each
time step t = 0 . . .W − 1, and then detect space–time
regions S with higher than expected counts. For the
first step, each baseline bt

i is a counterfactual estimate
of ct

i assuming the null hypothesis of no clusters, and
is computed from the historical data in location si

using some method of time series analysis. We must
then find space–time regions S where the observed
counts ct

i are significantly higher than the expected
counts bt

i , for locations si ∈ S and time steps t =
0 . . . w(S)− 1.

To do so, we develop a likelihood ratio test
based on the spatial and space–time scan statistics.
The spatial scan statistic, first presented by Kull-
dorff and Nagarwalla (1995) and Kulldorff (1997)
and extended to space–time data by Kulldorff, Athas,
Feuer, Miller, and Key (1998) and Kulldorff (2001),
is commonly used in the public health community
for purposes ranging from the detection of bioter-
rorist attacks (Neill, 2006) and emerging infectious
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diseases (Mostashari, Kulldorff, Hartman, Miller, &
Kulasekera, 2003) to the identification of environ-
mental risk factors for breast cancer (Kulldorff,
Feuer, Miller, & Freedman, 1997) and childhood
leukemia (Hjalmars, Kulldorff, Gustafsson, & Nagar-
walla, 1996). Here we apply the generalized spatial
scan framework described by Neill and Moore (2005).
We first define generative models of the data under H0,
the null hypothesis of no clusters, and under H1(S),
the alternative hypothesis assuming a cluster in some
space–time region S. We then compute the likelihood
ratio statistic F(S) for each space–time region S ∈ S.
The likelihood ratio is defined as the ratio of the data
likelihoods under the alternative and null hypotheses:

F(S) =
Pr(Data | H1(S))

Pr(Data | H0)
.

If the null or alternative hypotheses have any free
parameters, we compute the likelihood ratio using the
maximum likelihood estimates of each parameter:

F(S) =
max

θ1(S)∈Θ1(S)
Pr(Data | H1(S), θ1(S))

max
θ0∈Θ0

Pr(Data | H0, θ0)
.

The regions with the highest values of the
likelihood ratio statistic are those which are most
likely to have been generated under the alternative
hypothesis (cluster in space–time region S) instead of
the null hypothesis of no clusters. However, because
we are maximizing the likelihood ratio over a large
number of regions, we are very likely to find many
regions with high likelihood ratios even when the null
hypothesis is true. Thus we must choose a threshold
value Fthresh based on the acceptable false positive
rate, and report all space–time regions S with F(S) >
Fthresh.

The detection threshold Fthresh can be calibrated in
one of two ways. The traditional approach (Kulldorff,
1997) is to perform randomization testing: we
generate a large number of replica datasets under the
null hypothesis and compute the distribution of the
maximum region score under the null. Then, for a
given false positive rate α, Fthresh is the 100(1 − α)
percentile value of the null distribution. An alternative
is to use the empirical distribution of maximum
region scores from a large amount of historical data,
again using the 100(1 − α) percentile value from
this distribution. Neill (2007) compared these two
approaches on real-world Emergency Department and
over-the-counter medication sales data, and concluded
that randomization testing tends to be oversensitive
(producing false positive rates of up to 40% for α =
0.05), and that the empirical approach tends to achieve
higher detection power. Nevertheless, randomization
testing may be a useful alternative to the empirical
approach when only a limited amount of historical
data is available.

3. Time series forecasting

A variety of time series analysis methods may be
used to compute counterfactual forecasts bt

i for each
spatial location si , using the time series of historical
counts ct

i . We compute these baselines (expected
counts) for each of the past W days, where W is
the maximum temporal window size, then search over
space–time regions with time durations up to W .
Here we consider eight different time series analysis
methods: four simple “moving average” methods, two
“day-of-week adjusted moving average” methods, and
two methods that account for both day-of-week and
seasonality. Letting t = 0 represent the current day’s
counts, and t > 0 represent the historical counts from
t days ago, the 28-day moving average (MA28) is
defined as follows:

bt
i =

1
28

∑
u=t+1...t+28

cu
i .

The 7-day, 14-day, and 56-day moving averages are
defined analogously, and we compare all four of these
methods in our evaluation below. While such methods
may be sufficient for datasets without seasonal or
day-of-week trends, datasets with these trends may
require more complex forecasting methods. The
simple moving average may be adjusted for day of
the week by estimating the proportion of counts β j

i
occurring in each location si on each day of the week
( j = 1 . . . 7). Then when we predict the baseline value
for a given location on a given day, we choose the
corresponding value of β j

i and multiply our estimate

by 7β j
i . We distinguish between “local” and “global”

methods of adjusting for day of the week, where the
local method computes β j

i using only counts from

location si , and the global method computes β j
i using

the global aggregate counts gt =
∑

i ct
i . Using 12
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weeks of historical data, we can compute the β
j

i
for the local (MALD) and global (MAGD) methods
respectively:

MALD: β
j

i =

∑
t= j, j+7,..., j+77

ct
i∑

t=1,...,84
ct

i
,

MAGD: β
j

i =

∑
t= j, j+7,..., j+77

gt∑
t=1,...,84

gt
.

The global adjustment for day of the week assumes
that weekly trends have a constant and multiplicative
effect on counts for each spatial location. The local
adjustment assumes that each spatial location displays
different weekly trends, and thus accounts for space
by day-of-week interaction. On the other hand, we
expect the global estimates to display less variance
since they rely on larger counts to estimate the day-
of-week proportions.

Finally, we consider two other methods of time
series forecasting, both of which account not only for
day-of-week trends but for seasonal trends as well.
The multiplicative Holt–Winters’ (HW) method is a
commonly used extension of exponential smoothing
that also adjusts dynamically for cyclical day of the
week effects and for linear trends (e.g. those due to
seasonal variation in counts); it was shown to be highly
effective for temporal biosurveillance by Burkom,
Murphy, and Shmueli (2007). The Holt–Winters’
forecasts are calculated from the counts ct

i by iterating
the following three equations for the smoothed value
St , trend component Tt , and day-of-week component
It , from t = 84 to t = 1 (the day before the current
day t = 0):

St = α
ct

i

It+7
+ (1− α)(St+1 + Tt+1)

Tt = β(St − St+1)+ (1− β)Tt+1

It = γ
ct

i

St
+ (1− γ )It+7.

