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SUMMARY 

DFSTruce is a system to collect and analyze long-term file reference data in a distributed UNIX worksta- 
tion environment. The design of DFSTrace is unique in that it pays particular attention to the efficiency, 
extensibility and the logistics of long-term trace data collection in a distributed environment. The com- 
ponents of DFSTrace are a set of kernel hooks, a kernel buffer mechanism, a data extraction agent, a set 
of collection servers and post-processing tools. 

Our experience with DFSTrace has been highly positive. Tracing has been virtually unnoticeable, de- 
grading performance 3-7 per cent, depending on the level of detail of tracing. We have collected file 
reference traces from approximately 30 workstations continuously for over two years. We have imple- 
mented a post-processing library to provide a convenient programmer interface to the traces and have 
created an on-line database of results from a suite of analysis programs to aid trace selection. 

Our data has been used for a wide variety of purposes, including file system studies, performance 
measurement and tuning and debugging. Extensions of DFSTrace have enabled its use in applications such 
as field reliability testing and determining disk geometry. This paper presents the design, implementation 
and evaluation of DFSTrace and associated tools and describes how they have been used. 
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1. INTRODUCTION 

Empirical data from file systems has been used in many phases of the development of data 
storage systems. For example, such data has been used to study file placement? 
and m i g r a t i ~ n . ~ ~  In this paper, we describe the design and implementation of a system called 
DFSTruce to collect long-term file reference data in a distributed workstation environment. 
The challenges involved in collecting such data are in engineering rather than concept. 
Hence this paper focuses on the design and implementation of DFSTrace rather than on the 
results of using the traces. 

The need for detailed file reference traces arose in 1989 during the development of the 
Coda file an experimental distributed file system that provides high availability. 
The intended use of these traces influenced their content and the design of the system for 
collecting them. The trace data had to have several properties that distinguish our work from 
other file reference tracing efforts. First, the data had to be long-term - weeks or months. 
Second, it had to contain information on a broad class offile system operations. Third, it had 
to be from a distributed workstation environment. None of the existing sets of file reference 
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data from UNIX* environments at the time2~'0.11 satisfied all of these requirements. Even 
now, six years later, only our data meets these requirements. 

We have used DFSTrace to collect data continuously from approximately 30 workstations 
for over two years. We have obtained over 150 GB of data containing references to the 
Andrew File System12 (AFSt), NFS,13 Coda and the local UNIX file system.14 We have 
developed a versatile post-processing library and tools to analyze the data and an on-line 
database of results from a suite of analysis programs to aid in selecting traces for study. 

The rest of this paper is organized as follows. Section 2 describes the design of DFS- 
Trace. The instrumentation and collection machinery are described in Sections 3 and 4, 
respectively, The post-processing library, summary suite, and on-line database are described 
in Section 5. In Sections 6 and 7 we evaluate DFSTrace qualitatively and quantitatively. 
Section 8 summarizes the ways in which researchers have used and extended DFSTrace. 
We close with a discussion of related work and conclusions. 

2. DESIGN RATIONALE 

In this section we describe how our data requirements influenced the design of DFSTrace. 
We then present the architecture of the collection system, and discuss how it addresses 
the design requirements. Last, we describe the format and content of the data collected by 
DFSTrace. 

2.1. Requirements 
Long term data collection imposes several requirements on a tracing system. The most 

important requirement is that tracing must be unobtrusive, otherwise users may alter their 
behavior or refuse to be traced. This requirement is critical in view of our desire for detailed 
traces, because clients are likely to generate a large amount of data. The system must be 
efficient both in terms of client workstation performance and client resources used and 
it should be application-transparent (i.e., users should not have to run special versions of 
their application software to generate trace data). The desire for efficiency and application- 
transparency suggests data should be gathered in the operating system kernel. Because the 
information needed to construct trace records resides in kernel data structures, gathering data 
in the kernel minimizes crossings of the user-kernel boundary and is hence more efficient 
than gathering data at user level. Again, to keep tracing overhead low, data should not 
be processed during collection. To minimize client resource use, data should reside on the 
client only temporarily; it should then be shipped to a collection site in the background. 

Tracing a distributed workstation environment imposes the following additional system 
requirements. Distribution introduces multiple points of failure. The system should be robust 
enough to detect and tolerate failures. Buffering on the client can mask short failures, 
but may not suffice for prolonged outages. In the long term, failures resulting in data 
loss are inevitable. The system must be able to record the occurrence of data losses so 
they may be detected later. Distributed environments are often heterogeneous, and the 
architectures used tend to change over time. Therefore the system should be reasonably 
portable to new architectures. In a long-term collection effort, changes are inevitable in 
the data being collected as well as in the system collecting it. The system must be flexible 

* UNIX is a registered trademark of UNIX Systems Laboratories, Inc. 
t AFS is a registered trademark of the Transarc Corporation. 
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Client 
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Collection 
Servers 

Figure 1. Top-level view of DFSTrace 

enough to detect and cope with such changes gracefully. Versioning should be used to allow 
interchangeability of system components. This implies that the collection mechanism should 
not depend on the content of the data being collected. Finally, the system should be easy 
to administer. The logistics of gathering the data should be automated wherever possible. 

2.2. Architecture 
Figure 1 presents a high-level view of DFSTrace, excluding post-processing software. 

Trace data is generated by client workstations running kernels instrumented at the system 
call level. The data is extracted by a user-level process, or agent, buffered locally in memory, 
and then sent to one of a small number of data collection servers, or collectors. A collector 
buffers the data on disk; in the background an optional rape daemon moves the data to tape. 
The data is post-processed later to obtain a usable set of traces for analysis. Multiple servers 
may be used to balance load and maintain availability. This architecture is reminiscent of 
the METRIC kernel instrumentation system.15 

The agent and collector do not interpret the data, thus their operation is independent from 
the data being collected. The kernel, agent and collector may be changed independently. 
The agent and collector employ version information in their communication interface to 
allow incompatible releases of code to be detected at runtime. If an agent is incompatible 
with the collector, the agent exits with an advisory message. 

More detail on client operation is provided in Figure 2. We have instrumented system 
call code to gather data on file system activity. Relevant data is passed to a logging routine 
which packs a trace record and writes it into an circular memory buffer. The agent extracts 
blocks of data from the buffer through a simple device driver interface. The agent buffers 
data in memory rather than in files to minimize its impact on the data being collected. 
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Figure 2. Tracing on a client workstation 

2.3. Data format and content 
The performance of client workstations is affected directly by the amount of data they 

generate. We wanted to collect detailed data on file system operations within the limit of 
reasonable client performance. Needless to say, it took a few iterations before the data 
generated was complete and struck a good balance between detail and performance. In this 
section, we give the history behind the data we decided to collect and discuss some of the 
surprises along the way. Then we discuss the content of the data we currently collect. 

2.3. I .  Evolution 

We wanted to collect data on all system calls relating to the file system and any other 
calls that would aid in post-processing (such as fork and exit)*. We were not certain that 
tracing read and write calls would be feasible, because of the large amount of data that 
was likely to result. We began by estimating the amount of data a client workstation would 
generate in a day. We instrumented Mach17 kernels running on IBM PC/RTs to count the 
system calls of interest. Based on the information we expected to record for each system 
call, we estimated that each workstation would generate 6.2 MB per day without reads and 
writes and 31 MB per day with reads and writes. We decided not to record reads, writes, 
or seeks, but only to record summary information on those operations when the file was 
closed. 

