Arch. Rational Mech. Anal. 159 (2001) 229-252
Digital Object Identifier (DOI) 10.1007/s002050100158

An Eulerian Description of Fluids Containing
Visco-Elastic Particles

CHUN L1u & NOEL J. WALKINGTON

Communicated by M. E. GURTIN

Abstract

Equations governing the flow of fluid containing visco-hyperelastic particles
are developed in an Eulerian framework. The novel feature introduced here is to
write an evolution equation for the strain. It is envisioned that this will simplify
numerical codes which typically compute the strain on Lagrangian meshes moving
through Eulerian meshes. Existence results for the flow of linear visco-hyperelastic
particles in a Newtonian fluid are established using a Galerkin scheme.

1. Introduction

When modeling physical systems that contain both fluid and solid particles one
is always confronted with the dilemma that fluids are naturally described using
the Eulerian (spatial) description yet solids are naturally described in a Lagrangian
(referential) frame. From an analysts point of view this decoupling of the problem
presents significant technical challenges. The equation for the fluid takes place on
a time-dependent domain (the region not currently occupied by the solid), and the
regularity of the solution is usually low so that the change of coordinates relating
the two descriptions is not smooth. The numerical simulation of such systems is
similarly plagued. If the solid particles are represented by a Lagrangian mesh it is
necessary to interpolate their image into the Eulerian mesh, and this is expensive
and degrades accuracy [11,25]. Moreover, the absence of a satisfactory theory for
the underlying equations undermines the analysis of these algorithms.

We consider the equations for the flow of a fluid containing visco-hyperelastic
solid particles. We pose the basic equations in a purely Eulerian description; nu-
merical simulation of such a system will only require a single mesh for the Eu-
lerian domain. The system of equations we propose contains the classical visco-
hyperelasticity equations for which there is no satisfactory theory of existence and
uniqueness [7,15]. However, we consider an approximation for which it is possible
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to develop a reasonable existence theory. This approximation corresponds to an
appropriate description of visco-hyperelasticity for the solid particles for which the
strains but not the rotations are small. This simplified system should provide a good
model problem for the analysis and comparison of various numerical algorithms.

Elastic materials are typically described in Lagrangian coordinates since the
stress depends upon the deformation gradiefrom a fixed configuration, anfl
is not immediately available in an Eulerian description. We circumvented this by
writing an evolution equation foF, our equation (5). Our description also utilizes
a “phase” variable equal tot1 in the fluid/solid regions. This approach has been
used in the past for the simulation of the flow of immiscible fluids [5,16,17,24,23],
and essentially circumvents the “mapping” problem encountered by the numerical
analysts described in the first paragraph.

The interaction of Eulerian and Lagrangian descriptions is ubiquitous in the
plasticity literature [1, 2]. Classically, numerical computations are based upon a La-
grangian mesh [1], and the large plastic deformations can result in tangled meshes
and ill-conditioned systems of equations. The computations in [10] utilize an Eule-
rian description which contains a free-boundary problem to determine the surface
of the solid. Since the problem in [10] was one-dimensional it was relatively easy to
track the motion of the free surface through the mesh; however, this would seem a
difficult task in multiple dimensions where, for example, topological changes could
occur due to contact. This problem of determining the location of the particles (and
their surfaces) is circumvented here by exploiting a phase variable to track them.

1.1. Notation

We adopt the standard notation of continuum mechanics [L3} R? is the
material descriptiony = x (X, ) is the position of particleX at timet; and the
velocity is given byv = x, where the dot indicates the partial derivative with re-
spect to time withX fixed (the material or convective derivative). In the Eulerian
description(x, ¢) the chain rule giveg = g; + v.Vg whereV is the gradient in the
x variables. Classical mechanics assumesthaR? — R is a diffeomorphism
and the deformation gradiefit = [dx; /0 X] is the Jacobian of this mapping and
hasJ = det(F) > 0. Below we will consider incompressible materials for which
J = 1.Ifthe elastic part of the stress of a solid particle depends only upon the defor-
mation gradien¥, it must take the fornil/J)DW(F)FT where)y : R¥*4 — R
is the strain-energy function a®W);, = 0W/d F, is the Piola Kirchhoff stress
tensor. The strain-energy function must satigfyRU) = W(U) for all proper or-
thogonal matrices (i.eRRT = I, detR) > 0)and henc®W(RU) = RDW(U).

If F = RU with U = UT represents the polar decomposition of the deformation
gradient, it follows that the stress becont&g/) RDW(U)U RT . When the Piola
Kirchhoff stress tensor is the gradient of a strain-energy function, as above, the
material is called hyperelastic.

Classical linear elasticity assumes that the displacement — X is small so
thatF = I+ H,whereH = Vxu is small. Inthis situation the polar decomposition
is, tofirstorderF =~ (I 4 Hskew) (I + Hsym) WhereHskewandHsymare the skew and
symmetric parts off. If the “residual stressDW(I) vanishes, then, to first order,
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the stress become3( Hsym) whereC : R?*?4 — R*d js the second derivative
of W at the identity. Symmetry of the stress tensor implieis symmetric in the
sense that(A)- B = A-C(B) whereA - B = Z[j A;; B;j is the Frobenius inner
product. It is traditional to assume that reaches its minimum value atand that
the second derivative is strictly positive definite, tha€isi) - A > ¢|A|?, where
¢ > 0and|A|2 = A - A is the Frobenius norm. In this situatiGhinduces an inner
product(., .)c onR4*4,

Below, @ c R? will denote a bounded domain with Lipschitz boundary. Stan-
dard notation is adopted for the Lebesgue spat&?), and the Sobolev spaces,
WP (Q) or H™(2). The dual exponent towill be denoted by’, 1/p+1/p’ = 1.
Solutions of various evolution problems will be functions fr¢@ 7] into these
spaces, and we adopt the usual notibA[0, 7; HX(Q)], C[0, T; HY(Q)], etc.,
to indicate the temporal regularity of such functions. For vector- or matrix-valued
quantities, such as the velocityor deformation gradienk, we writev € L?(R),

F e L?%(Q), to indicate that each component lies in the specified space. Strong
convergence of a sequence will be indicated,as> v, and weak convergence by
v, — V.