Then each day’s expected count is given by the
one-step-ahead, day-of-week adjusted estimate, bt

i =

(St+1 + Tt+1)It+7. For our comparison, we used fixed
values of α = β = γ = 0.1; these were not optimized,
but achieved adequate performance in preliminary
studies on a different public health dataset.
Finally, the “current day” (CD) method was
used to derive baseline estimates for the space–time
permutation statistic (Kulldorff, Heffernan, Hartman,
Assuncao, & Mostashari, 2005). This method assumes
that counts are independently distributed in space and
time, and thus the expected count bt

i for a given
location si on a given day t is equal to the total number
of cases on day t multiplied by the fraction of cases
occurring in location si :

bt
i =

∑
i

ct
i

∑
t

ct
i∑

i

∑
t

ct
i
.

This method focuses on detecting space–time inter-
action, and thus it does not detect purely spatial or
purely temporal clusters. As noted by Neill, Moore,
Sabhnani, and Daniel (2005b), this method uses the
current day’s aggregate count to estimate the current
day’s counts, and may lose power to detect spatially
large clusters. On the other hand, by conditioning on
the aggregate count, CD can produce accurate base-
line estimates even in the presence of strong temporal
trends due to day of the week, seasonality, or holidays.

4. Detecting space–time clusters

The primary advantage of the scan statistic
approach is that, rather than detecting individual
counts ct

i that are higher than expected, it integrates
information over multiple spatial locations si and
multiple time steps t to detect space–time clusters
with higher than expected counts. Unlike typical
methods that use a fixed partition of the search space,
the level of aggregation need not be determined
in advance. Instead, we search over a large set of
space–time regions with varying sizes, shapes, and
temporal durations. This process can be visualized
as moving a “space–time window” around the search
area, allowing the size, shape, and duration of this
window to vary, and detecting any window which
contains anomalously high counts. As noted above, we
choose a set of search regions S, where each region
S ∈ S contains a set of spatial locations {si : si ∈

S}, and also has a temporal duration w(S). For the
alternative hypothesis H1(S), representing a cluster
in region S, we assume that the locations si ∈ S
have been affected for the most recent w(S) time
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steps. Under the null hypothesis H0, no locations
are affected. For notational simplicity, we let ct

i ∈

S denote the set of counts in region S, i.e. those
counts ct

i such that si ∈ S and t = 0 . . . w(S) − 1.
For each region S under consideration, we evaluate
the likelihood ratio score F(S) = Pr(Data | H1(S))

Pr(Data | H0)
,

comparing the counts ct
i ∈ S to their expected values

bt
i . We now consider the choice of search regions,

and the computation of the likelihood ratio statistic,
in more detail.

4.1. Search regions

Our set of search regions S was determined by
mapping the spatial locations (e.g. zip code centroids)
to a uniform N × N grid, and then searching over
all rectangular regions on the grid. In this case, each
space–time region S ∈ S can be defined by five
integers (xmin, ymin, xmax, ymax, w), representing the
x and y coordinates of the top left and bottom right
grid cells, and the time duration, respectively. All
combinations of 0 ≤ xmin ≤ xmax < N , 0 ≤
ymin ≤ ymax < N , and 1 ≤ w ≤ W were
considered. Thus, the total number of search regions
increases linearly with the maximum window size W ,
and proportional to the fourth power of the grid size N .
For each region S, the score F(S) can be calculated
from the counts ct

i ∈ S and baselines bt
i ∈ S. Neill

and Moore (2004) and Neill, Moore, and Sabhnani
(2005a) demonstrated that these scores can be found
in a computationally efficient manner, calculating the
aggregate count

∑
ct

i and aggregate baseline
∑

bt
i

for each rectangular region S in constant time, and
then using these sufficient statistics to calculate the
score F(S). For large grid sizes, further computational
speedups can be gained by using the fast spatial
scan (Neill & Moore, 2004; Neill, Moore, Pereira,
& Mitchell, 2005) to find the highest scoring clusters
without an exhaustive search.

We note that this approach considers a wide range
of region sizes, varying from individual 1 × 1 cells
to the entire N × N grid, and thus has high power
to detect both small and large clusters. Similarly,
it considers regions ranging from squares to highly
elongated rectangles, and thus has high power to
detect both compact and elongated clusters. Finally,
by allowing the cluster duration (i.e. the window size
w) to vary, it has high power to detect both rapidly and
gradually emerging clusters.
4.2. The expectation-based Poisson (EBP) statistic

As noted above, we must evaluate the likelihood
ratio score F(S) = Pr(Data | H1(S))

Pr(Data | H0)
for each spatial

region S ∈ S, and report the highest scoring regions.
To do so, we must choose models of how the data
is generated, both under the null hypothesis H0
(assuming that no clusters are present) and under the
set of alternative hypotheses H1(S), each representing
a cluster in some region S.

We assume that each count ct
i has been drawn from

a Poisson distribution. This is a common assumption
in the epidemiological literature: individual cases can
be specified as the realization of a Poisson point
process (with spatially varying intensity based on the
population at risk), and thus the aggregate count in
each spatial area is Poisson distributed. We allow the
Poisson means to vary over both space and time: under
the null hypothesis H0 of no clusters, we assume
that each count ct

i has been drawn with mean equal
to the expected count bt

i . As discussed in Section 3,
these baselines are learned from the historical data
for location si by time series analysis. Under the
alternative hypothesis H1(S), we assume that each
count ct

i ∈ S has been drawn with mean equal to the
product of the expected count bt

i and some constant q t
i ,

which we call its relative risk. Thus, we wish to search
for regions S where the relative risks q t

i are greater
than 1. We make the further simplifying assumption
that the relative risks are uniform over region S (q t

i =

q for all ct
i ∈ S), and thus we expect a constant

multiplicative increase in counts in the affected region.
As noted above, we wish to determine whether

any space–time region S has significantly higher than
expected counts. Under our model assumptions, where
each count ct

i ∈ S has been drawn from a Poisson
distribution with mean proportional to the baseline
bt

i times the uniform relative risk q, this question
simplifies to determining whether any region S has
q > 1. Thus, we test the null hypothesis H0 against
the set of alternative hypotheses H1(S), where:

H0: ct
i ∼ Poisson(bt

i ) for all spatial locations si
and time steps t .

H1(S): ct
i ∼ Poisson(qbt

i ) for all ct
i ∈ S, and ct

i ∼

Poisson(bt
i ) for all ct

i 6∈ S, for some q > 1.

Computing the likelihood ratio, and using the
maximum likelihood estimate for the parameter q (the
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uniform relative risk for region S), we obtain the
following expression:

F(S) =

max
q>1

∏
ct

i∈S
Pr(ct

i ∼ Poisson(qbt
i ))∏

ct
i∈S

Pr(ct
i ∼ Poisson(bt

i ))
.