A prototype implementation yielded only half the data volume we expected. We added 

* We assume familiarity with the UNIX system call interface. For more information, see Section 2 of the UNIX Programmer's 
Manual.'6 
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Record Items recorded (with header) 
open flags, mode, file descriptor, index, user ID, old size, size, file type, 

c lose  

s t a t ,  l s ta t  
seek 

chd i r ,  chroot , 
read1 ink 

execve 
access,  chmod 
c r e a t  
mkdir 
chown 
rename 

l i n k  

symlink 
rmdir, unlink 
t runca te  
u t  imes 
mknod 
mount 
unmount 
fork  
sstt imeof day, 

e x i t  

fid, directory fid, path 
file descriptor, index, # reads, # writes, # seeks, bytes read, bytes 
written, size, fid, file type, open count, flags, caller, mode 
fid, file type, path 
file descriptor, index, # reads, # writes, bytes read, bytes written, 
offset 
fid, path 

size, fid, owner, path 
fid, mode, file type, path 
fid, directory fid, old size, file descriptor, index, mode, path 
fid, directory fid, mode, path 
owner, group, fid, file type, path 
from fid, from directory fid, to fid, to directory fid, size, file type, # 
links, from path, to path 
from fid, from directory fid, to directory fid, file type, from path, to 
path 
directory fid, fid, target path, link path 
fid, directory fid, size, file type, # links, path 
old size, new size, fid, path 
access time, modify time, fid, file type, path 
device, fid, directory fid, mode, path 
fid, readwrite flag, path 
fid, path 
child pid, user ID 
(header only) 

read ,  wr i te  
lookup 
getsymlink 
root 

file descriptor, index, amount 
component fid, parent fid, file type, component path 
fid, component path, link path 
component fid, target fid, path 

dump system call counts 
no te  annotation 

Figure 3. Contents of trace records 

tracing of seek calls, thinking that it would not increase data volume significantly because 
non-sequential access was uncommon in our environment. We were very surprised when 
data volume increased dramatically from several workstations. The culprit was a monitoring 
program that displays the status of a variety of workstation resources, such as disk and CPU 
utilization. The program obtains its information by reading from /dev/kmem, a special file 
that allows random locations in kernel virtual memory to be accessed.16 Unfortunately, the 
program has to seek to each location in memory containing data of interest. One could argue 
that having to read kernel memory to obtain information on resource utilization represents 
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I time (usec) I - 4bytes - 
Figure 4. Trace record header 

a deficiency in the UNIX system call interface. Given that, and the fact that we were not 
keenly interested in accesses to special files, we disabled the reporting of individual seeks 
on /dev/kmem. The number of seeks is contained in the close record, so our data still shows 
that large numbers of non-sequential accesses are performed on /dev/kmem. 

We also implemented collection of read and write data as an option that may be enabled 
dynamically. Our workstations do not normally enable it because it is not critical to our 
studies. We can obtain reasonably detailed information about access patterns from summary 
statistics recorded in close and seek records, including the number of reads and writes and 
the amount of data read and written. 

We discovered a critical omission in the data after using it as input to a simulator for the 
Coda file cache manager. The cache manager receives requests not as system calls, but as 
Vnode operations." The mapping between system calls and Vnode operations is reasonably 
direct, except for name resolution. Name resolution is the mapping of a path name to 
a fixed-length low-level identifier. It involves traversing the path name by component, 
and is performed beneath the system call interface. Although it is possible to simulate 
name resolution if a snapshot of the file system exists,'' snapshots are not feasible in our 
environment because workstations access large distributed file systems such as AFS. To fix 
the omission we added support for tracing name resolution operations. 

2.3.2. Trace records 

Figure 3 lists the data we collect. All records begin with a fixed-length header that includes 
the length of the record, opcode, process ID, return code, and time. The upper section of 
Figure 3 lists the contents of records corresponding to UNIX system calls. In general, these 
records contain the arguments and return values for the call, and internal information on 
the objects involved in the call. 

Trace records are variable in length. Most records contain a path name and one or more 
low-level file identifiers, orjds.  The fid of a file is constant across rename operations and 
immune to aliasing by link operations. The format and length of the fid depends on the file 
system in which the object resides, and can vary from eight to sixteen bytes in length. For 
example, the fid of a UFS file consists of the device on which the file resides, and the inode 
number of the file*. The identity of the file system containing the referenced object is also 

* An inode is a data structure that describes the file.20 
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recorded, to allow comparisons of local and distributed file system usage, and to identify 
references to the same object through different workstations or pathnames. We record the 
fids of all objects that could be affected by an operation. For example, an open might create 
a new file, so we record information on the parent directory of the file. A rename of a file 
to a different directory where the new name already exists involves four different objects. 

Several of the system calls we record involvefifile descriptors, which are used by processes 
to perform I/O. A file descriptor is a result of a successful open system call. It is used by the 
kernel as an index into a table of open files for the process. Each entry in the process open 
file table points to an entry in the system open file table, which contains information about 
the file represented by the descriptor. New descriptors for an open file may be created for 
a process using the dup system call. If a process creates a child process, all of the parent’s 
descriptors are inherited by the child. To avoid recording calls like dup and keeping track 
of aliasing, we record the file’s index in the system open file table along with the descriptor. 

The lower section of the table corresponds to auxiliary or internal operations. The lookup, 
root,  and getsymlink records are generated during name resolution. The note record 
allows programs to deposit additional information into the trace. Users of DFSTrace have 
found this facility convenient for annotating experiments. 

The raw form of the trace record header is depicted in Figure 4. The return code of the 
call is in the ‘error’ field. Each half of the ‘vnode’ field indicates the file system in which 
objects in the record reside. For records referencing more than two objects, such as rename, 
a separate word is provided for this purpose. The ‘flags’ field is reserved for internal errors; 
flags are set if data required for the record (e.g., pathnames) could not be obtained. The 
rest of the record contains the system time, in seconds and microseconds. The trace library, 
described in Section 5.2, uses the length and vnode fields internally. The record header it 
presents to analysis programs omits these fields. 

3. KERNEL INSTRUMENTATION 

Our goal in instrumenting the kernel was to modify as little of the existing code as possible. 
We added two modules to the kernel - one containing code for packing trace records, and 
another for managing the circular buffer. The kernel instrumentation consists of three layers, 
as illustrated in Figure 2. 

The topmost layer of instrumentation is in the system call code, which contains hooks to 
the packing code. For many system calls, a single one-line hook at the end of the call is 
sufficient to capture the data of interest. The hook appears at the end of the call to record 
the return code and any output parameters. 

Unfortunately, not all system calls are structured in a way that allows all the desired 
data to be obtained with one hook. Some system calls destroy data. The obvious ones are 
unlink and rmdir. Less obvious examples include rename, which may remove the target 
if it exists, and open, which will remove a pre-existing file if a new file is being created. 
For these cases, there is a hook to record information on the data about to be destroyed, 
in addition to the hook at the end of the call. These ‘split’ records are reassembled by the 
post-processing library and presented as single records to the user. 

An example of a split open record is shown in Figure 5. Split records consist of a pre- 
record and a post-record. The pre-record, shown on the left, is recorded if data of interest 
will be destroyed during the system call. In this example, a pre-record is written if the file 
exists and it is being recreated or truncated at open time. The size of the original file, if it 
exists, is recorded in the ‘old size’ field of the pre-record. The post-record, shown on the 
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record header 

directory fid 

old size 

(a) pre-record 

thread address 
flags 

fid 

size I 

(b) post-record 
Figure 5. Split record 

right, is always recorded. It contains data that is available at the end of the system call. 
For some system calls, the data of interest is scattered throughout several modules. Ex- 

amples of this are mkdir and open. When a file or directory is created, the parent directory 
changes. Information on the parent directory is most conveniently obtained in a routine 
called by the system call. We use split records in these cases to record information that is 
not available in the system call itself. 

There are sets of system calls that are similar enough that their code is a veneer over 
a common routine. Examples of this are open and creat, mknod and mkdir, stat and 
lstat, and the attribute-setting variants chmod, chown, utimes, and truncate. In these 
cases the best location for the hook is in the common routine, but it is not always obvious 
from that routine which operation is the caller. For the cases that are not easily deduced, 
we have added a parameter to the common routine that indicates the calling operation. 

Another complication is early return points. We have instrumented certain early return 
points because they generate file system activity. For example, a common early return point 
in system calls that take pathnames as arguments is when there is no file corresponding to 
the pathname. Even though the system call fails, we still record the call because the system 
must perform name resolution to discover the error, generating file system activity. 

It is important to be able to match file opens and closes in a trace. Files are closed 
in several places other than the close system call. For example, files are closed when a 
process exits. They are also closed in a variant of dup which allows the new file descriptor 
to be specified. If there is already a file open with that descriptor, the system will close it 
first. Under certain conditions, files are closed in execve as well. Each of these locations 
must be instrumented to capture file close events completely. 
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All of the hooks are above or within the vnode interface, which is a layer in the kernel 
that allows a variety of local, remote, or even non-UNIX file systems to be incorporated 
in a single system. Since the vnode layer is file system independent, the hooks capture 
references to any file system hooked into the kernel. There is only one piece of file system 
dependent tracing code, namely, a routine that packs fids into trace records. 