Divergences of vectors and matrices are denotet i v; ; and di 7); =
T;;,j» and gradients of vector-valued quantities are interpreted as mai{Nags, =
v;, ;. Here indices after the comma represent partial derivatives and the summation
convention is used. The symmetric part of the velocity gradient (stretching tensor)
is written asD (u), and the skew part written &8 (v) (spin tensor). Inner products
of vectorsv, w € R? are written aw.w and the Frobenius inner product of two
matricesA, B € R**“ is denoted byA - B = Y, ; A;; B;;. We frequently use the

elementary identitied B - C = A-CB” = B - ATC.

1.2. Outline

Inthe next section we present an Eulerian description of a system consisting of a
fluid containing particles with a focus on the situation where the fluid is Newtonian
and the particles are visco-hyperelastic. As stated previously, currently there is
no satisfactory existence theory for solutions of the visco-elastic equations, so in
Section 3 we develop approximate equations which model situations for which the
strain in the solid is small. The final section establishes existence of solutions of
the approximate equations. The proof of existence draws heavily from the ideas
developed inDIPERNA & Lions [8] and Lions [21] where convection equations
and fluids with variable density are studied.

2. Eulerian Description of Fluid/Solid Particles

LetQ c RY, (d = 2 or 3) be adomain with boundad§2. We consider a model
whereQ is filled with a fluid containing solid particles and write

Q= Q1) UQ(),
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whereQ; is the region occupied by the fluid az} is the region occupied by the
solid particles, each of which may be disconnected.

Formulae for the density, stress tensor, etc. at a gaint) will depend upon
whether fluid is currently at, (x € Q¢(¢)), or a solid particle is currently at the
positionx. For example, for incompressible materials,

| p inthe fluid, and
P=1 ps inthe solid

of, ps € RT, and a similar formula holds for the stress terfBoA convenient way
to write this is to introduce a phase functigiix, t) equal to+1 in the fluid and
—1in the solid,

[+l xeQr),
o 1) = {—1 x € Q).

We think of the level sep = 0 as the solid/fluid interface. Then

1+¢ 1-¢
= pr+ Ps = XfPf + XsPs»
2 2
where x; and x, are the characteristic functions of the fluid and solid regions
respectively.

Notice that when expressed in Lagrangian coordinatssndependent of time,
d(x(X,1),1) = ®(X), so¢ = 0 or, equivalently,

¢ +v.Vp =0 1)

in an Eulerian frameY = V,). Since¢ is discontinuous this equation must be
interpreted in the usual weak sense, that is,

T T
/ /¢(1/fr+v.V1//+div(v)1/f)=/¢WI5+/ / dYv.n
0 JQ Q 0 JoQ

for smooth functiongy. In order to avoid multiplying distributions it may be nec-
essary to require the velocityto have some regularity. We will assume that the
fluid is viscous so that it sticks to the particles. In this situation classical solutions
havev continuous throughou®.

Balance of Mass. Balance of mass requires that
or + div(pv) = 0.

Sincep is not continuous, this equation is required to hold in the weak sense:

/()ngp(w,ﬂ.vw=f9pw|£+f0T/mwpv.n. 2)

When the velocity field is divergence free, @iy = 0, the equations for balance
of mass and convection gf are identical. In fact, since = (1/2)(of — ps)¢ +
(pr + ps)/2 is an affine function ap, the weak form of balance of mass is satisfied
whenever the weak statement fpholds. To observe this, notice thatjifsatisfies
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the weak form of the convection equation, then so too dges 8 for anya, 8 € R
(assuming that satisfies some minimal regularity), and hence so too goes

The observation that affine functionsg@gatisfy the same weak statemenias
is a special case of a theorem by Liouville and a more general resiithprNA
& Lions [8]. Under suitable regularity assumptionsgrany function of the form
B(¢) with 8 : R — R continuous will also be a weak solution of the convection
equation.

Balance of Momentum: We write balance of momentum in a weak form to avoid
having to explicitly introduce tractions across the fluid/solid interfaces. This weak
equation represents balance of momentum in situations for which the velocity is
smooth (at least continuous) and the density and stresses possibly discontinuous:

/ ,ov,.w+,o(v.V)v.w+T~D(w)=/ ofw 3)
Q Q

for smooth vector fieldsy : Q@ — R? vanishing ond2. HereT = T7 is the
Cauchy stress tensor, ai{w) = (Vw + (Vw)’)/2 is the stretching tensor for
the fieldw.
The constitutive equation for the stress tensor differs for fluids and solids, so
we write
T = xTr + xs715.

We consider the situation whefe depends upon the stretching tensaw), while

T, depends additionally upon the deformation gradiénfThe prototypical situ-
ation of an incompressible Navier-Stokes fluid containing incompressible visco-
hyperelastic particles would have

Ty =—pl+upusD(w), and Ty =—pl+puD@)+DW(F)F'. (4)

HereW : R?*¢ — R is the strain-energy function, andis the pressure.

Computing the Deformation Gradient: We finally address the question of how
to compute the deformation-gradient tensor. An application of the chain rule gives
an Eulerian description,

d dx

F= X=xn="0n*x0n
=_——— — (X, = —(x,0N—(X,1),
3t 0X 0X ax oV ax

which we write as
F,+ (v.V)F = (V) F; (5)

the product on the right being a matrix product. Notice that in order to confpute
we need only computé in the solid wherep = —1; in fact, F would become a
rather wild function in the fluid. Observe that if we defiig = x, F, then since
xs = 0 we obtain

F,, + (0.V)F; = (Vv)F;.

Clearly solutions of this equation are those obtained simply by multiplying the
initial data for (5) byx, (0); in effect, specifyingF’ = 0 in the fluid.
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2.1. Summary

The equations for the evolution of an incompressible Newtonian fluid carrying
incompressible visco-hyperelastic particles are

/ oy + (v.V)v).w + pdiv(w)
Q

+uD() - D(w) + xs DW(F)F" - D(w) = / pfw,
Q

V=0,
¢ +v.Vp =0,

and
F; + (v.V)F = (Vv)F.