Plugging in the equations for the Poisson likelihood,
and simplifying, we obtain:

F(S) =

max
q>1

∏
ct

i∈S
e−qbt

i (qbt
i )

ct
i /(ct

i )!∏
ct

i∈S
e−bt

i (bt
i )

ct
i /(ct

i )!

= max
q>1

∏
ct

i∈S

e(1−q)bt
i qct

i = max
q>1

e(1−q)BqC ,

where C and B are the total count
∑

ct
i and total

baseline
∑

bt
i of region S, respectively. We find that

the value of q that maximizes the numerator is q =
max(1, C

B ). Plugging in this value of q , we obtain:

F(S) =

(
C

B

)C

eB−C

if C > B, and F(S) = 1 otherwise. Because F(S)
is a function only of the sufficient statistics C and
B, this function is efficiently computable: we can
calculate the score of any region S by first calculating
the aggregate count and baseline, and then applying
the function F .

4.3. Comparison to Kulldorff’s statistic

The spatial scan statistic was originally presented
by Kulldorff (1997) in a purely spatial setting, where
we are given a single count ci and baseline bi for
each spatial location si . Later work (Kulldorff, 2001;
Kulldorff et al., 1998) extended this approach to the
space–time scan statistic, where we are given the
counts ct

i and baselines bt
i for each time step t . In these

settings, the baselines bt
i are given, and are assumed to

represent the population of each location si . Under the
null hypothesis of no clusters, we assume a spatially
uniform incidence rate q t

i = qall , and thus we expect
the counts ct

i to be proportional to the baselines bt
i .

Under the alternative hypothesis H1(S), we assume
that the incidence rate is higher inside the region
than outside. Kulldorff’s statistic can also be used in
our expectation-based scan statistic framework, where
the baselines are expected counts learned from time
series analysis of historical data. In this case, the null
hypothesis H0 assumes a constant relative risk qall ,
and the alternative hypothesis H1(S) assumes a higher
relative risk inside region S than outside (qin > qout ).

More precisely, Kulldorff’s statistic assumes that
each count ct

i is generated independently from
a Poisson distribution with mean proportional to
the expected count bt

i times the relative risk q t
i .

Furthermore, we assume that the relative risk is
uniform both inside the region (q t

i = qin for all ct
i ∈ S)

and outside the region (q t
i = qout for all ct

i 6∈ S).
Then we test the null hypothesis H0 against the set of
alternative hypotheses H1(S), where:

H0: ct
i ∼ Poisson(qallbt

i ) for all locations si and
time steps t , for some constant qall .

H1(S): ct
i ∼ Poisson(qinbt

i ) for all ct
i ∈ S, and

ct
i ∼ Poisson(qout bt

i ) for all ct
i 6∈ S, for some

constants qin > qout .

In this case, the alternative hypothesis has two free
parameters (qin and qout ) and the null hypothesis has
one free parameter (qall ). Computing the likelihood
ratio, and using the maximum likelihood parameter
estimates qin =

Cin
Bin

, qout =
Cout
Bout

, and qall =
Call
Ball

,
we obtain the following expression for the likelihood
ratio:

F(S) =

(
Cin

Bin

)Cin
(

Cout

Bout

)Cout
(

Call

Ball

)−Call

if Cin
Bin

> Cout
Bout

, and F(S) = 1 otherwise. In this
expression, Cin and Bin are the total count

∑
ct

i and
total baseline

∑
bt

i inside region S, Cout and Bout are
the total count and baseline outside region S, and Call
and Ball are the total count and baseline everywhere. A
detailed derivation of Kulldorff’s statistic is provided
by Kulldorff (1997) and Neill (2006).

We note that the assumptions made by Kulldorff’s
statistic are very different from the assumptions made
by EBP, resulting in a substantially different likelihood
ratio statistic. EBP expects the counts ct

i to be
equal to the baselines bt

i under the null hypothesis,
not just proportional to the baselines, since in this
case the baselines represent expected counts. Under
the alternative hypothesis H1(S), Kulldorff’s statistic
compares the relative risks inside and outside the
region, while EBP ignores the counts outside the
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region and simply compares the relative risk inside
the region to 1. Assuming that we can accurately
estimate the expected count (under the null hypothesis
of no clusters) in each spatial location, and that
we are interested in detecting any regions with
higher than expected counts, the EBP statistic is
a more natural model representation. Additionally,
Kulldorff’s statistic will lose power to detect spatially
large clusters. Let us consider the extreme case where
a cluster causes a uniform multiplicative increase
in counts over the entire search region. In this
case, we would have qin = qout = qall �

1: Kulldorff’s statistic would be entirely unable to
detect this increase, while EBP would easily detect
it. On the other hand, Kulldorff’s statistic has the
advantage of being more robust to misestimation of
global trends such as day-of-week and seasonality,
since the parameter qall automatically adjusts for the
case when all estimates are incorrect by a constant
multiplicative factor. Thus, it is an open question as
to which methodology will work better in real-world
time series monitoring scenarios.

5. Evaluation

To evaluate the detection performance of the
expectation-based scan statistic in the disease surveil-
lance domain, we obtained one year of Emergency De-
partment data from Allegheny County, Pennsylvania.
Daily counts of the number of patient records with
respiratory chief complaints were aggregated at the
zip code level, and thus each count ct

i represented the
number of respiratory ED visits for a given zip code si
for a given day t . The ED dataset contains data for 88
distinct Allegheny County zip codes from January 1,
2002 to December 31, 2002. The first 84 days of data
were used for baseline calculations only, giving us 281
days of count data for evaluation. The total number
of respiratory ED visits in Allegheny County ranged
from 5 to 62 cases per day, with a mean of 32.58 cases
and standard deviation of 7.60 cases. To test for day-
of-week trends in the data, we performed a one-way
ANOVA using the aggregate daily count as the depen-
dent variable and day of the week as the independent
variable. This analysis revealed that counts tend to be
significantly higher on Mondays than on other days
of the week. Similarly, ANOVA analysis using month
of the year as the independent variable revealed that
counts tend to be significantly higher during the winter
months (November through March) and significantly
lower during the summer months (May through Au-
gust). These results suggest the potential value of us-
ing more complex time series forecasting methods that
can account for day-of-week and seasonal trends, and
we consider several such methods in Section 5.3.