Trace records are packed in the left middle layer of Figure 2. The routines in this layer 
gather any additional data that may be needed for the records, such as file attributes and 
fids. Packed records are placed in a circular memory buffer, in the bottom left layer of 
Figure 2. The interface to this buffer is that of a simple device driver supporting read, 
select, and ioctl system calls. If the buffer wraps around, the read call returns an error 
and advances the ‘bytes read’ counter by the amount of the read. Through the ioctl call, 
tracing may be turned off or on dynamically, and tracing of various classes of operations 
(such as reads and writes or name resolution) may be enabled or disabled. 

4. COLLECTION MACHINERY 

As described in Section 2.2, the collection machinery consists of the agent daemons running 
on client workstations, and collectors running on a small number of servers. An optional 
tape daemon may be used at collection sites to spool data to tape. 

One of the challenges of long-term data collection is coping with the inevitable changes 
in tracing software and the format and content of the traces. It is desirable to structure the 
system so that older traces are still usable, even though they may not be compatible with 
newer ones. We have incorporated version information into each component of DFSTrace, 
and the system embeds this information in the header of each trace. The postprocessing 
library is structured to accept any of the various formats, and determines which it is by 
reading the version information in the trace header. 

4.1. Agent 

The goal of the agent is to extract trace data from the kernel without consuming excessive 
resources on the host machine. The agent is implemented as a multi-threaded user-level 
process, with one thread reading data from the kernel through the tracing device described 
in Section 3, and another sending data to the collector via remote procedure call. We used 
the RPC2 remote procedure call package and the LWP threads package, which provides 
non-preemptive (co-routine) threads.*’ The agent reads blocks of data from the kernel and 
buffers them in memory. It uses two fixed-size buffers, one for each thread, consuming 
roughly 1 MB of memory by default. Users can specify a different memory limit using a 
command line argument. The agent is typically started at boot time. 

The agent’s kernet thread is responsible for reading blocks of trace data out of the kernel 
before the data is overwritten. If data has been overwritten, an error is returned to the agent 
on its next read. The agent prepends a header to each block containing the block sequence 
number, the level of tracing, the number of bytes lost before the block (if any), and a flag 
indicating if there were problems communicating with the collector before the read. 

The network thread takes a buffer filled with trace data blocks and headers and sends it 
to a collector. If communication fails, the network thread records the failure and attempts 
to resend the data. It backs off exponentially if subsequent resends fail. In the meantime, 
data may be lost if the kernel thread runs out of space for new trace data. 

The agent responds to several UNIX signals that allow users to tell the agent to flush 
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Figure 6. Format of trace data 

data or shut down. Users may also specify at what level operations are to be traced using a 
command line switch. The operations are grouped into the following independent categories 
-basic system calls (open, close, etc.), read and write system calls, and name resolution. 
Most of our clients traced the basic system calls and name resolution. 

4.2. Collector 
The collector is a multi-threaded server that receives trace data from potentially many 

hosts. Data is ‘staged’ temporarily on disk in sruging$files, one for each host. After a staging 
file reaches a certain size (about 5 MB), the collector starts a new staging file for that host, 
and the filled file may be archived to tape. The collector prepends a header to each staging 

Host last t r ans fe r  # bytes ( t ransfers )  conn open 
128.2.209.204 Jan 7 17:20:24 2037568 (4) Jan 5 22:05:52 
128.2.222.111 Jan 7 17:25:47 509392 (1) Jan 5 22:03:44 
128.2.209.213 Jan 7 16:34:12 509392 (1) Jan 5 22:03:44 
128.2.209.215 Jan 7 17:05:49 2546960 (5) Jan 5 21:59:28 
128.2.209.217 ***** 0 (0) ***** 
128.2.206.77 Jan 7 17:00:04 509392 (1) Jan 5 22:08:00 

Figure 7. Collector summary report 
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tile containing version information for the tracing kernel, agent, and collector - together 
these define the format of the trace. The header also contains the client’s network address 
and boot time, and the start time of the agent. The format of raw trace data is shown in 
Figure 6. 

Periodically, the collector prints summary statistics on the clients from which it is re- 
ceiving data. The default period for the summary report is one hour. A sample summary 
report is given in Figure 7. It is easy to see from this summary which hosts have not 
connected recently, and which hosts are active. There is a longer form of the summary that 
also includes the client birth time and the versions of client software. 

4.3. Tape daemon 
The tape daemon is an optional component of DFSTrace that automatically archives filled 

staging files to tape. It can scan multiple data partitions, and switch between multiple tape 
drives. The tape daemon responds to a signal to scan for new data to archive. The collector 
uses this signal to notify the tape daemon when a staging file is ready to be archived. 

5. POST-PROCESSING 

Thus far we have discussed how trace data is generated. In this section, we discuss how to 
use trace data. Once the trace data is generated, it must pass through a post processing step 
that assembles the longest possible trace subject to a set of conditions. This is discussed 
in Section 5.1, In Section 5.2, we discuss the trace library, which simplifies trace analysis 
by hiding the underlyirg structure of a trace beneath a convenient programming interface. 
Then in the last part of this section, we discuss the summary suite, which is a set of analysis 
programs that generates summary statistics for a trace. We run this suite on every trace and 
place the results in a database to aid users in identifying and selecting traces for analysis. 

5.1. Maximizing trace length 
We need to guarantee that the traces are complete, namely, that they contain every event 

that occurred on the client in the interval covered by the trace. To do this, a post-processing 
step is necessary to transform staging files into complete traces. This post-processing step 
assembles the longest trace from staging files, subject to several termination conditions. 
These conditions correspond to machine restarts, agent restarts, and data losses. Data losses 
are recorded by the agent in the data block header. When a loss is detected, the trace is 
split at that point. Machine reboots and agent restarts cause new staging files to be created. 
The new staging files have different trace headers than their predecessors. 

The length of post-processed traces varies. Our traces range from approximately five 
minutes to weeks in length, and approximately 1 MB to 800 MB. A few traces were broken 
at 800 MB even though none of the trace ending conditions applied, because that was the 
amount of disk space available when the traces were constructed. 

5.2. Trace analysis library 
The goals of the trace analysis library are to provide a convenient programmer’s interface 

to the traces and to implement common operations. The underlying structure of the trace 
is hidden behind a simple interface, shown in Figure 8. The library is structured to accom- 
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TraceSetFilter(filep, filterfile-name) TraceXopyRecord(soucep, destpp) 
Trace-Close (f ilep) Trace_FreeRecord(filep, recordp) 

(a) Initialization and termination (b) Record manipulation 

Trace-FidsEqual(fidlp, fid2p) 
Trace-GetFid(recordp, fidplist, nump) 
Trace-GetFileIndex (recordp) 
Trace-GetFileTypebcordp) 
Trace-GetPathh-ecordp, pathplist , nump) 
Trace-GetRef Count (recordp) 
Trace-htUser(fileD. Did. uidu) 

(c) Field retrieval 

1 TraceStats(fi1ep. statp) I 
I I 

(e) Miscellaneous 

TraceJJrintPreamble (f ilep) 
TraceJJrintRecord(recordp) 
TraceDumpRecord(recordp) 
Trace-OpcodeToStr(opcode) 
Trace_NodeIdToStr(addr) 
Trace-OpenFlagsToStr(f1ags) 
TraceAecTirneToStr(recordp) 
Trace-FileTypeToStr(type) 
Trace-InodeTypeToStr (type 
Trace-FlagsToStr (f lags) 
Trace_FidPtrToStr(fidp) 

(d) Output and formatting 

Figure 8. Library interface 

modate traces of various formats, including those of other researchers, while maintaining a 
consistent interface to the programmer. 

The operations for initialization and termination are shown in Figure 8(a). The Trace-Open 
call opens the trace file and determines the format of the trace by reading the preamble at 
the beginning of the file. 

The library calls for obtaining records are shown in Figure 8(b). The central call is 
Trace-GetRecord. The library unpacks the raw, structured trace, and presents it to the 
application as a sequence of records through this call. The call returns the next record, 
subject to a filter specification, if any, as a pointer to a record structure. The library allocates 
the storage necessary for the record and any pathnames included in the record. To free 
the storage, programs call Trace-FreeRecord. The Trace-CopyRecord copies a record, 
allocating new storage for both the record and any pathnames it references. 