The characteristic functiongy, x, are computed fronp as (1 £ ¢)/2 and the
density and viscosity are computed@s= pr xr + psxs @Ndp = [y xf + HsXs
with p¢, pg andu s, ug €ach non-negative.

Initial values are specified for the velocity,—o = vo and the phase function
¢l,—0 = ¢o. Typically the initial deformation gradient is the identity on the solid
particles, and set arbitrarily to zero in the fluiy = x;(0)/. If non-zero Dirichlet
boundary data on the velocity is specified, it is necessary to spgafyd F on
those portions 062 for which v.n < 0, that is, specify if fluid or solid particles
are entering the domain, and for the solid particles it is necessary to specify their
deformation gradient (we set = 0 in the fluid). While it is easy to specify
traction boundary conditions for the momentum equation, this can give rise to
technical problems since it is possible that the portiod®@fwherev.n < 0 varies
with time in an implicit fashion, and this is where boundary valuesgfi@nd F
are specified. Also, it is not clear what traction to specify on interior portions of
particles emanating from the domain.

2.2. Balance of Energy

As with the density, we writgx = prxr + psxs for the viscosity and will
assume thaps, u; > 0. For ease of exposition we will consider the situation
wherev vanishes o2 (Dirichlet boundary conditions):

v]ge = 0.

Formal calculations are used to develop an energy estimate: Pub in the
momentum equation and selakt= |v|2/2 in the weak statement of the balance
of mass (2) to obtain

fgp(|v|2/2), + pv.V([v|?/2) 4+ uID)|? + xs DW(F) - (V) F = /pr.v,
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and

T T
| [ e (aviran+ vvaoira) = [ otoir2,
0 J@ Q 0

The condition divv) = 0 was used to eliminate the term involving the pressure,
and the Dirichlet boundary data aneliminated the boundary term in the weak
statement of balance of mass. Adding these equations gives

T
/p(|v|2/2>|3+/ / MID(v)|2+xxDW(F)~(Vv)F=/ ofv.
Q 0 JQ Q

To accommodate the term involving the elastic energy, recall (5) satisfied by the
deformation gradientf; + (v.V)F = (Vv) F. Sincey; = 0 it follows that

XsDW(F) - (V) F = xs W(F) + (.VI)W(F))
= (XsWE): + .V)(xs W(F)).

The Dirichlet data assumed forthen allows us to conclude that

T T
/ / xsDW(F) - (Vu) F = / KW
0 Jo Q 0

Combining the above equations results in the classical energy equation

T T
/ (o022 + W) + / / WD) = / ofv. (®)
Q 0 0 Ja Q

Notice that in the context of a Galerkin approximatiowill typically be smooth,

so classical solutions of the equation f6rcan be obtained using the method of
characteristics, and hence the above calculations would be justified. Assuming that
Jof € L2[0, T; L3(Q)], an application of the Korn and Gronwall inequalities
shows that the velocity is bounded £5°[0, T7'; L2(2)] N L?[0, T'; H()]. This
energy equation is classical [12,13]; the unusual treatment here being that the
calculations are done in Eulerian coordinates.

2.3. Surface Tension

Balance of momentum as stated in (3) neglects surface tension. Surface tension
in the fluid gives rise to a discontinuity of the normal stréids, at the solid/fluid
interface proportional to the interfacial mean curvatur@his stress is a measure
supported on the surface and therefore singular; however, it is possible to approxi-
mate it using ideas dd1Gorai [6]. If n is a smooth function, then formal asymptotic
expansions [4,26,27] show that

Iim/ (—eAn—}—(l/e)W’(n)) Vn.w—)/(—4/3)lcu).n,
e—0Jq S

and

lim f (—eAn + (1/5)W/(;7)>g )

e—=0Jo
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whereW () = (1/2)(n? — 1)2 andS = {x € | n(x) = 0}. It follows that the
equations for the flow of solid/fluid systems with surface tension may be approxi-
mated by

/ pviw+p.VIv.w+T - Dw)—y (—eAn + (1/e)W' () Vin.w =/ of.w
Q Q

with y =2 0 and
m+v.Vn+y (—eAn+ (1/e)W'(n) = 0.

Notice that for incompressible solid/fluid systems the té¥{(n)Vy = VW ()

can be absorbed into the pressprend thatAnVy = div(Vy ® V) — V|V|2/2,

and the tern¥V|Vp|?/2 can also be so absorbed. It is possible to identifyith ¢;

however, since th& depends upo#, the equation fog would require modification

in order to recover an energy estimate similar to that stated in Section 2.2.
LOWENGRUB & TRUSKINOVSKY [23] andGURTIN, POLIGNONE & VINALS [14]

derive equations to model the fluid/fluid problem, but use a Cahn-Hilliard equation

for n instead of the Cahn-Allen equation. This approach gives a conservatipn of

and allows fluid particles to coalesce (“phase coarsening”). An integral part of the

formulation of GurTIN et al. [14] was a suitable statement of the second law of

thermodynamics chosen to produce models which satisfy natural energy estimates

similar to (6). The approximation of the solid/fluid problem with surface tension

introduced here also satisfies a natural energy estimate, namely,

T
fQ P(VI2/2) + X W) + (e/2) V2 + (U)W ()|

T
+/ f MID(v)|2+V|8An—(1/8)W/(n)|2=/pf~v-
0 JQ Q

CHANG ¢t al. [5] and more recentl.1 & RENARDY [19] compute numerical
approximations of the two fluid problem with surface tension by explicitly intro-
ducing a singular term into the momentum equation and approximating the solution
of (1) using the level-set technique. In the numerical community this is considered
a “competing approach” to the “phase field” ideas considered here [3,9]. The anal-
ysis of many of these schemes is hampered by the fact that energy estimates do not
hold for their particular formulations.

2.4. Deformation Gradient and Strain Energy Functions

In this section we digress slightly to discuss some technical issues associated
with strain-energy function$), and the structure of the evolution equation for the
deformation gradient.