To evaluate the detection power of our methods,
we used a semi-synthetic testing framework, inject-
ing simulated outbreaks of disease into the real-world
data. In the biosurveillance domain, outbreak simu-
lation is commonly used to evaluate detection meth-
ods because of the scarcity of available, labeled data
from real-world outbreaks. Simulation also allows us
to precisely evaluate the effect of different parame-
ters (such as the size, shape, and temporal progres-
sion of the outbreak) on each method’s detection
performance; as we observe below, many of these
parameters have substantial effects on the relative per-
formance of different methods. Simulation of out-
breaks is an active area of ongoing research in
biosurveillance, and several recently developed meth-
ods (Buckeridge et al., 2004; Wallstrom, Wagner, &
Hogan, 2005) show great promise for producing re-
alistic outbreak scenarios. Finally, we note that the
expectation-based scan statistic method has been eval-
uated retrospectively on the 2000 gastroenteritis out-
break which occurred in Walkerton, Ontario, and was
able to detect the outbreak two days before the first
public health response (Davies, for the ECADS part-
ners and collaborators, 2006; Neill, 2006). However,
data from a single outbreak is insufficient to draw de-
tailed conclusions about the relative performance of
different methods.

We considered a simple class of circular outbreaks
with a linear increase in the expected number of cases
over the duration of the outbreak. More precisely, our
outbreak simulator takes four parameters: the outbreak
duration T , the outbreak severity ∆, and the minimum
and maximum number of zip codes affected, kmin and
kmax. Then for each injected outbreak, the outbreak
simulator chooses the start date of the outbreak tstart ,
the number of zip codes affected k, and the center
zip code scenter uniformly at random. The outbreak
is assumed to affect zip code scenter and its k −
1 nearest neighbors, as measured by the distance
between the zip code centroids. On each day t of
the outbreak, t = 1 . . . T , the outbreak simulator
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injects Poisson(twi∆) cases into each affected zip
code, where wi is the “weight” of each affected zip
code, set proportional to its total count

∑
t ct

i for
the entire dataset, and normalized so that the total
weight equals 1 for each injected outbreak. Using
this simple outbreak simulator, we performed three
simulations of varying size: “small” injects affecting
1–10 zip codes, “medium” injects affecting 10–20 zip
codes, and “large” injects affecting all zip codes in
Allegheny County. We used ∆ = 3, ∆ = 5, and ∆ =
10 for small, medium, and large injects respectively.
We used a value of T = 7 for these outbreaks,
and thus outbreaks were assumed to be one week
in duration. An additional simulation of a “gradual”
outbreak affecting 10–20 zip codes, with T = 28
and ∆ = 1, was used to evaluate scan statistics with
varying temporal window sizes, as discussed below.
For each of these simulations, we considered 1000
different, randomly generated outbreaks.

For each combination of method and outbreak size,
we computed the method’s proportion of outbreaks
detected, and the average number of days to detection,
as a function of the allowable false positive rate. To
do this, we first computed the maximum region score
F∗ = maxS F(S) for each day of the original dataset
with no outbreaks injected (as noted above, the first
84 days of data are excluded, since these are used
to calculate baselines for our methods). Then, for
each injected outbreak we computed the maximum
region score for each outbreak day, and determined
the proportion of the days for which the original
dataset had higher scores. Assuming that the original
dataset contains no outbreaks, this is the proportion
of false positives that we would have to accept in
order to have detected the outbreak on day t . For a
fixed false positive rate r , the “days to detect” for a
given outbreak is computed as the first outbreak day
(t = 1 . . . 7) with the proportion of false positives less
than r . If no day of the outbreak has the proportion
of false positives less than r , the method has failed
to detect that outbreak: for the purposes of our “days
to detect” calculation, these are penalized proportional
to the length of the outbreak, and thus are counted as
14 days to detect for a 7-day outbreak. The tradeoff
between the false positive rate and average days
to detection for a given method can be visualized
as an Activity Monitoring Operating Characteristic
(AMOC) curve (Fawcett & Provost, 1999), or we can
compare detection times for a fixed false positive rate
such as 1 false positive per month. In either case, a
lower detection time for a given false positive rate
corresponds to improved detection performance.

A secondary performance measure is the method’s
spatial detection accuracy, which measures its ability
to precisely pinpoint the set of locations affected
by an outbreak. For a given day of a simulated
outbreak, we define the “true outbreak region” Strue
as the set of locations with injected cases, and
we define the “detected region” S∗ as the region
with the highest score, S∗ = arg maxS F(S). Then
the spatial precision is defined as the ratio of
correctly detected locations to all detected locations,
#{si∈S∗∩Strue}

#{si∈S∗} . Similarly, the spatial recall is defined as
the ratio of correctly detected locations to all correct
locations, #{si∈S∗∩Strue}

#{si∈Strue}
. For each simulated outbreak,

we compute the precision and recall at the midpoint
of the outbreak (e.g. day 4 of a 7-day outbreak),
and average the precision and recall measures over
all outbreaks for a given simulation. Finally, we
compute the F-measure (harmonic mean of precision
and recall), as an aggregate measure of the method’s
spatial detection accuracy.

5.1. Comparison of the scan statistic and fixed
partition approaches

In our first set of experiments, we compared the
scan statistic method to the traditional “fixed partition”
method of time series surveillance. We considered a
range of grid sizes from N = 1 to N = 32. For
each grid size, we evaluated the performance of the
scan statistic (searching over all rectangular regions on
the grid, with sizes varying from 1 × 1 to N × N )
and the fixed partition approach (treating each grid
cell as a separate time series, and thus searching over
1 × 1 regions only). As noted above, the mapping
of zip codes to grid cells was performed using the
zip code centroids, and thus each rectangular region
on the grid was assumed to correspond to the set
of zip codes with centroid coordinates contained in
that rectangle. A 1-day temporal window (W = 1)
was used for all of these runs. We used a 28-day
moving average (MA28) to compute expected counts,
and the EBP statistic to detect clusters. For each
of the three simulations discussed above (assuming
small, medium, and large outbreaks respectively), we
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Fig. 1. A comparison of the scan statistic and fixed partition methods. Average days to detection at 1 false positive per month, as a function
of grid size. (a) shows the average performance over all outbreaks, and (b)–(d) show the average performance for small, medium, and large
outbreaks respectively.
computed the average detection time (with a 7-day
penalty for undetected outbreaks, as discussed above)
at a fixed false positive rate of 1/month.