The library maintains a good deal of bookkeeping on the trace, such as keeping track 
of open files, gluing split records together, and building and tracking process trees, so that 
groups of processes may be studied in aggregate (e.g. make). Because of this, the records 
that the library presents to the programmer are often more detailed than shown in Figure 
3. For example, the library simulates the system open file table for each trace it processes. 
This allows it to provide data from the open record for file descriptor based operations (e.g., 
seek and close), such as pathnames. 

Certain fields are common amongst a set of records, such as pathnames and fids. In Figure 
8(c), we show routines that obtain those fields from records, allowing the fields to be treated 
generically. The call Trace-GetUser obtains the user ID (uid) that generated the record. 
The uid is not present in all records, only the fork record. The library keeps track of process 
activity through fork and exit records, and thus is able to determine which user generated 
a record in most cases. 
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opcode open close stat lstat chdir chroot creat mkdir access chmod readlink 
getsymlink chown utimes truncate rename link symlink unlink rmdir lookup root 
type directory regular link 
refcount 1 
error 0 
matchf ds 
start 21-Feb-91,12:00:00 
end 22-Feb-91,00:00:00 
pid exclude 326 2961 3640 4369 
path exclude /dev/null 

Figure 9. Filter specijcation 

In Figure 8(d), we show generic printing routines for records and the file preamble, which 
may differ in traces of different versions. The remaining call, for obtaining statistics on a 
trace, is shown in in Figure 8(e). 

It is common to want to include or exclude various types of records from a trace, such 
as by uid or opcode. The library supportsjltering of various kinds, such as by start and 
end time, opcode, uid, and path name. The library is a natural place to implement filtering 
because it is such a common operation, and because certain types of filtering require data 
structures the library already maintains, such as the open file table for matching opens and 
closes. Filtering fits neatly beneath the Trace-GetRecord call. Once a filter is applied to 
the trace, the library returns only those records that satisfy the filter specification. 

Filters are specified in a filter file, which is applied to a trace using Trace-SetFilter. 
Filter specifications take the form <attribute> [<modif ier>l <value> <value> . . . , 
where an attribute is the opcode, for example. To keep specifications short, an optional 
modifier can be used to specify values to be included or excluded from the trace. Figure 
9 gives an example of a filter. The opcode attribute specifies the desired subset of record 
types. In addition, the objects referenced in the records must be either directories, files or 
symbolic links (no device or special files). The ‘refcount’ filter says for operations that 
record a reference count (e.g., close), only return those records with a reference count of 
1. The ‘matchfds’ filter says only return close, read, and write records that have matching 
open records. The pid filter in this example excludes certain long-running system daemons. 
The pathname filter may user regular expressions for pathname matching. 

5.3. Summary suite 
As the body of data we collected grew larger, summary information of various kinds for 

each trace became necessary, so that a user confronted with 150GB of this data has some 
idea where to begin. We have built an on-line database for the traces that contains, for each 
trace, summary information including composition by system calls, access characteristics, 
and activity levels. The summary information is the output of a suite of analysis programs 
run on each trace before being archived on tape. 

The output is placed in an on-line collection of summary results to assist in finding appro- 
priate traces for study. The suite is comprised of the programs tstat, users, sessions, 
and patterns. Each of these programs is run on the trace without filtering, then tstat, 
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u id  processes 
2336 1574 
0 975 
Unknown 3 
7 46 
1516 15 
9 6 
4840 9 
4035 2 
11 1 

records (%I 
643397 (69.6) 
260272 (28.2) 
15936 (1.7) 
3326 (0.4) 
672 (0.0) 
388 (0.0) 
315 (0.0) 
96 ( 0 . 0 )  
58 (0.0) 

Figure 10. Output of uaers. 

sessions,  and pa t t e rns  are run for each active user found in the trace. The programs 
are described below, along with sample output from each. 

The users program classifies trace records by user ID where detectable. The user ID is 
found in the fork  record for the process or any child processes it creates. If the process was 
created before the trace starts, and creates no child processes, it falls into the ‘Unknown’ 
category. Output for u se r s  is shown in Figure 10. Uids 0, 7, 9, 11, and 4035 are system 
IDS. User 2336 is the primary user of the workstation from which the trace was collected. 

The ts ta t  program prints a variety of statistics on a trace, including a breakdown of trace 
records by opcode and file systems referenced. Figure 1 1  shows the output of tstat. The 
percentage is by number of records, not by volume. Dump records, containing system call 
counts, are not shown, although they are reflected in the record counts. The ‘fail’ column is 
the number of operations that failed. Name lookup usually has a high percentage of failing 
operations because of shell pathname searches. The number of objects referenced depends 
on the operation and whether or not there was a failure; it is not necessarily the same 
as the number of records. The difference between ‘records’ and ‘raw records’ reflects the 
presence of split records. The difference between ‘records’ and ‘records returned’ reflects 
the presence of a filter. 

The pa t t e rns  program summarizes the file reference patterns based on c lose  records 
in the trace. The summary includes the number of read-only, write-only, and read-write 
accesses to files, as well as bytes transferred for each access type. Each access type is 
further divided into whole-file transfer, other sequential access, and random access. An 
access is a whole-file transfer if the amount of data read (or written) is equal to the size of 
the file, and there were no seeks. If there are no seeks, but the amount of data is not equal 
to the size of the file, then the access falls into the ‘other sequential’ category. If seeks 
occur, the access is considered random. 

The summary information in c lose records (number of bytes read, written, etc) is cu- 
mulative. For example, if a file descriptor is dup’ed, and the file is manipulated under both 
descriptors, the statistics reported will be the sum of their accesses, and there is no way to 
determine from the final c lose which accesses were performed using a particular descrip- 
tor. If the file is read from one descriptor, and written from another, then the activity will 
be reported as a read-write access. Figure 12 summarizes the file reference patterns in the 
trace for processes owned by user 2336. The format is reminiscent of that used in the study 
by Baker.’ 
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Trace of host 128.2.209.215, versions 3.1, 3.1. 3.2 
Host booted Mon Mar 30 12:40:29 1992, agent started Mon Mar 30 13:19:00 1992 
Trace starts Mon Mar 30 13:19:04 1992, ends Mon Mar 30 23:15:23 1992 
11206644 bytes, 269716 raw records (7/sec>, 249536 records, 249536 returned 

Opcode 
OPEN 
CLOSE 
STAT 
LSTAT 
SEEK 

EXECVE 
EXIT 
FORK 
CHDIR 
UNLINK 
ACCESS 

READLINK 
CREAT 
CHMOD 

SETREU ID 
RENAME 
RMDIR 
LINK 
CHOWN 
MKDIR 

SYMLINK 
SETTIMEOFDAY 

MOUNT 
UNMOUNT 
TRUNCATE 
CHROOT 
MKNOD 
UTIMES 
READ 
WRITE 
LOOKUP 

CETSYMLINK 
ROOT 

nun 
20006 
41017 
9064 
3054 
16480 
6263 
7611 
7654 
595 
297 
657 
11 
445 
43 
3626 
33 
10 
66 
51 
4 
0 
3 
3 
1 
192 
0 
0 
8 
0 
0 

1 
8 
16 
3 
1 
6 
2 
3 
3 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

111939 44 
10655 4 
9164 3 

fail 
802 
0 
547 
143 
0 
1989 
0 
0 
2 
33 
486 
6 
9 
27 
0 
4 
7 
0 
13 
1 
0 
0 
0 
0 
0 
0 
0 
8 
0 
0 
3945 
0 
244 

uf s 
19010 
40236 
8268 
2844 
15046 
4215 
0 
0 
564 
508 
88 
3 
838 
37 
0 
81 
20 
198 
49 
4 
0 
0 
3 
0 
192 
0 
0 
0 
0 
0 

afs 
535 
771 
248 
67 
1434 
64 
0 
0 
31 
20 
83 
8 
34 
4 
0 
12 
0 
0 
0 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

197666 22055 
8993 1649 
16368 1684 

cfs 
10 
10 
1 
2 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
212 
13 
32 

nfs 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Figure 11. Output of t s t a t  
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Access Type Accesses (%) 

Read-only 5289 ( 80.4) 

Write-only 1237 ( 18.8) 

Read-write 49 ( 0.7) 