Strain-Energy Functions. Recall that the elastic stress is zero in the fluid, so is
written asy; DW(F)F, wherey; = (1— ¢)/2 is the characteristic function of the
solid. This can conveniently be written 23V (F,) F! with F, = x, F. However,

this gives rise to a technical problem: physically reasonable energies are infinite
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when the deformation gradient (or its determinant) vanish. Since there is no elastic
stress in the fluid we are tacitly assuming tihat/(F;) F; = 0 whenF; = 0.
This technical detail can be circumvented in several ways. For exaitlB),
is finite and typically the residual stre€3)V(I) = 0, vanishes. We may then write
the stress as
xsDW(F)FT = DW(F, + xs1)F! .

When we defind® = Fs + xsI = xsF + xyI, the elastic stress becomes
XsDW(F)FT = DW(E)(FT — ;1) = DIW(F)FT

and . . . .
Fi 4+ . V)F = (Vo)(F — xs1), FO) =1.

Clearly any other stress-free state could be used in place of the identity. A variant of
this approach is to writé/ = F — I andW(H) = W(H + I). Then the equation
for the elastic stress becon®3W(H)(HT + x,I) and H satisfies

H, + (v.VY)H = (Vo)(H + xsI),  H(0) = 0.

From a mathematical perspectives these perturbations do not change the fundamen-
tal structure of the equations, so below we will simply assumeXidd) is finite

and write the elastic stress &V (F)FT whereF satisfies (5) withF(0) = 0 in

the fluid. The important structural feature is that the elastic stress takes the form

DW(F)FT andF satisfiesF = (Vv)F for suitable choices ofV, F andF.

Evolution Equation for the Deformation Gradient: We briefly discuss some
properties of the equation for the deformation gradient. One interesting observation
is that the convective derivative of the divergenc&df div(F') = F;, ;, vanishes
when div) = 0. To observe this, take the divergence of (5) to obtain

Fiait + vk Figik + ki Fig.k = Viij Fjo + Vi j Fja,i.

Notice that the first term on the right vanishes sincgwdiv= v;; = 0, and the

last term on the right is identical to the last term on the left, so thatrdiy, +
(v.V)div(FT) = 0. Itfollows that di\ ¥ T) will be zero if the initial and appropriate
boundary values vanish. Unfortunately this is not so for fluid containing particles,
since typicallyFo = x,I and di F7) is a measure supported on the boundary
of the particles. However, in the situation where(d@y = 0 the nonlinear term
(Vv) F consists of the product of a curl-free term with a divergence-free term, so
should be stable under weak limits [29]. This becomes apparent if we consider a
weak statement of (5). Letting : (0, 7) x 2 — R?*4 pe smooth with compact
support and assuming div) = 0, we have

T T
//F-(CD,+(U.V)<I>)=/ / Vi P Fia» @)
0 JQ 0JQ

where we used the relation di¥’) = 0 to simplify the right-hand side. It is
now clear that, granted. — v in L*[0, T, LY()], @, ¢ > 1, andF, —* F in
L*®[0, T, L? ()] with 1/p + 1/q < 1, then if (v,, F;) satisfies (7)(v, F) also
does.
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3. Equations of a Fluid with Particles Undergoing Small Strains

3.1. Small-Srain Elasticity

Classical linear elasticity invokes an ansatz of the farm X + u where the
displacement: is small [12,13], so that" = I + H whereH = Vxu. Clearly
this ansatz is not plausible for elastic particles being transported in a fluid medium.
Such particles will be subject to large translations and rotations, so that an ansatz
of the formx = xo(t) + R(t)(X + u) is plausible, where is a rotation, and(z)
is the location of the center of mass. In this situation the deformation gradient takes
the formF = R(I + H). If H is small, the polar decomposition is approximately
F ~ 1?(1 + Hgkew) (I + Hsym). This motivates the following ansatz which we will
assume throughout this section:

e The polar decomposition of the deformation gradient takes on the form
R(I + E) whereR is a proper rotation anff = E7 is “small”.,

3.2. Evolution Equations for Small Strain

We develop approximate equations satisfiedRogndE. By F = (Vv)F and
F=R(U+E),
R(I +E)+ RE = (Vv)R(I + E).

Pre-multiplying this equation bR” = R~1 and post-multiplying byl — E (an
approximate inverse df + E) gives

RTR+E =RT(Vo)R+ RT(R— (Vv)R)E2 + EE.

The latter two terms on the right of this equation are of or@¢E?2), so to first
order this equation becomes

RTR+ E = RT(Vv)R.

SinceRT R is skew we may decompose this equation into skew and symmetric
components:
R=WwR and E=R'D®)R,

whereD(v) andW (v) are the symmetric and skew component¥ ofrespectively.
3.3. Linearized Shear Relation
The elastic part of the Cauchy stress tensor is given by
DW(F)F" = DW(R(I + E))I + E)R"
= RDW( + E)(I + E)RT

= R(DW() + C(E) + O(ED)) (I + E)RT,



Eulerian Description of Fluids Containing Visco-Elastic Particles 239

where we use the notation
2

W
C(E)jp = D*°W()(E);3 = m(lwm.

It follows that
DW(F)FT = R (DW(I) + DWU)E + C(E) + 0(E2)> RT.

It is convenient to assume that the residual stf2g8(/) vanishes, in which case
C is symmetric, so to first order the Cauchy stress is giveRBYE)R” .

3.4. Summary of the Small-Srain Problem
We have

p@) (v + @.V)) = Vp = div (1) D) + RCEIR) = p(@) f,

div(v) =0,
¢ +v.Vp =0,

R +WV)R=W@R, and E, +wV)E=R"D@WR.

The initial data forR is specified aR|;—0 = x;(0) Ro where, as usual; is the
characteristic function of the solid region. The hyperbolic nature of the evolution
equation forR then guarantees th&tvanishes in the fluid for all subsequent times.

Isotropic Elastic Stress:  If the elastic stress in the solid particles is isotropic
(C(QEQT) = QC(E)QT for proper orthogonal), the equations foR and

E can be combined to give a single equation for the elastic component of the
stress. Since linear isotropic functions of symmetric matrices take theG6fn =

oFE + BtracgE)I, a, B € R, it follows that the Cauchy stress of an isotropic
incompressible material i§ = « RERT . A short calculation shows that

T, — W)T, + T,W () = ax;D(v),

which can be used in place of the equationsRand E. This equation appears in
the plasticity literature [1].