Fig. 1(a) compares the average detection time
for the expectation-based scan statistic and the fixed
partition approach, averaged over all three outbreak
simulations. We observe that the scan statistic
outperforms fixed partitions for all grid sizes N >

1, with differences of over 1 day for large grid
sizes. Both methods required 2.96 days to detect for
N = 1. As expected, the performance of the scan
statistic approach improved with an increased grid
size, achieving the fastest detection (2.22 days to
detect) at the largest grid size evaluated (N = 32). On
the other hand, the performance of the fixed partition
method improved only up to N = 3 (2.62 days to
detect), and then declined rapidly for increasing grid
sizes (up to 3.29 days to detect for N = 32).

To better understand these performance differ-
ences, we compare the average detection times sepa-
rately for small, medium, and large outbreak sizes in
Fig. 1(b)–(d) respectively. For small and medium out-
breaks, the performance of the scan statistic approach
improved with increasing grid sizes, while the perfor-
mance of the fixed partition approach was optimized
for intermediate grid sizes (N = 12 for small out-
breaks and N = 3 for medium outbreaks). For large
outbreaks, both the fixed partition and scan statistic
methods performed best for N = 1 (1.84 days to de-
tect). However, the performance of fixed partitions de-
teriorated rapidly with increasing grid size (up to 3.61
days to detect for N = 32), while the performance of
the scan statistic remained approximately constant for
N ≥ 2 (requiring 2.06 days to detect for N = 2, and
2.17 days to detect for N = 32).

In Fig. 2, we compare the AMOC curves for the
scan statistic and fixed partition approaches, using the
optimal grid size for each method. We chose the grid
size with the lowest detection time, at 1 false positive
per month (i.e. N = 32 for the scan statistic, and
N = 3 for fixed partitions), and then compared the
detection times for all false positive rates between 1
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Fig. 2. AMOC curves for the scan statistic and fixed partition
methods. Average days to detection, as a function of the false
positive rate. A grid size of N = 32 is used for the scan statistic,
and N = 3 for the fixed partition.

and 24 fp/year. These curves demonstrate consistently
faster detection for the scan statistic than for fixed
partitions, and all of these differences (with the single
exception of 2 fp/year) were found to be statistically
significant (p < 10−6). These results demonstrate that
the performance improvements shown in Fig. 1 are not
simply an artifact of the chosen false positive rate.

These results demonstrate the primary advantage
of the scan statistic over typical, fixed partition
approaches to time series monitoring: by aggregating
information across multiple spatial locations (and thus
scanning over both large and small spatial regions),
scan statistics can achieve high detection performance
for all outbreak sizes. The only requirement is a
sufficiently high spatial resolution: in our example,
a grid size of N = 12 was sufficient to achieve
a high average performance, and further (but slight)
improvements were seen for higher resolutions. The
fixed partition approach, on the other hand, must
explicitly trade off the detection performance for small
and large outbreaks, since coarse spatial resolutions
(small N ) and fine spatial resolutions (large N )
have low detection performances for small and large
outbreaks respectively.

A second advantage of the scan statistic approach
as compared to fixed partitions is a more accurate
identification of which spatial locations are affected
by the outbreak, since the scan statistic can detect
a collection of grid cells, while fixed partitions can
only detect a single grid cell. To compare the spatial
accuracy of the scan statistic and fixed partition
methods, we computed the spatial precision and
spatial recall of each method as a function of grid size,
and then computed the F-measure (harmonic mean of
precision and recall). The overall spatial accuracy (as
given by the F-measure) is shown in Fig. 3(a), while
precision and recall are shown separately in Fig. 3(b)
and (c). For the scan statistic, the F-measure increases
with increasing grid size, up to a maximum of 67.3%
at N = 32. For the fixed partition approach, however,
the F-measure only increases through N = 4,
reaching a maximum of 45.5%, and then deteriorates
with increasing N . For both approaches, the precision
tends to increase and recall tends to decrease with
increasing N . However, recall decreases dramatically
for fixed partitions (19% recall for N = 32), while it
levels off for the scan statistic (83% recall for N =
32). For a given N , the fixed partition approach has
consistently higher precision but much lower recall
than the scan statistic, since it identifies the single 1×1
grid cell which has been most affected by the outbreak,
rather than the collection of all grid cells containing
affected locations.

While the scan statistic demonstrates clear advan-
tages over the fixed partition approach in terms of
its ability to detect and localize outbreaks, it is much
more computationally expensive, because it requires
a search over all rectangular regions on the grid,
rather than all grid cells. An exhaustive search over
all rectangular regions requires O(N 4) time for an
N × N grid, while searching over grid cells only re-
quires O(N 2). However, for large N , many grid cells
may be empty, and thus many rectangles may contain
identical sets of spatial locations. For a fixed set of
spatial locations (e.g. zip code centroids), we can com-
pute the set of locations contained in each region in
advance, and remove duplicate regions to reduce the
computation time. To quantify the differences in run
time between the scan statistic and fixed partition ap-
proaches, we ran each method (with a grid size varying
from N = 1 to N = 32) on the 281 days of ED data
from Allegheny County. Fig. 4 shows the total run time
in seconds for each method and grid size. The run time
for the fixed partition methods was dominated by the
cost of loading the ED data, and thus remained approx-
imately constant (3.5–3.6 s) as the grid size increased.
The run time for the scan statistic increased by a fac-
tor of 4-7x for each doubling of grid size, reaching a
maximum of 423.2 s for N = 32.
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Fig. 3. A comparison of the scan statistic and fixed partition methods. Spatial detection accuracy at day 4 of the outbreak, as a function of grid
size. (a) shows the F-measure (harmonic mean of spatial precision and recall). (b) and (c) show precision and recall respectively.
Thus, computational efficiency can become a factor
in choosing which grid size to use, especially when the
number of spatial locations is large or many days of
data must be examined. For county-level data, a grid
size of N = 12 or N = 16 appears to be a good
tradeoff between detection power and computation
time. For larger datasets (e.g. nationwide sales of over-
the-counter medications), we must use much larger
grid sizes, and thus more efficient algorithms are
required to make the scan statistic computationally
feasible. As noted above, Neill and Moore (2004)
and Neill et al. (2005) present a “fast spatial scan”
algorithm which can be used to speed up the scan
statistic by 2–3 orders of magnitude for large grid
sizes, with no loss of accuracy.