Total 6575 

Bytes (%I Transfer Type 

Whole-f ile 

26470408 ( 70.3) Other Seq 

Random 

Whole-f ile 
10651214 ( 28.3) Other Seq 

Random 

Whole-f ile 
543203 ( 1.4) Other Seq 

Random 

37664825 

Accesses (1) 

3022 ( 57.1) 

1154 ( 21.8) 

1113 ( 21.0) 

990 ( 80.0) 

0 ( 0.0) 

247 ( 20.0) 

0 ( 0.0) 
7 ( 14.3) 
42 ( 85.7) 

Bytes (%I 

14173603 ( 53.5) 

1513723 ( 5.7) 

10783082 ( 40.7) 

5909950 ( 55.5) 

0 ( 0.0) 

4741264 ( 44.5) 

0 ( 0.0) 

346760 ( 63.8) 
196443 ( 36.2) 

Figure 12. Output of patterns for user 2336 

Given a trace over some length of time, how does one decide which periods to analyze? 
For example, one may be interested in only those periods during which a user is active. 
Activity can be defined in terms of the number of operations performed during a unit of 
time. Given that definition, an active period would consist of some number of intervals 
in which the activity (number of operations) exceeds some threshold. One may want to 
include intervals in which the number of operations falls below the threshold, as long as the 
decrease in activity is transient. We call the resulting period a session illustrated in Figure 
13. For the trace in this figure, the activity threshold is a, the minimum number of intervals 
in a session is four, and one interval below the threshold is allowed. 

The sessions program finds sessions in a trace, given the interval length, minimum 
session length, activity threshold, and transient length as parameters. Defaults were chosen 
ad-hoc as follows: an interval length of 15 minutes, session length of 16 intervals (4 hours), 
activity level of 16 operations per interval, and a transient length of 4 intervals. The default 
settings locate long stretches of fairly low activity. The summary suite uses three settings 
- low activity (session length of one interval, other parameters at default values), medium 
activity (session length of one interval, activity level of 180 operations per interval), and 
high activity (session length of one interval, activity level of 900 operations per interval). 
Figure 14 shows intervals of high activity for the primary user of a workstation. A transient 
ended the first session, even though the following interval was sufficiently active. For each 
active session, sessions reports the session length and the amount of activity in mutating 
and non-mutating operations. 

5.4. Replaying traces 
One of the principal advantages of trace-based workloads is realism. The most direct 

way to subject a file system to such a workload is to replay a trace on it. To replay a 
trace, one must first construct a skeleton of the file system over which the traced operations 
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Figure 13. Example of a session 

will execute. Then commands representing operations in the trace may be replayed on this 
skeleton. 

We have developed an ‘untrace’ facility that allows a trace to be replayed in a subtree of 
the name space. Untrace takes a trace as input, and produces command files for constructing 
the skeleton and replaying the trace. Sample output for the skeleton and replay command 

Trace starts Wed May 6 06:30:42 1992 

Begin Wed May 6 08:10:40 1992, end Wed May 

Begin Wed May 6 09:40:40 1992, end Wed May 

Begin Wed May 6 13:10:40 1992, end Wed May 

6 09:40:40 1992 (1.49 hours) 
ActiveIntervals = 1, Activity = 3821m+n (34m. 3787n) 

6 12:55:40 1992 (3.25 hours) 
ActiveIntervals = 6, Activity = 10405m+n (98~1, 10307n) 

6 15:53:40 1992 (2.72 hours) 
ActiveIntervals = 4, Activity = 7423m+n (4m, 7419n) 

Trace ends Wed May 6 15:55:28 1992 

Figure 14. Output of sessions for user 2336, high activity 
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mkdir root 
mkdir root/ufs.700.800 
mkdir root/ufs.700.800/.LOCALROOT 
mkdir root/ufs.700.800/.LOCALROOT/usr2 
mkdir root/ufs.700.800/.LOCALROOT/usr2/lily 
mkdir root/ufs.700.800/.LOCALROOT/usr2/lily/src 
rnkdir root/ufs.700.800/.LOCALROOT/usr2/lily/src/xmines 
open root/ufs.700.800/.LOCALROOT/usr2/lily/src/xrnines.c 2562 -1 
open root/ufs.700.800/.LOCALROOT/usr2/lily/src/Makefile 2562 -1 
mkdir root/ufs.700.800/.LOCALROOT/sys0 
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs 
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs/include 
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys 
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys/types.h 2562 -1 
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/stdio.h 2562 -1 

(a) Skeleton commands 

stat root/ufs.700.800/.LOCALROOT/usr2/lily/src/Makefile 
open root/ufs.700.800/.LOCALROOT/usr2/1ily/src/Makefile 0 296 
close 296 -1 
open root/ufs.700.800/.LOCALROOT/usr2/lily/src 0 298 
stat root/ufs.700.800/.LOCALROOT/usr2/1ily/src/xmines.c 
open root/ufs.700.800/.LOCALROOT/sysO/tmp/cc.131914 2562 301 
stat root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys 
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys/types.h 0 302 
close 302 -1 
stat root/ufs.700.800/.LOCALROOT/sysO/cs/include 
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/stdio.h 0 305 
close 305 -1 

(b) Replay file 

Figure 15. Sample untrace output. 

files is shown in Figure 15. The trace was of a compile of the game xmines; we show 
the beginning of the compile. The commands in Figure 15(a) show the construction of the 
file system skeleton, starting at ‘root’. The open calls in the skeleton file create the named 
files. Commands in Figure 15(b) are operations derived from the trace. The arguments to 
the open calls are the flags with which the file is to be opened, and an index which, if 
non-negative, is used to refer to the open fiie. 



LONG TERM DISTRIBUTED FILE REFERENCE TRACING 723 

6. STATUS AND EXPERIENCE 

DFSTrace runs on DECstations, Sun 4s, SPARCstations, IBM RTs, and i386s running Mach 
2.6. We have traced up to 36 machines on various projects for up to two years. In this 
section, we present qualitative observations about DFSTrace, paying particular attention to 
the requirements set forth in Section 2.1. 

The most important requirement of DFSTrace was that it be unobtrusive. We have found 
that the performance degradation caused by tracing is virtually unnoticeable to users. The 
system requires very little user intervention, usually just at installation time. DFSTrace is 
prevented from consuming excessive client resources by using fixed-length buffers in both 
the kernel and the agent. If the buffer capacity is exceeded, data is lost. 

Data losses occur for two reasons. First, a failure may occur, such as a server crash or a 
network outage, for which the buffering on the client is not sufficient. Such failures are a 
fact of life in a distributed environment. The second source of data loss is improper tuning 
of the kernel and agent buffer size on the client. Clearly, one cannot trace system events in 
unlimited detail, and expect the client to keep up with a fixed amount of resources. Ideally, 
one should choose buffer sizes that balance the amount of data being generated with the 
resources available on the client. If the traced workload generates a large amount of data, 
either the buffer sizes must be increased, or the losses must be accepted. 

Data losses can yield information about the clients and the system in general. Persistent 
losses can be an indication of improper tuning or of system or hardware failures. This 
class of losses generally merits investigation. For example, one of our clients had a faulty 
Ethernet card that caused it to lose more data than it sent. Another group of machines was 
separated from the collector by a gateway that was faulty, so those clients tended to lose 
data more than clients on the same side of the gateway as the server. As an example of 
improper tuning of the agent buffers, we found that some clients running a certain text 
processing tool lost data. When they started the tool, it read a large number of font files 
and generated data faster than the agent could read it from the kernel. 

Our use of extensive version information has paid off. The system has gone through three 
major revisions and many minor revisions, and the transitions were painless. In addition to 
compatibility checks, versioning is useful for detecting buggy versions of traces. We have 
had one buggy release of the tracing kernel that generated unusable traces. Using version 
information we were able to find and discard traces generated by that release of the kernel. 

The separation between data collection and interpretation is critical not only for good 
performance but also for extensibility. Although extensibility was not one of our original 
goals, this separation allowed others to extend DFSTrace to record other classes of events, 
and still take advantage of the existing collection machinery. The extensions are discussed 
further in Section 8. 

An important lesson we have learned is that it is critical to use the data as soon as possible 
to ensure that it is complete and sufficient for its intended purpose. We went through several 
iterations of collecting and then attempting to use data before we arrived at the final set 
and content of records. The traces were validated using comparison to known workloads, 
such as the Andrew benchmark,22 and comparison to kernel data structures. 