3.5. Regularization of the Rotation

It is clear thatE and the Cauchy stress depend nonlinearly on the rot#&jon
moreover,R will not be smooth, since it satisfies a hyperbolic convection equation
into whichW (v) enters as a coefficient. This lack of regularity is a technical obstacle
to a satisfactory existence theory. To circumvent this difficulty we introduce a
smooth rotationR,, that differs fromr by at most ~ O(E), which is consistent
with the assumption of small strain. We begin by showing that the energy estimate
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is insensitive to perturbation &. Then the regularity oR, and the energy estimate
will be combined to establish existence for the small-strain system.

There are many mathematical techniques for regularizing a function, the classi-
cal approach is to mollify with a smooth function of compact support. For example,

Rs, + (W.V)R; = W (V)R;, Re¢li=0 = xsRo,

whereW, (v) = W (ve) is the mollified spin tensor with > O fixed. A classical
solution of the fluid-solid problem would hawelipschitz and the particles would
have regular boundaries. In this situation the particle vortigity¥, would be
of bounded variation, so thdltx, (W — We)ll 10,711 < Ce. Granted this, a
formal calculation shows that

IR — Rellpoojo,7: 1) = ClxsWlLio.r:ve) &

so that, ife = O(E), such regularizations are consistent with the linear theory.

In two dimensions it is possible to explicitly write down the solution of the
equationR = W (v)R. This motivates a simple but elegant regularization of the
rotationR.

Two-Dimensional Regularization: Intwo dimensions the spin tenséf(v) may
be written as¥ (v) = (w/2)J, wherew = vz 1 — vy 2 is the vorticity and

01
J= [_1 O}.
Then the equation foR becomesk = (w/2)J R, which has solutich

cogQ) sin() } Ro

R =exp(QJ) Ro = [_ sin(2) cog2)

whereRy is the initial rotation and satisfies2 = /2 with initial datas2g = 0.
A natural regularization oR is given by
—sin(2,) cogQ;)

Re = exp(J) Ro = [ COS(€2;) SiN(S2,) } Ro,

where, satisfies the regularized equation
Q. — °AQ = w/2.

In the current context a classical solution of the solid/fluid probkemvould

be piecewise smooth, Lipschitz continuous, and the particles would have finite
perimeter. In this situation the ideas Kkuzkov [18] can be used to show that

12 = Qell Lo, 7:11(2)) = Ce- Then

SiN((Q + 2¢)/2) —co(Q + 2)/2)

R =R, =sin((@ - £:)/2) [cos((sz Q02 sin(@ + szg)/Z)} Ro. (8)

1 Following tradition, the primitive of is denoted by the upper case charagteConflicts
with the notation for the domaift c R are easily resolved by context.
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consistent with our approximation of small strains.

Convection Equation: The phase variablg appears as a coefficient in essentially
every term of the momentum equation; in particular it multiplies quantities that
would only converge weakly when passing to the limit in a Galerkin scheme. In
order to pass to the limit it is vital to know thatconverges strongly in sonie”
space. The subtle point is that the coefficients in the equatiog tiepend upon

v which, in the limit, has insufficient regularity to establish a classical solution.
These issues were resolvedDPErRNA & Lions in [8].

DiPerna and Lions introduced the concept of a “renormalized” solution. A
renormalized solution is essentially a weak solution that satisfies all of the natural
entropyequalities. If ¢ is a classical solution o, + (v.V)¢ = 0, then so too
is B(¢), whereg : R — R is a smooth function. In the more general nonlinear
situation a similar statement holds foonvex functions 8 and under passage to
limits the equation satisfied b§(¢) becomes an (entropy) inequality [18].

The following theorem from [8] shows that renormalized solutions not only
exist when the function is not smooth enough to establish a classical solution, but
are also stable under perturbation.

Theorem 3.1 (DiPerna Lion}. Let 2 be a bounded domain and suppose that:

o {v,}2°, C L?[0, T; H}(S2)] is a bounded sequence, div(v, (1)) = 0in D'(Q)
for 1 € [0, T], and v, — vin L2[0, T; H}(Q)];
o {Pn}2 o C L0, T; L*°(R2)] isa bounded sequence, satisfying

d¢n
at

+div(gave) =0  inD'((0, T) x Q),

and ¢, (0) — ¢ in L1().

Then {¢,}° , convergesin C[0, T; L?(Q)], for all 1 = p < oo, to the unique

renormalized solution of

d . .
a—‘f +divigr) = 0InD(0.T) x ). dli—o = do.

In particular, if 8 : R — R is continuous, then {8(¢,)} converges to B(¢) in
C[0,T; LP(2)],1 < p < 0o, and B(¢) satisfies

J ) .
L 4 dvp@n) =0nD (O 1) x 2. F@)li=o = BGo)

and [, B(@(T)) = [ B(¢o).

In Lemma 4.1 below we sketch the proof of a slight generalization of this result
to systems of convection equations coupled through their right-hand sides.
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4. Existence for Mixtureswith Linear Visco-Hypere€lastic Particles

In this section we establish an existence result for the regularized small-strain
theory developed above. We assume tat R? is a bounded Lipschitz domain,
and begin by summarizing the equations for linear visco-hyperelastic particles in
a Newtonian fluid medium. Galerkin approximations of the equations

/ p(vy +v.Vv).w + pdiv(w) + uD(v) - D(w)
Q

+ RC(E)R" - D(w) = / pfw. (9)
Q

and
V=0,

will be constructed with with initial datal;—g = vo € L2(Q) satisfying di(vg) =
0; boundary data|y, = 0; and non-homogeneous terfne L2[0, T: L3(Q)].
The phase function and strain will be solutions of the equations

¢ +v.Vpp =0,
and
E; + (v.V)E = RTD(v)R. (10)
The density and viscosity are then determined by
P = XfOf + XsPs» W= XfIf =+ XsHs,

with xr = (14+¢)/2 andy, = (1 — ¢)/2.
To compute the rotation matrix fix > 0 and letR satisfy