5.2. Comparison of window sizes

In our second set of experiments, we examined
how the performance of the expectation-based scan
statistic varies with the maximum temporal window
size W , where we search over space–time regions
with durations between 1 and W . We evaluated
a range of temporal window sizes W = 1 to
W = 7, using a fixed grid size of N = 16.
As in the previous experiments, we used the 28-day
moving average (MA28) to compute expected counts,
and the EBP statistic to detect clusters. For each
of the three simulations discussed above (assuming
small, medium, and large outbreaks respectively), we
computed the average detection time (with a penalty
for undetected outbreaks, as discussed above) for false
positive rates varying from 1–24 fp/year. We averaged
detection times over all 3000 simulated outbreaks
to form an AMOC curve (measuring the average
detection time as a function of the false positive
rate), as shown in Fig. 5(a). Because the relative
performances of different temporal window sizes is
strongly dependent on the temporal progression of
the outbreak, we also ran an additional simulation
(1000 randomly generated outbreaks) of “gradual”
outbreaks, with a slower increase in the injected counts
(∆ = 1) and a 28-day duration. These outbreaks
affected 10–20 zip codes surrounding a randomly
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Fig. 4. A comparison of the scan statistic and fixed partition
methods. Run time in seconds, as a function of grid size.

selected center zip code, as in the “medium” outbreak
simulation. AMOC curves for these gradual outbreaks
are shown in Fig. 5(b).

In Fig. 5(a), we observe that the relative
performance of different temporal window sizes (as
measured by the average detection time) is highly
dependent on the allowable false positive rate. For
very low false positive rates (1–3 false positives per
year), longer temporal windows (W > 1) detect
between 0.5 and 0.8 days faster than a 1-day temporal
window. However, for higher false positive rates, the
fastest detection time is achieved for W = 1, and
longer window sizes detect between 0.15 and 0.25
days slower. For example, at a fixed false positive
rate of 1 fp/month, W = 1 detects outbreaks in an
average of 2.32 days, while methods with longer W
required between 2.49 and 2.56 days. Detection time
tended to increase with window size for W > 3:
since the number of injected cases increased sharply,
most outbreaks were detected by the third outbreak
day, and thus longer window sizes did not improve
performance. For more gradual outbreaks (Fig. 5(b)),
we again observe a strong dependence of performance
on the allowable false positive rate. In this case, we
saw huge performance benefits for longer temporal
windows at low false positive rates. At 1 fp/year,
W = 1 required an average of 23.4 days to detect.
Detection time improved to 12.3 days for W = 2,
10.2 days for W = 3, and continued to improve with
increasing temporal window size (8.5 days to detect
at W = 7). Longer windows improved performance
for false positive rates up to 8 fp/year, but the 1-day
window performed best for false positive rates above
10 fp/year, typically outperforming longer windows by
0.1–0.4 days.

Thus, longer temporal window sizes improve the
performance when the allowable false positive rate
is low, and when the outbreak is more gradual; on
the other hand, a 1-day window is best for quickly
growing outbreaks and high allowable false positive
rates. The signal to noise plots shown in Fig. 6(a) and
(b) (for standard and gradual outbreaks respectively)
help to explain these performance results. The solid
line in each graph represents the mean score on each
day of the outbreak (averaged over all simulated
outbreaks), while the dashed lines represent the
95th and 99th percentiles of the background score
distribution (i.e., the scores computed for all 281
days of baseline data with no outbreaks injected). We
observe that the score increases more rapidly over the
course of the outbreak for longer window sizes, but
Fig. 5. AMOC curves for scan statistic methods with varying temporal window size (W = 1, W = 3, and W = 7). Average days to detection,
as a function of the false positive rate. (a) compares the performance based on the original, 7-day outbreak simulations. (b) compares the
performance using a more gradual, 28-day outbreak simulation.
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Fig. 6. Signal to noise plots for scan statistic methods with varying temporal window sizes (W = 1, W = 3, and W = 7). The thick line in each
plot is the average score on each day of the outbreak. The dashed lines are the 95th and 99th percentiles of the score distribution for the baseline
data with no outbreaks injected. (a) compares the performance on the “medium” 7-day outbreak simulation. (b) compares the performance on
the “gradual” 28-day outbreak simulation.
Fig. 7. Spatial precision, recall, and F-measures for scan statistic methods at the midpoint of an outbreak, as a function of temporal window
size (W = 1 . . . 7). (a) compares the performance based on the original, 7-day outbreak simulations. (b) compares the performance using a
more gradual, 28-day outbreak simulation.
scores are also higher for the background data (as
evident from the larger 95th percentile value; the 99th
percentile values remained approximately constant).
By the third day of the rapidly growing outbreaks
(Fig. 6(a)), the longer windows had scores well above
the 99th percentile value, while W = 1 had a score
comparable to the 99th percentile value, explaining
its lower performance for low false positive rates. On
the other hand, W = 1 was faster to reach the 95th
percentile value, explaining its improved performance
for high false positive rates. For the gradual outbreaks
(Fig. 6(b)), the longer windows had scores well above
the 99th percentile value by the tenth outbreak day,
while the scores for W = 1 never approach this
value. This explains the extremely poor performance
of W = 1 for the gradually growing outbreaks, and
the large performance gains for longer window sizes.

We also compare the spatial detection accuracy for
varying window sizes, measuring the average spatial
precision and spatial recall for each method at the
midpoint of the outbreak, and computing the F-
measure (harmonic mean of precision and recall). For
the rapidly growing outbreaks (Fig. 7(a)), we observe
that the longer window sizes have somewhat higher
recall and slightly lower precision, resulting in an
slightly increased F-measure. Recall increased from
83.0% for W = 1 up to 89.2% for longer windows.
For the gradually growing outbreaks (Fig. 7(b)),
recall improved substantially with increasing window
sizes, from 63.0% for W = 1 up to 88.5% for
W = 7. Precision stayed approximately constant, and
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thus the F-measure also increased with increasing
window size.

These results demonstrate two advantages of using
a longer temporal window size: improved detection
time for lower false positive rates, and improved
spatial detection accuracy. Both of these advantages
are largest when the outbreak emerges gradually over
time; for more rapidly emerging outbreaks, a 1-day
temporal window is sufficient and may even achieve
slightly faster detection.

5.3. Comparison of time series analysis methods

In our third set of experiments, we compared
the 28-day moving average (MA28) to seven other
time series analysis methods: 7-day, 14-day, and
56-day moving averages (MA7, MA14, MA56),
moving averages with global and local day-of-week
adjustments (MAGD, MALD), the multiplicative
Holt–Winters’ method (HW), and the “current day”
method (CD). All of these time series analysis
methods are described in Section 3. For each of
the three simulations discussed above (assuming
small, medium, and large outbreaks respectively), we
computed the average detection time (with a penalty
for undetected outbreaks, as discussed above) for false
positive rates varying from 1–24 fp/year. A grid size of
N = 16, and a 1-day temporal window (W = 1) were
used for all of these runs, and EBP was used to detect
clusters. We averaged results for the three simulations,
producing the AMOC curves shown in Fig. 8.