The library has proven to be effective in simplifying development of analysis programs. 
It allows the user to concentrate on the analysis of the trace rather than on manipulating 
the trace itself. For example, Kumar was able to read the library documentation, then write 
and debug the analysis program for his in about one hour. 



724 L. MUMMERT AND M. SATYANARAYANAN 

Table I. Tracing overhead for the Andrew benchmark. 

Elapsed time (min:sec) 
Tracing level UFS (%) AFS (%) Coda (%) 
off 220  (6) 0% 3:18 (6) 0% 3:40 (5 )  0% 

default, readlwrite 2:25 (0) 3.5% 3:19 (1) 0.5% 352  (6) 5.4% 
default, name res 2:29 (1) 6.4% 3:26 (3) 4.0% 334 (5) 6.3% 

default 2:26 (4) 4.2% 3:22 (4) 2.0% 3:47 (3) 3.1% 

all 2:27 (1) 5.0% 3:25 (3) 3.5% 3:55 (9) 6.8% 

Each entry is the mean of three trials. The standard deviation in seconds is given 
in parentheses. UFS is the local UNIX file system. The slowdown is calculated 
as 100 x ( t level  - t , f f ) / t , f f .  The benchmark was run on a DECstation 3100. 
File caches were warm for the AFS and Coda results. 

7. EVALUATION 

7.1. Tracing overhead 
This section presents the performance of various levels of tracing for the Andrew bench- 

mark. The benchmark was run in three file systems - the local UNIX file system, the 
Andrew file system, and the Coda file system. In each file system, tracing was run at four 
levels. The default tracing level records all of the operations listed in Figure 3 except for 
read and write system calls and name resolution. We then added read and write calls and 
name resolution separately. Tracing all activity records all operations listed in Figure 3. 

Table I shows the elapsed time of the Andrew benchmark for each level of tracing. 
The overhead ranges between 3-7 per cent, depending on the events traced. Tracing a 
large compile had lower overhead than the Andrew benchmark, ranging from 3-5 per cent. 
CPU overhead for both workloads was negligible. Table I1 shows the amount of trace data 
generated per run of the Andrew benchmark, again at four tracing levels and in three file 
systems. Background system activity accounts for the variability in the amount of data 
generated. The benchmark under AFS generated more data because of longer pathnames 
and longer fids. The benchmark under Coda generated more data than under AFS because 
the Coda cache manager operates at user level as opposed to within the kernel. Thus its 
activity is captured in the trace. 

7.2. Importance of kernel implementation 
In Section 2.1, we emphasized the importance of good performance in a long-term tracing 

system. We used this requirement along with application transparency to justify a kernel 
implementation of DFSTrace. But is a kernel implementation strictly necessary to satisfy 
this requirement? 

To answer this question, DFSTrace was reimplemented using a toolkit for interposing code 
between applications and the UNIX system call i n t e r f a ~ e . ~ ~ , ~ ~  The toolkit allows the kernel 
code and agent to be replaced by an out-of-kernel interposition agent and log merge sewer. 
Instances of the toolkit agent run as part of user programs. Each toolkit agent constructs 
trace records and sends them to the log merge server, which creates a single trace for 
the host and sends it to the collector. Because tracing is performed in user space, the 
interposition agent and the log merge server must synthesize information that is normally 
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Table 11. Volume of trace data generated during the Andrew benchmark. 

725 

Data (KB) 
Tracing level UFS (%) AFS (%) Coda (%) 

default, readwrite 747.4 (0.2) 799.7 (1.4) 1073.9 (5.6) 

default, name res 1298.6 (1.2) 1520.4 (1.3) 1541.4 (1.2) 

Each entry is the mean of three runs. Standard deviations are given 
in parentheses. 

default 500.8 (3.2) 548.2 (3.7) 600.5 (0.5) 

a1 1 1584.2 (23.5) 1805.6 (11.5) 2038.2 (2.5) 

obtained from kernel data structures, such as the system time, and file attributes. The 
interposition agents make additional system calls, such as g e t t  imeof day and getuid 
to obtain this information. In addition, since name resolution is transparent to user-level 
processes, the toolkit implementation must traverse the name space explicitly using 1st a t  
to produce name resolution records. 

The two implementations were compared along several dimensions, including code size 
and modularity, implementation time, and performance using the Andrew benchmark. The 
two implementations were comparable in code size. The toolkit implementation was con- 
siderably more modular, requiring changes to only 60 per cent as many files as DFSTrace, 
and no changes to existing kernel files. Implementation time using the toolkit was an or- 
der of magnitude less than DFSTrace, primarily because the final content of the records 
had already been determined, and because the latter involved building, debugging, and 
maintaining kernels. 

Performance of the toolkit implementation was an order of magnitude worse than DFS- 
Trace, ranging from 64-138 per cent slowdown, compared to the 3-7 per cent in the original. 
Most of the slowdown in the toolkit implementation is attributable to additional system calls 
the toolkit agent must make to construct equivalent log records. These results reaffirm our 
decision to gather data in the kernel, avoiding the performance penalty of repeated cross- 
ings of the system interface boundary. Note that while a kernel implementation is necessary 
for good performance, it is not sufficient. The overhead of DFSTrace is lower than that 
of more generalized kernel tracing facilities such as GTFZ6 because it is selective in the 
events it traces. 

8. APPLICATIONS 

DFSTrace has proven to be invaluable for a variety of purposes. Our original goal was to 
answer questions about the Coda file system. Since then, DFSTrace has been applied to a 
number of other areas. In this section, we discuss the uses of DFSTrace in five areas - in 
trace-driven simulation, in trace replay experiments, as a diagnostic tool, as an instrument 
for exploration, and as the basis of extensions for understanding low-level system behavior. 

7.3. Simulation studies 
Trace-driven simulation has been used to evaluate many aspects of computer systems, 

such as paging and CPU scheduling algorithms. The virtues of trace-driven simulation, in 
particular credibility and reproducibility of results, are well known.27 In this section, we 
present some of the simulation studies conducted using traces generated by DFSTrace. 
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7.3.1. Cache size for disconnected operation 

The first serious use of DFSTrace was for a simulation of the file cache manager in the 
Coda file system. One of the questions that arose during the development of Coda was 
how large a file cache would be needed to support disconnected operation for a day.28 An 
analysis based on traces from five active Coda workstations calculated a high-water mark 
of disk usage for the file cache of approximately 30 MB. Thus a portable computer with a 
50-60 MB disk would be adequate for operating disconnected for a twelve hour day. The 
analysis was later extended to cover a five-day work week.29 Ten of the most active traces 
were selected from over 1700 for which on-line summaries were available at the time. The 
maximum cache space usage for the full week traces was less than 100 MB, and the median 
was less than 50 MB. 

7.3.2. Log space requirements for directory resolution 

Information on long-term file reference behavior was needed during the design of the Coda 
resolution subsystem.” Coda supports replication, and uses an optimistic replica control 
strategy that allows updates in any network partition. The resolution subsystem is responsible 
for detecting and classifying partitioned updates to directories, and merging them if they 
do not conflict. A log-based strategy to support resolution was being considered, in which 
each server would maintain a history of directory updates it performed during a partition. 
A concern was whether or not the logs would consume excessive space on the servers. 
Since a log grows linearly with work done during the partition, any realistic estimate of log 
size had to be derived from empirical data. A feasibility study was conducted to determine 
average and peak log growth. A total of 44 AFS and Coda volumes were studied in traces 
from 20 workstations over a 10 week period. Long-term log growth was only 94 bytes per 
hour per volume on average, and peak hourly growth rates were less than l O K B  for over 
99.5 per cent of the data points. Thus a 20KB log would be sufficient for most hour-long 
partitions. This estimate was confirmed by data gathered from the implementation in actual 
use, which showed that 99 per cent of the logs grew less than 240KB per day.3* 

7.3.3. Improvements due to prefetching 

Traces were used to estimate the performance improvements possible for TIP,31932 a system 
which exploits application-supplied hints about future YO activity to reduce file read latency. 
Experiments were conducted with several applications, including a make of an X windows 
calculator tool. The make program was augmented with a prefetching process, which read 
exactly the files needed. By using traces, perfect accuracy of future file access could be 
achieved to estimate the maximum performance gain. 