Ri + (.V)R = W:(v)R, R|i=0 = XsRo, (11)

whereW, (v) = W (v,) is the mollified spin tensor.
Alternatively, in two dimensions compute

Q+v.VQ—?AQ =curlv), Q=0 9RQ/dn=0, (12)
and set

[ cog) sin(Q):|
R = R (13)

—sin(2) cog )
Solutions will be obtained as limits of Galerkin approximations and will satisfy:

v e L0, T; L3(Q)] N L2[0, T; HX(Q)],
¢. R e L®[0,T; L¥(Q)],
E € L®[0, T; L3%(Q)];
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div(v) = 0, and a weak form of the momentum equation, namely
T
/ / —pv.wy — (pv ®v) - Vw + uD () - D(w)
0 Ja

T
—l—(C(E)-RTD(w)R:/ povo.u)(O)—i-/ / of w,
Q 0 JQ

forallw € D([0, T) x Q) with div(w) = 0. The equations fap, E andR (and, if
applicable, the vorticity2) will be satisfied in the usual weak sense.

4.1. Estimates for the Small-Strain System

There are two important structural differences between these equations and the
complete system (2)—(5). While they both satisfy an energy estimate, the elastic
stress in the above system will be &f instead ofL!, and, unlike equation (5)
for the deformation gradient, the equation for the linearized strain will directly
give estimates foE. However, one important feature is lost; the tefiiv) R in
the equation forR, while very similar to the corresponding ter(Wv) F in the
equation for the deformation gradient, does not have the div-curl structure; this is
what forces the introduction of the regularizations discussed above.

The derivation of the energy estimate for the system with linearized elastic
stress is obtained by selectimg = v in the weak statement of the momentum
equation, taking the (Frobenius) inner product of the equatiorEfarith C(E),
and adding the resulting equations. As in the original equations, balance of mass
and integration by parts enable the sum of the kinetic and elastic energies to be
estimated by

T
§ [ (e @) + [ [ upe? (14)
Q 0 JQ

T
=1 [ (poleoP + 1202) + [ [ oo
Q 0 Q

These calculations require some regularityvptthe Galerkin approximation will
only assume this equation to hold for smooth velocities.

As stated above, one of the major differences between the evolution equations
forthe deformation gradiert and its linearized counterpartis that the latter directly
yields bounds. In particular,

1d
——/ |E|Z§/ IDWIE]
2dt Jq Q

T
IE(T)lL2@) = IEO)l 20 +./o D)l z2(q)- (15)

SO

Finally, itis necessary to establish the stability of solutions of the equatiah for
under perturbations of the velocity. Given a sequence of velocity field3 , con-
verging weakly inL2[0, T’; H&(Q)], their spins{W (v,)} will converge weakly in
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L2[0, T; L2()]. If {W, (v,)} are the mollified spin tensors adde D((0, T) x ),
then W, (v,) ® will converge weakly inL2[0, T; H}(2)]; indeed, if¥ is smooth,

T T
//V(Wg<vn><1>)-w = / / ~We ()@ - AW
0 JQ 0 JQ
T
= / / ~We(vn) - (AW) DT
0 JQ

T
= / / —W(vy) - (AW)DT),
0 JQ

T
— / / W) - (AW)dT),
0 JQ

T
= / / V(W (v)P) - VW.
0 JQ

In this situation the following lemma shows that the sequence of rotations computed
from {W (v.)} will converge strongly.

Lemma4.1. Let {v,}7 ; be a sequence of smooth functions that converge weakly
in L2[0, T; H}(2)] and satisfy div(v,) = 0, and let {W,}>°, be a sequence of
smooth skew matrices bounded in L2[0, T'; L2(2)]. Supposethat W, ® — W& in
L?[0, T; H}(S2)] for every smooth test function @ € D((0, T) x ) and that R,
satisfies

Rn, + vn'VRn = WﬂRl’lv Rn|t=0 = RnO € LOO(Q) N LZ(Q)s

where the initial data {R,0} converge to Rg in L2($2). The sequence {R,} is
then bounded in L[0, T; L>®(Q)] N L*®[0, T; L%(22)] and converges in
L2[0, T; L3()] (and hence all LP[0, T; LP(Q)], 1 < p < o0) to a weak so-
lution of

R, +v.VR = WR, R|;—0 = Ro.

Proof. The proof of strong convergence is a mild generalization of the results of
DIPERNA & Lions [8]; the major difference is that in the scalar case it is necessary
for {W,} to be bounded in.®> while for the coupled system of equations the
assumption thaW e L2[0, T; L?(2)] and skew suffices. The idea of the proof is
guite elementary; however, one step requires a technical result from [8] or [21] to
justify a formal calculation.

TheL> bound or{R, } isimmediate. Writing the equation & R, = RT W, R,
and adding this to its transpose gives

(RTR,) = REF(W, + WHR, =0,  RI'R,li=0 = RIyRy0.

Since|R| = tracgRT R) the L™ bound follows. Similarly, since|R,|%/2) =
Ry - Ry = WyRy - R, = 0 it follows that||R, (1)l 2(q) = | RnollL2(q), and we

explicitly computel| Ry [l 210, 7:12(2)) = VT 1 Ruoll 2(g)-
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The bounds show that we may pass to a subsequg®)gewhich converges
weakly inL2[0, T; L2(2)] to alimit R € L>®[0, T; L>®(Q)] N L>®[0, T'; L3()].
Integration by parts shows that

T T
//Rn,,.@zf f WyRy - ® + Ry - (v,.V)D
0 JQ 0 JQ

for any smooth function, hend®,, ;} is bounded irL2[0, T'; H~1(Q)]. The Lions-
Aubin lemma [30] then shows that, upon passing to a subsequé&nce> R
strongly inC[0, T; H~1(2)]. The hypotheses on the coefficienfsand W, then
suffice to pass to the limit term by term in the weak statement