From Fig. 8(a), we observe that MA28 tends to
outperform the MA7 and MA14 methods (particularly
at low false positive rates), while MA28 and MA56
achieve similar performances. At a fixed false positive
rate of 1 fp/month, MA14 and MA56 had similar
detection times to MA28 (2.37, 2.34, and 2.32 days to
detect respectively), while MA7 required significantly
longer (2.65 days to detect). MA56 also had a slightly
improved F-measure as compared to MA28 (66.6%
vs. 65.4%), while MA7 and MA14 had significantly
lower F-measures (55.2% and 61.8% respectively).

These results suggest that at least 28 days of
data are needed to accurately estimate baselines
for the expectation-based scan statistic. Using fewer
days to compute baselines leads to higher variance
of the estimates. Additionally, baseline estimates
during the outbreak are biased upward because they
incorporate the injected counts into the estimate, and
this bias is larger when fewer days of data are used.
(Alternatively, the most recent 7 or 14 days of data
can be omitted when including baselines, but we do
not examine this approach here.) Using fewer days of
data can be advantageous in application domains with
strong temporal trends, since in these cases the most
recent data is a more accurate predictor than the past
data. However, the poor performance of MA7 suggests
that these trends are not present in the ED dataset.

Fig. 8(b) examines whether adjustment for day-
of-week patterns improves detection performance by
comparing 28-day moving averages without day-of-
week adjustment (MA28), with global day-of-week
adjustment (MAGD), and with local day-of-week
adjustment (MALD). We observe that, while MAGD
and MALD achieve faster detection than MA28 for
very low false positive rates (1–3 fp/year), MA28
consistently outperforms the other two methods for
higher false positive rates. At a fixed false positive rate
of 1/month, MA28 detected outbreaks in an average of
2.32 days, as compared to 2.52 days for MAGD and
2.60 days for MALD. Additionally, while MA28 and
MAGD had very similar spatial detection accuracy (F-
measure 65.4% for both methods), MALD had lower
spatial accuracy (F-measure 61.6%).

These results suggest that, for the ED dataset,
no substantial performance benefits are gained by
adjusting for day-of-week effects. The improved
performance of the day-of-week adjustments at low
false positive rates suggests that some weekly trends
are present in the data, and the improved performance
of MALD over MAGD (for 1–3 fp/year) also
suggests that some space by day-of-week interaction is
present. However, for higher false positive rates these
benefits are outweighed by the increased variance
of the baseline estimates resulting from day-of-week
adjustment. MALD in particular suffered decreased
precision and recall as compared to MA28, suggesting
that our attempts to infer each location’s weekly trends
resulted in high variance due to the small number of
counts.

Finally, we compared the MA28 method to two
previously proposed methods for time series analysis:
the multiplicative Holt–Winters’ (HW) method, an
exponential smoothing method that accounts for
both (linear) seasonal and (cyclical) day-of-week
trends; and the “current day” (CD) method used
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Fig. 8. AMOC curves for the expectation-based scan statistic, using different time series analysis methods to obtain expected counts. Average
days to detection, as a function of the false positive rate. (a) compares the 28-day moving average method (MA28) to 7-day, 14-day, and 56-
day moving averages. (b) compares MA28 to 28-day moving average methods globally and locally adjusted for day of the week (MAGD and
MALD). (c) compares MA28 to the Holt–Winters’ method (HW) and the current day method (CD).
in the space–time permutation statistic (Kulldorff
et al., 2005), which adjusts for the global aggregate
count and thus detects only space–time interaction,
rather than purely spatial or purely temporal trends.
From Fig. 8(c), we observe that MA28 consistently
outperforms both methods, detecting approximately
four days faster than CD across the entire range
of false positive rates. The HW method detects
approximately 0.5 days slower than MA28 for high
false positive rates, but performs extremely poorly for
low false positive rates (ten days slower than MA28,
and five days slower than CD, at 1 fp/year). At a
fixed false positive rate of 1/month, HW and CD
underperformed MA28, detecting outbreaks in 2.82
and 5.55 days respectively (as compared to 2.32 for
MA28). The performance of CD was particularly poor
for large outbreaks (requiring 10.58 days to detect at
1 fp/month), and was at least 0.4 days slower than
MA28 for all outbreak sizes. Additionally, the spatial
accuracy for HW and CD was low (F-measures of
56.7% and 57.8% respectively, as compared to 65.4%
for MA28).

These results suggest that adjustments for day-of-
week and seasonality are not necessary in the ED
data, and that the use of more complicated methods
such as Holt–Winters’ for this dataset may lead to
unstable baseline estimates, and thus increase the
number of false positives. For our data, a simple 28-
day moving average was shown to be sufficiently
accurate, achieving rapid and accurate detection of
outbreaks. Other datasets may require the use of more
complex time series analysis methods to account for
seasonal and day-of-week trends: for example, over-
the-counter medication sales often exhibit substantial
weekly and seasonal variation.

5.4. Comparison of expectation-based and Kulldorff
scan statistics

In our fourth set of experiments, we compared
our expectation-based Poisson (EBP) scan statistic
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Fig. 9. AMOC curves for the expectation-based Poisson (EBP) and Kulldorff scan statistic methods. Average days to detection, as a function
of the false positive rate. (a) shows the average performance over all outbreaks, and (b)–(d) show the average performance for small, medium,
and large outbreaks respectively.
method discussed above to Kulldorff’s original
space–time scan statistic (Kulldorff, 2001). Both of
these methods are described in Section 4. For each
of the three simulations discussed above (assuming
small, medium, and large outbreaks respectively),
we computed the average detection time (with a
penalty for undetected outbreaks, as discussed above),
for false positive rates varying from 1–24 fp/year,
producing the AMOC curves shown in Fig. 9. Fig. 9(a)
shows the mean detection times averaged over all three
outbreak simulations, while Fig. 9(b)–(d) show the
mean detection times for small, medium, and large
outbreaks respectively. A grid size of N = 16, and
a 1-day temporal window (W = 1) were used for all
of these runs; baselines were estimated using a 28-day
moving average (MA28).