7.4. Trace replay experiments 
We have developed a methodology for performance evaluation involving trace replay, 

using the untrace facility described in Section 5.4. Trace replay differs from trace-driven 
simulation in that the traces are replayed on a live system. This methodology increases 
realism and credibility of results while preserving reproducibility. In this section we discuss 
the evaluation of two aspects of the Coda file system using trace replay. 
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7.4. I .  Reintegration latency 

Reintegration is the propagation of updates made on a client during disconnected oper- 
ation. To evaluate reintegration latency, highly active day-long and week-long traces were 
replayed on a disconnected client and then reintegrated upon reconnection. The results sug- 
gested that typical one-day disconnections would take about one minute to reintegrate and 
typical work-week disconnections would take about five minutes on the hardware in use 
at the time.29 The experiments also exposed performance bugs in code pertaining to long 
disconnections. 

7.4.2. Trickle reintegration 

Trickle reintegration is the asynchronous propagation of updates from a client to a server 
when network communication is slow. Its purpose is to decouple foreground activity on the 
client from the performance of the network while remaining unobtrusive. To evaluate trickle 
reintegration, we replayed a set of active trace segments on clients with network bandwidths 
ranging from 10 Mb/sec to 9.6 Kb/sec. We were able to incorporate the effects of user think 
time into the trace replay and conduct a sensitivity analysis for that experimental parameter. 
The results showed that even though bandwidth varied by three orders of magnitude, the 
performance of the trace workload was nearly unchanged.33 

7.5. DFSTrace as a diagnostic tool 
In complex system software, performance problems often mask bugs. In this section, we 

describe how the tracing system was useful as a diagnostic tool for discovering problems 
with systems and software. 

7.5.1. Performance tuning 

Tracing of read and write system calls has been useful for profiling the I/O activity of 
RVM,34 a package providing persistent virtual memory. RVM manages recoverable storage 
in unstructured segments, which are backed by files or disk partitions. Tracing helped 
uncover a serious performance problem in mapping of large segments into memory; the 
read buffers being used were too large and were causing the system to thrash. Tracing has 
also been useful as a diagnostic tool for understanding the I/O behavior of incremental log 
truncation in RVM. 

7.5.2. Mobile client conjiguration 

Tracing has been used for more mundane tasks, such as determining which programs 
should be installed on the local disk of portable machines (as opposed to fetched into a file 
cache), and discovering problems with tracing clients. If a client generated large amounts of 
data (over 50 MB/day) it was almost invariably because something was wrong. For example, 
one new client generated over 400 MB of data in a single weekend. An examination of 
a few of the traces showed that the machine had a large mail backlog, which the mailer 
was attempting to rectify with enthusiasm. The primary user of the machine maintained a 
mailing list, but he had not noticed that some of the addresses were no longer valid. 
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7.5.3. Application debugging 
The traces have also been useful debugging aids. For example, we have discovered several 

applications that do not close all of the files they open. Because of per-process limits on the 
number of open files, this bug eventually rendered the application unusable. In another case, 
we found a bug causing our file servers to crash because of a piece of code that depended 
on the system time to be non-decreasing. Although this seems like a reasonable assumption, 
the traces showed otherwise. The implementation of the Network Time Protoc01’~ daemon 
running on the machine occasionally adjusted the system time backwards. 

7.6. 
In designing system software, it is important to know which operations are the common 

ones. Therefore, understanding user behavior is critical to designing reliable, high perfor- 
mance systems. In this section, we describe how traces were useful in providing realistic 
examples of user behavior for evaluating file systems. 

Traces inspired the micromodels used by s ~ n R G e n , ~ ~  a synthetic file reference generator. 
A micromodel is a program that captures the file reference activity exhibited by an applica- 
tion. For example, a general reference pattern for a C compiler is reading a .c file, reading 
some number of .h files, and creating a .o file. One can create a parameterized micromodel 
of a C compiler that takes as input the number of .h file referenced, and the names of the 
.c, .h, and .o files. By combining micromodels, one can create a synthetic user that can be 
used as a benchmark for comparing systems, or as a test program. New releases of the Coda 
file system are tested in this manner. The quality of the references generated by SynRGen 
depends on the accuracy of its micromodels. Using traces allows the modeler to obtain a 
respectable degree of realism while still retaining the flexibility of a parameterized model. 
Traces were used to develop SynRGen micromodels for activities in an ediddebug cycle. 
These models, when compared to the activity generated by real users, came within 20 per 
cent of the mean values for most system variables. 

DFSTrace as an exploratory tool 

7.7. 
This section describes extensions to DFSTrace for recording low-level system events. Al- 

though this work was not part of our original implementation, it demonstrates that DFSTrace 
is relatively easy to extend, and is adaptable to the needs of other researchers. 

Study of low-level UO behavior 

7.7. I .  
DFSTrace has been used as a diagnostic tool in understanding UNIX I/O behavior during 

the development of TIP. A key component of UNIX I/O is the kernel buffer cache, which 
contains copies of recently used disk blocks.*’ DFSTrace was extended to record buffer 
cache activity in addition to file reference data. The file reference data is used to identify 
and separate sources of low-level activity (e.g., user vs. system activity). The buffer cache 
traces contain records for read hits and misses, read ahead hits and misses, buffer releases, 
and prefetches by TIP. 

UNIX buffer cache diagnosis 
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7.7.2. Disk geometry 

Tsao extended DFSTrace to record SCSI disk YO operations for his work in determining 
disk ge0met1-y.~~ Because SCSI exports a linear block address space, one cannot always 
determine the location of a disk block based on its address. Tsao gathered traces of I/O 
operations from a known workload, and developed a tool to analyze timing patterns between 
operations in the trace of the workload. Based on these patterns, his tool infers a variety of 
information about the disk, such as the disk cache size, number of heads, rotational period, 
number and location of spare sectors, and track and cylinder skew. This kind of tool is 
valuable for measurement studies that employ disks because it allows the performance of a 
disk to be diagnosed independent of the application and operating system. 

7.7.3. Field reliability test 

The SCSI extensions to DFSTrace have enabled its use in a two-year field reliability test 
of Seagate disks in an AT&T 6299 disk arraya3* Every I/O to the disk array controller is 
recorded as an enqueue and completion event. If a disk fails, the data will be sent along 
with the disk back to the manufacturer. It is important that there are no data losses in this 
application. Losses are avoided in two ways. First, only SCSI events are recorded, and the 
corresponding records are small (approximately 24 bytes). Second, an additional level of 
buffering is used at the client, allowing up to 10 MB to be stored on the client's disk. 

7.7.4. Isolation 
One of the disadvantages of traces is lack of f le~ibi l i ty .~~ In particular, the effects of 

multiprogramming are embedded in traces and are often difficult to remove. One might 
want to extract the records for a particular process or set of processes, and use them as 
if they were the only processes running on a machine. Patterson extended DFSTrace to 
record context switches and process times.''" This allows an extraction of a trace, such as 
the records for a specific process, to be used as a workload with accurate timing between 
events. 

9. RELATEDWORK 

The value of empirical file usage data was recognized long ago. Data on file references has 
been collected and used for many aspects of file system design over the last two decades.64 
Broadly, there are two methodologies for collecting trace data. 

Early file reference data was collected statically, by taking one or more snapshots of 
the file system. The principle advantage of static collection is that it does not require 
modifications to the file system or operating system. If the system software is proprietary, 
this approach may be the only feasible one. Often, data can be obtained using existing 
tools such as accounting or backup programs. Disadvantages of static collection are that 
there is no way to determine how many times a file has been accessed between snapshots, 
and snapshots may be difficult to obtain in very large distributed file systems. The bodies 
of statically collected data are summarized in Table III(a). Note that Table I11 summarizes 
file trace collections, not analyses. Thus we omit numerous analyses conducted on data 
collected by others, such as those by Smith5s6 that used Stritter's data. Strange's data is the 
only set collected from a distributed environment; earlier data was collected in timesharing 
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Table 111. Sources of file reference data. 