T
| R @ 0,900 = w00 = [ Rio- 0o,
0 Ja Q
so thatr is a weak solution oR; + v.VR = W R with initial dataRg. At this point
we would like to take the dot product of this equation witio show thatR - R = 0
and hencg R |l ;210 7. 12(2)) = ﬁ||Ro||Lz(Q). However, such a computation would
be formal since the weak solutions are not sufficiently smooth to carry out this
computation.
To circumvent this technical probleiiPErNa & Lions [8] considered the
equation satisfied by mollificatior’®, of R. They satisfy

Ry, +v.VR, = WR, + O(n),

whereO (n) is an error term which, under the regularity hypotheses assumed for
andW, converges to zero in1[0, 7; L1(Q)1+ L2[0, T'; L3(Q2)] asn — 0. Taking
the inner product wittR, gives

T
||Rn||L2[0,T;L2(Q)] = ﬁ”RO“LZ(Q) + 2/0 /Q o) - Ry,

and passing to the limif — 0 (and recalling thar is bounded in.> N L2) we
obtain

IRl 2072221 = VT I Roll 12
= lim VT||Ruoll 2@) = M [[Rull 2107 L2()1-
so that the weak convergence &, } is actually strong. Notice that the mollification
argument shows that weak solutions are unique since the difference of two weak

solutions is a weak solution with zero initial data. We then conclude that the whole
sequencégRr,} converges strongly t®. O

Next, consider the two-dimensional situation wh&res computed using (13).
If div(v) = 0, the natural estimate f@e is

1d
——/ |9|2+82/ |vs2|2=/wsz,
2dt Q Q Q
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wherew = curl(v) = vp1 —v12 € L2($2). A Gronwall argument then shows that

T T
1) ey + 22 [ IV S [ holag, 0

(recall that2(0) = 0). It follows that a bound upon the velocity£rf[0, T; H1(Q)]
gives bounds upofin C[0, T'; L2(Q2)]1NL2[0, T; H1(X)]. Sinces, is bounded in
L?[0, T; H=1()], the Lions Aubin lemma [30] shows that the mapping> 2 is
“completely continuous” (compact) frob?[0, 7; H(2)] into L2[0, T'; L2(2)].

4.2. Existence of Solutions

To establish existence of solutions to equations (9)—(11) (or (13)) we utilize a
Galerkinscheme.Lét; Cc Vo C --- C Hol(Q) be a sequence of finite dimensional
spaces of smooth divergence-free functions, and|ét, be dense iV = {v €
Hol(sz) | div(v) = 0}. For definiteness l&t,, be spanned by a sequer{@q}}gl,
where{w;}?2, is a dense set of . Forv € V,, define(¢(v), R(v), E(v)) to be
the solutions of (1), (11) and (10) respectively, with coefficients determined by
v. Since functions irV,, are smooth, classical solutions of these equations can be
computed using the method of characteristics. It is then possible to construct a
mapF : C[0, T, V,] — CI[O, T, V,] by definingv = F(v) to be the approximate
solution of (9) with coefficientg¢ (v), R(0), E(0)) obtained by restricting the
solution and test functions to be .

The following lemma shows that the mappifgs not only well defined but has
a fixed point. The bounds derived from the energy estimate will then suffice to show
that a subsequence of fixed poirts, }, converge to a limit satisfying (9)—(11) (or
(13)). If the initial datavg is not smooth, select the initial value for the approximate
problem to be theéd® projection ofvg into V,.

Lemma 4.2. Let V,, be a finite-dimensional space of smooth divergence-free func-
tions (div(v) = Ofor v € V).

1. The mapping F : C[O, T, V,] — CIO, T; V, ], defined above, exists for suffi-
ciently small timesT > 0.

2.For each T > 0, F has a fixed point v, € C[O, T; V,], and v, satisfies the
energy estimate (14).

Proof. Sep 1: Forv € V,, classical techniques can be used to compute the co-
efficients(¢ (v), R(v), E(0)), and it is clear that their integrals vary continuously
with respect to time. In this situation the Galerkin approximation of (9) reduces to
a system of first order ordinary differential equationsg where the “right-hand
side” is a locally Lipschitz function. Piccard’s theorem then establishes existence
of a solutionv for small times. Next, substitute = v — vg into (9) to obtain

/Q B1v— vol2/2); + (59). ¥ (v — vol2/2)
+ AlD(@ — vo)|?+ RTC(E)R - D(v — o)

= /Qﬁf-(v —vp) — D (vo) - D(v — vo),
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where we have writterfb = ¢ (¥) etc. Sinceo; + V.(vp) = 0, it follows that

T
~ 2 A2
/Q AT = vol2 < C(I fll 2o, 72 Ivoll i) /O (1419121 )-

To obtain this estimate we used the fact thatt € L>, and hence so too afe
andp, and (15) was used to bourd Sincep = min(pr, ps) > 0, and since all
norms on finite dimensional spaces are equivalent, it follows that

2 ~ 2
lo = vol 10,7y, S CaT (1415 = volZi07.v,,)-

soif T <1/2C,, the functiomw = F(v) maps a ball irC[0, T, V,] centered atg
into itself.

Sep 2: In the above we tacitly assumed thgtwas the initial data; however, if
vo = v(fg) for some 0= 19 < T, then the above estimate shows that

lu(®) — v(o)lI§, < Calvo. D)t — tol,

and hencev € C[O, T, V,] is Lipschitz. It then follows from the Arzela-Ascoli
theorem thatF is a “completely continuous” (compact) mapping from the unit
ball in C[0, T, V,,] centered aty to itself. The Schauder fixed point theorem then
establishes the existence of a fixed point= F(v,).

The energy estimate (14) now yields

T
| (putenr2 1E,0E) + [ D
Q 0 JQ

T
= [ (poluolr2-+1E02) + [ [ gt
Q 0 Ja

It follows that the fixed point,, is uniformly bounded in time, and the above
argument, which guaranteed solutions for short times, can be repeated indefinitely
to obtain existence of a solution @[O0, T'; V,,] satisfying the energy estimates for
arbitrarily largeT. 0O

To verify that the sequence of Galerkin approximations converge we will need
the following compactness result bfL. Lions [20]. This theorem was developed
by Lions to establish existence results for incompressible fluids with non-constant
density and has been used frequently in this context [22].