From Fig. 9(a), we observe that our expectation-
based scan statistic outperforms Kulldorff’s statistic
by a large margin across all false positive rates,
achieving over three days faster detection. At a
fixed false positive rate of 1 fp/month, EBP detected
outbreaks in an average of 2.32 days, as compared
to 5.46 days for Kulldorff’s statistic. Fig. 9(b)–(d)
reveal that the performance differences are much
smaller for small and medium outbreaks, though
EBP outperformed Kulldorff’s statistic across all
three outbreak sizes. At a fixed false positive rate
of 1/month, EBP detected 0.28 days faster than
Kulldorff’s statistic for small outbreaks (2.52 vs. 2.80
days to detect), 0.41 days faster for medium outbreaks
(2.17 vs. 2.58 days to detect), and 8.73 days
faster for large outbreaks (2.26 vs. 10.99 days to
detect). All of these results for 1 fp/month were
found to be statistically significant (p < 0.001).
The performance difference for large outbreaks is
particularly striking: while EBP detected 100% of
these outbreaks, Kulldorff’s statistic had a detection
rate of only 30.2%, resulting in an average detection
time that was longer than the outbreak duration
(because of the 7-day penalty for missed outbreaks).

We also computed the spatial detection accuracy
for each method at the midpoint of the outbreak
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(day 4). The expectation-based scan statistic had
much higher recall than Kulldorff’s statistic (83.1%
vs. 66.0%), though its precision was somewhat lower
(53.9% vs. 58.4%). This resulted in an F-measure
of 65.4%, as compared to 62.0% for Kulldorff’s
statistic, demonstrating improved spatial accuracy. For
large outbreaks, EBP achieved an average recall of
82.5% as compared to 31.4% for Kulldorff’s statistic,
demonstrating that it detects a much larger region
containing most of the affected locations rather than
only a small subset of the most affected locations.

These results confirm our expectations: since
Kulldorff’s statistic compares the relative risks
inside and outside the search region rather than
comparing the actual and expected counts inside
the search region, it has low power to detect
large outbreaks that affect many spatial locations.
Somewhat surprisingly, the expectation-based Poisson
statistic achieves significantly improved detection
time for small to medium-sized outbreaks as well. As
noted above, we expect that Kulldorff’s statistic may
outperform EBP for small outbreak sizes when we
have poor estimates of the expected counts (e.g. failure
to account for seasonal or day-of-week trends in
datasets where these trends are present). However,
these performance gains were not observed for the
Emergency Department data, suggesting that our
time series analysis is producing accurate baseline
estimates.

6. Discussion

We have presented the expectation-based scan
statistic, a method for monitoring multiple spatially
localized time series in order to detect spatial clusters
of increased counts. This method consists of two
steps: estimating the expected counts for each spatial
location for each recent day, and detecting space–time
regions where the observed counts are significantly
higher than expected. In Section 5.1, we demonstrated
that the expectation-based scan statistic achieves
significantly higher detection power than typical time
series monitoring approaches (e.g. choosing a desired
level of aggregation, and then monitoring each of the
aggregated time series separately). By searching many
overlapping sets of spatial locations with varying
shapes and sizes, we can achieve high power to detect
spatial patterns, whether they affect a single location,
all locations, or a subset of locations. This is very
different from the typical “fixed partition” approach,
which loses power to detect small patterns if the space
is coarsely partitioned, and loses power to detect large
patterns if the space is finely partitioned. An additional
advantage of the scan statistic over fixed partitions is
higher spatial accuracy (improved ability to determine
which spatial locations are affected by an event). This
advantage is achieved by mapping the locations to a
grid with fine spatial resolution and then detecting
clusters of affected grid cells.

When using the expectation-based scan statistic
framework for time series monitoring, we must
answer four main questions: which set of spatial
regions to search, which temporal window size
W to choose, which time series analysis method
to use for calculating expected counts, and which
statistic to use for detecting clusters of higher than
expected counts. We consider the set of search regions
in Section 5.1. Our study assumes that locations
are mapped to a uniform N × N grid, and we
search over all rectangular regions on the grid.
We demonstrate that a grid resolution of at least
N = 12 is necessary for high detection power
on county-level Emergency Department data; even
higher grid resolutions can achieve further (but slight)
improvements in detection time, but also substantially
increase the computations required. We address the
second question in Section 5.2, showing that the
optimal setting of the temporal window size depends
on both the nature of the outbreak (a rapid or gradual
increase in counts) and the allowable false positive
rate. We address the third question in Section 5.3,
demonstrating that a simple 28-day moving average
method is sufficient for rapid and accurate outbreak
detection using our Emergency Department data. In
other datasets with strong day-of-week or seasonal
trends, other methods which account for these trends
may achieve higher performance. Finally, we address
the fourth question in Section 5.4, demonstrating
that our expectation-based Poisson scan statistic
outperforms the traditional Kulldorff space–time scan
statistic approach.

We note that this work did not examine the
impact of the choice of region shape on detection
power, as this question has been addressed by a
number of recent studies. While Kulldorff’s original
spatial scan statistic (Kulldorff, 1997) performed a
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search over the set of circular regions, many other
shapes including rectangles (Neill et al., 2005b),
ellipses (Kulldorff, Huang, Pickle, & Duczmal, 2006),
and various sets of irregular regions (Duczmal &
Assuncao, 2004; Patil & Taillie, 2004; Tango &
Takahashi, 2005) have been considered. In general,
the optimal region shape is strongly dependent on
the outbreak’s region of effect. Circular (or square)
search regions perform well for compact clusters but
poorly for elongated clusters, rectangular or elliptical
search regions perform well for elongated clusters,
and irregular search regions perform best when the
cluster shape is highly irregular (Duczmal, Kulldorff,
& Huang, 2006).

Additionally, many other variants of the scan
statistic have recently been proposed, including
Gaussian (Neill, 2006), robust (Neill & Sabhnani,
2007), model-adjusted (Kleinman, Abrams, Kulldorff,
& Platt, 2005), nonparametric (Neill & Lingwall,
2007), and Bayesian (Neill, Moore, & Cooper, 2006,
2007) methods. We believe that some of these more
complex methods may further improve detection
performance, and we are in the process of conducting
a large-scale evaluation of these methods using
hospital Emergency Department and over-the-counter
medication sales data. The preliminary results of this
evaluation (Neill, 2007) complement the present work
by demonstrating that the relative performance of
different statistics is highly affected by the dataset
characteristics (e.g. large or small daily counts,
presence or absence of seasonal and day-of-week
trends), as well as the characteristics of the injected
outbreak.
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