Year Collector System Duration Notes Ref. 
(a) Static collections 

41 

distributed 42 
1993 Irlam 100 ws, 650 fsys survey 
1992 Strange 6 Sprite fsys, 76-84 sn 

I SunOS/NFS fsys 
1982 Lawrie 1 CDC NOS 233 sn 
1981 Satyanarayanan 1 TOPS-I0 1 sn 
1977 Stritter 2 IBM MVS -13 months of sn 
1975 Revelle 2 IBM MVS 144 sn 

(b)  Local, dynamic collections 

Appleton 
1994 Griffioen, 2 SunOS ws 

1992 Miller 1 UNICOS, others 
1991 Bozman 2 CMS 

Jensen 2 UNICOS, others 
Muller, Pasquale 
Schilit 1 SunOS 

Korner 1 4.2 BSD UNIX 
Staelin 2 IBM MVS 

1988 Burrows 1 4.2 BSD UNIX 
1986 Floyd 1 4.2 BSD UNIX 

Majumdar, Bunt 1 4.1 BSD UNIX 
1985 Ousterhout 3 4.2 BSD UNIX 

Zhou 1 4.2 BSD UNIX 
1982 Porcar 2 IBM OS, TSO 

1 4.3 BSD UNIX 

1990 Biswas, et al. 1 VMS 

(c)  Distributed, dynamic collections 
1994 Kuenning 1-10 fs, DOS/UNIX 

Dahlin, et al. 
1993 Mummert, 30 Mach ws, 

Satyanarayanan Coda fs 
1992 Blaze 1 NFS fs, many ws 
1991 Baker, et al. - 40 S rite ws, fs 
1990 His en - 100 %os ws 
1986 Sheftzer. et a1 15 Locus 

1 NFS fs, 237 ws 

2-4 weeks 

2 years 
analyzed 1 dayluser 
3 years 
9 75-minute periods 
3 traces, 33-86 hours 
9- 12 hour periods 
not specified 
1 week, 3 days 
3 work days 
1 week 
1 month, 1984 
2-3 days 
9 hours 
9, 13 days 

rw 

used sys logs 
sn, rw 
used sys logs 
rw, other 
used audit trail 
sn, rw 

used SMF 
+2 weeks sn 
sn 

rw 
used SMF 

7 
43 
4 

44 

45 

46 

41 
48 
49 

50 

51-53 

54 

55 
56 

10, 51 
1 1  

2 
58 

3 

59 7-10 weeks 
7 days used net monitor 6o 
over 2 years, ns, some rw this 

1 week used net monitor 61 
8 24-hour eriods ns, +2 wk summary I. 62 
4 days, Fe&. 1990 

1991-1 993 Paper 

6 10-hour periods ns 63 

This table summarizes sources of file reference data. We use the following abbreviations: sn (snapshot), ws 
(workstation), fs (file server), fsys (file system) rw (includes readwrite operations), ns (includes name resolution 
operations). 
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or batch environments. Irlam’s data was obtained through an Internet survey in which he 
supplied a script that snapshots local file systems and gathers statistics on file sizes. 

Most recent data is collected dynamically, using continuous monitoring. Numerous bodies 
of data have been collected on individual machines under a variety of operating systems, 
Some collections include snapshots to eliminate edge effects during analysis. Most of the 
data, listed in Table III(b), was collected from timesharing environments. There are a few 
bodies of dynamically collected data from distributed workstation environments; they are 
listed in Table III(c). Sheltzer’s data focused on name resolution activity in Locus,65 a 
distributed version of UNIX that includes a distributed file system. Hisgen’s data was 
collected at DEC SRC from Firefly66 workstations running Taos, which provides an Ultrix 
emulation interface. Baker collected traces only on four Sprite67 file servers, however, she 
also collected two weeks of summary data from clients. In contrast, DFSTrace has enabled 
collection of much longer term data (two years) in a distributed environment. 

The sets of file system operations recorded varied between studies. For example, most 
studies did not record individual read and write system calls, because the data would be 
too voluminous. Exceptions are DFSTrace, Bozman, Biswas et al., Zhou, and Muller and 
Pasquale. The latter also recorded other low-level events, as does an extended version of 
DFSTrace. In addition to DFSTrace, Sheltzer, Burrows and Baker recorded name resolution 
events. Floyd and Ellis were able to study name resolution using Floyd’s data by constructing 
a model of the file system from the snapshot.’’ 

We list several sets of data that were not recorded at the system call interface, but 
still represent empirical data on file usage. Miller’s and Jensen’s data from supercomputing 
environments consists of activity to archival or mass storage systems, gleaned from existing 
system logs. Blaze’s system, NFSTrace, is one of several packages that monitors the network 
for NFS traffic, and then generates a plausible series of file system events that could have 
resulted in the observed traffic. The resulting trace is an approximation of file system 
activity. Dahlin, et al. also used NFSTrace to collect their traces. 

Table I11 shows that most file reference data was collected in academic and research 
environments. Exceptions are Biswas, et al., who collected traces from seven different 
commercial sites including a large newspaper company and a machine parts distribution 
company; Bozman, who collected data from an IBM programming center; Staelin, who 
collected data from two Amdahl customer sites; Porcar, one of whose data sets was collected 
from an installation at Hughes Aircraft; and Kuenning, whose data is the only set we know 
of that captures a DOS workload. Unfortunately, little of this data is publicly available. 

Most of the dynamic studies cited provide few details on the tools used to collect the data. 
A few used existing monitoring tools, such as SMF,68 audit trail facilities, system logs, or 
network monitors. The remainder of the efforts involved instrumenting the operating system. 
This is a feasible approach particularly in UNIX environments because of the availability 
of source code. 

Performance is an issue in dynamic collection efforts because tracing runs continuously. 
This issue is critical in long-term collections. Of course, if existing system logs or off-site 
monitors are used, there is little or no overhead incurred by gathering the data. Only a 
fraction of the studies report information on performance. Burrows reported an increase of 
CPU utilization of less than 2 per cent, Biswas, et al. reported less than 1 per cent, and 
Muller and Pasquale reported less than 5 per cent. Appleton estimates the CPU overhead of 
his package at 2 per cent.69 A more meaningful performance measure of tracing overhead 
is slowdown. Korner, who used a package by Simonetti7’ for her study, reported a 50 
per cent system slowdown. Zhou reported slowdowns of 7-7-10 per cent for YO intensive 
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programs, and 2-4 per cent for CPU intensive programs. DFSTrace incurred a 3-7 per cent 
slowdown for a file system intensive benchmark. In practice, the performance degradation 
was unnoticeable. 

It is important to limit local resource use by tracing for several reasons. First, use of local 
resources such as disk files may perturb the data, because tracing system activity is recorded 
in the trace itself. Second, users may be unwilling to sacrifice significant amounts of local 
resources to store the data, especially in the long term. Third, in long-term collections it is 
impossible to store all of the data locally. For these reasons, we chose to buffer trace data in 
a fixed amount of memory, and then send it to a remote collection site. To our knowledge, 
none of the studies cited in Table 111 except DFSTrace placed limits on local resource use. 
Only DFSTrace, Muller and Pasquale, and Griffoen and Appleton used remote collection 
sites. 

In summary, DFSTrace is the only tracing system that has enabled long-term collection of 
detailed file reference trace data in a distributed workstation environment. Its low overhead 
both in terms of performance and local resource use were critical for successful long-term 
data collection. Our emphasis on long-term data has made DFSTrace unique in several 
other respects. Versioning of both data and software, and interchangeability of components 
simplify the logistics of collecting and handling long-term data. Detection and recording 
of data losses was necessary because of limits on local resource use and distribution of 
the collection mechanism. Both of these constraints were consequences of the desire for 
long-term data. 

10. CONCLUSION 

DFSTrace is a system that has proven its worth over many years. Its design pays care- 
ful attention to efficiency, extensibility, and the logistics of long-term data collection in a 
distributed workstation environment. The need for long-term data from a distributed envi- 
ronment influenced many aspects of the design of DFSTrace. Low overhead and limits on 
local resource use are critical in long- term data collection. The separation of data gathering 
from interpretation is key for good performance and extensibility. Practical considerations 
such as versioning of data and software and interchangeability of components simplify the 
logistics of collecting and handling long-term data. 

The importance of long-term data cannot be understated. Much of the work mentioned in 
Section 8 would not have been possible without data of the detail and length that DFSTrace 
generates. DFSTrace is the only system that we know of that provides data that meets these 
requirements. We are confident that it will continue to be valuable for future research in 
data storage systems. 
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