Theorem 4.3 (J. L. Lions. Let @ c R3 be a bounded domain and suppose the
sequence {v,}° ; is bounded in L®[0, T; L2(22)] N L2[0, T; H} ()], and that
thereexists C and oo > O such that, forall 0 < § < 1,

T-68
/ lon(t +8) —va(OP S C8Y, n=12....
0

Then the sequence is relatively compact in L?[0, T; L4(2)] for any pair (p, q)
satisfying 2/p + 3/q > 3/2.
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This theorem follows from a classical result of Frechet and Kolmogorov, see
[28, page 50], which is a variant of the Arzela-Ascoli theorem applicable’(§2)
spaces.

Theorem 4.4. Equations (9)<11) (or (13)) with the assumptions on the boundary

andinitial data stated at the beginning of thissection haveaweak solution satisfying

the energy estimate (14) (with inequality).

Proof. Let {v,, ¢n, En, Ry},2 be the Galerkin approximations constructed in

the lemma. The lower bound, = min(py, ps) and the energy estimate directly

yield bounds upon, in L®[0, T; L2($2)] N L?[0, T; H1()], and by construc-

tion div(v,) = 0. The hypotheses of Theorem 3.1 are then satisfied by the se-

quenceg (v,, ¢,)} and, upon passing to a subsequence, we conclude that there exists

¢ € L*°[0, T; L*°(2)] such thatp, — ¢ in C[0, T; L?(Q)]forall 1 < p < oc.

Sincep,, 1, etc. are all affine functions @f,, these quantities converge similarly.
We utilize the technique of. L. Lions [20] to establish strong convergence of

the velocities in.2[0, T; L2(£2)]. The densitie$p, } each satisfy (2), soif & § <1

andy € H}(Q), it follows that

148
/ (Pn(t +8) — pu ()Y = / / P -V
Q t Q
Puttingy = v, (r).w into this equation gives
t+6
/ (pn(t +94) — p(t)) Un (1) w =/ f Pn($)vp(8).V (v (7). w) ds.
Q t Q
Next, if w € V,;, (9) and (2) may be combined to yield
[ (ontt +900,00+8) = ,510,0) 0
t+6
= f (0va ® vy) - Vw — uD(v,) - D(w) — RC(E,)R" - D(w).
t Q
Subtracting the previous two equations gives
/pn<r+a) (00t +8) = v,0) w0
Q

t+4
B / (pvn ® vy) - Vw — uD(vy) - D(w)
t Q

—~RC(E,)RT - D(w) — ppv,.V (v (t).w),

where we have suppressed the variable of integration on the right.
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Recalling thatR € L*® andC : R4 — R?*4 is a bounded linear map, it
follows that

‘/ on(t +8) (vn(t+8) — v,,(t)) .w‘

Q
t+6

< / ol e 1V 0n Ol 26 10l
t

t+48
e / (Ioal2a gy + 1D @0 2@ + 1Bl z2(q)
t

+ llonll Loy lon Dl L3@y) VW L2 -
) ) ) : : iz_?m”v”oélm)
wherea = 1/2 in two dimensions and = 3/4 in three dimensions. Sinag

is bounded inL>[0, T; L2(2)], the bounds from the energy estimate and the
bound (15) show that the integrands on the right aelit¥, then

The Sobolev embedding theorem states thal, s, = Cllv||

‘/ putt +8) (vn(t +8) = 0, (1) .w‘
Q

<C(IVu Ol 2@l wlza@ + @+ 1ol La@)I Vw2 ) 87
S C(IIan Ol 2@ lwlia@) + IVwllL2@) + Va7 2 ||Vw||L2(s2)) st

Finally, putw = v,( + 8) — v,(¢) and verify that the right-hand side can be
integrated to obtain

T-6
minor. py) fo lont +8) — va ()l 20

T-6

é/ /pn(t+3)|vn(t+8)—vn(t)I2
0 Q

< cste.

This verifies the final hypothesis of Theorem 4.3, so we conclude{thatis
relatively compact inL2[0, T; L2(€2)], and may pass to a subsequence for which
v, — v strongly inL2[0, T'; L2()].

The bounds upon, provided by the energy estimate and the strong convergence
of (a subsequence dfy,, } establish the hypotheses for Lemma (4.1), so that the sub-
sequencgR,} of (regularized) rotations converges stronglyZifi[0, T'; L? ()],

1 £ p < oo. In two dimensions the strong convergence of the sequéexnce
and the identity (8) lead to the same conclusion. Finally, sificés bounded in
L°[0, T; L?(S2)] it is possible to pass to a subsequence which converges weakly
star in this space.

We are now in a position to show that the linit, ¢, E, R) of a subsequence
of Galerkin approximations is a weak solution of (9)—(11) (or (13)). ket
D([0, T) x Q) satisfy diMw) = 0, then by density there exists a subsequence
{2 With W, € CY[0, T; V,] such thath, — w in C1[0, T; Wh9(Q)] for
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g = 1. Since it is possible to seledt,(T) = 0, each Galerkin approximation
satisfies

T
f / _pnvn-ﬁ)n, — (Pnn @ vy) - Vb
0 JQ

+ tn D(vy) - D(Wy) + C(Ey) - RI D(n) Ry

T
:/ pn(O)Un(O).II)n(O)-I—//pnf.lf).
Q 0 JQ

The first two terms in this equation are the product of functions which converge
in LP[0, T; LP(2)], p > 1, and gradients of the test function which converges
strongly in L?'[0, T; L' (2)]. It follows that these terms converge strongly and
hence pass to their natural limits. This argument also shows that thejgis,,)
andRT D(i,) R, converge strongly il.2[0, T; L?(2)], and sinceD(v,) andE,
converge weakly it is again possible to pass to the limit. It follows that

T
/ / —pv.w; — p(V®v) - Vw+ uDW) - D(w)
0 JQ

T
-|—(C(E)-RTD(w)R=/ povo.w(O)—I—/ /pf.w
Q 0 JQ

forall w € D([0, T) x ) satisfying diyw) = 0. This line of argument is equally
applicable to weak statements of (10) and (11) (or (12)) and shows that they are
satisfied by the limit&& andR (and$2). O
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