
SOETWARGPRACTICE AND EXPERIENCE, VOL. 26(6), 705-736 (JUNE 1996)

Long Term Distributed File Reference Tracing:
Implementation and Experience

L. MUMMERT AND M. SATYANARAYANAN
School of Computer Science, Carnegie Mellon University, SO00 Forbes Avenue Pittsburgh, PA, 15213-3891,

U.S.A.

SUMMARY

DFSTruce is a system to collect and analyze long-term file reference data in a distributed UNIX worksta-
tion environment. The design of DFSTrace is unique in that it pays particular attention to the efficiency,
extensibility and the logistics of long-term trace data collection in a distributed environment. The com-
ponents of DFSTrace are a set of kernel hooks, a kernel buffer mechanism, a data extraction agent, a set
of collection servers and post-processing tools.

Our experience with DFSTrace has been highly positive. Tracing has been virtually unnoticeable, de-
grading performance 3-7 per cent, depending on the level of detail of tracing. We have collected file
reference traces from approximately 30 workstations continuously for over two years. We have imple-
mented a post-processing library to provide a convenient programmer interface to the traces and have
created an on-line database of results from a suite of analysis programs to aid trace selection.

Our data has been used for a wide variety of purposes, including file system studies, performance
measurement and tuning and debugging. Extensions of DFSTrace have enabled its use in applications such
as field reliability testing and determining disk geometry. This paper presents the design, implementation
and evaluation of DFSTrace and associated tools and describes how they have been used.

KEY WORDS: file reference tracing; distributed file systems; evaluation; measurement

1. INTRODUCTION

Empirical data from file systems has been used in many phases of the development of data
storage systems. For example, such data has been used to study file placement?
and m i g r a t i ~ n . ~ ~ In this paper, we describe the design and implementation of a system called
DFSTruce to collect long-term file reference data in a distributed workstation environment.
The challenges involved in collecting such data are in engineering rather than concept.
Hence this paper focuses on the design and implementation of DFSTrace rather than on the
results of using the traces.

The need for detailed file reference traces arose in 1989 during the development of the
Coda file an experimental distributed file system that provides high availability.
The intended use of these traces influenced their content and the design of the system for
collecting them. The trace data had to have several properties that distinguish our work from
other file reference tracing efforts. First, the data had to be long-term - weeks or months.
Second, it had to contain information on a broad class offile system operations. Third, it had
to be from a distributed workstation environment. None of the existing sets of file reference

CCC 0038-0644/96/060705-32
01996 by John Wiley & Sons, Ltd.

Received 11 November 1994
Revised 18 October 1995

706 L. MUMMERT AND M. SATYANARAYANAN

data from UNIX* environments at the time2~'0.11 satisfied all of these requirements. Even
now, six years later, only our data meets these requirements.

We have used DFSTrace to collect data continuously from approximately 30 workstations
for over two years. We have obtained over 150 GB of data containing references to the
Andrew File System12 (AFSt), NFS,13 Coda and the local UNIX file system.14 We have
developed a versatile post-processing library and tools to analyze the data and an on-line
database of results from a suite of analysis programs to aid in selecting traces for study.

The rest of this paper is organized as follows. Section 2 describes the design of DFS-
Trace. The instrumentation and collection machinery are described in Sections 3 and 4,
respectively, The post-processing library, summary suite, and on-line database are described
in Section 5. In Sections 6 and 7 we evaluate DFSTrace qualitatively and quantitatively.
Section 8 summarizes the ways in which researchers have used and extended DFSTrace.
We close with a discussion of related work and conclusions.

2. DESIGN RATIONALE

In this section we describe how our data requirements influenced the design of DFSTrace.
We then present the architecture of the collection system, and discuss how it addresses
the design requirements. Last, we describe the format and content of the data collected by
DFSTrace.

2.1. Requirements
Long term data collection imposes several requirements on a tracing system. The most

important requirement is that tracing must be unobtrusive, otherwise users may alter their
behavior or refuse to be traced. This requirement is critical in view of our desire for detailed
traces, because clients are likely to generate a large amount of data. The system must be
efficient both in terms of client workstation performance and client resources used and
it should be application-transparent (i.e., users should not have to run special versions of
their application software to generate trace data). The desire for efficiency and application-
transparency suggests data should be gathered in the operating system kernel. Because the
information needed to construct trace records resides in kernel data structures, gathering data
in the kernel minimizes crossings of the user-kernel boundary and is hence more efficient
than gathering data at user level. Again, to keep tracing overhead low, data should not
be processed during collection. To minimize client resource use, data should reside on the
client only temporarily; it should then be shipped to a collection site in the background.

Tracing a distributed workstation environment imposes the following additional system
requirements. Distribution introduces multiple points of failure. The system should be robust
enough to detect and tolerate failures. Buffering on the client can mask short failures,
but may not suffice for prolonged outages. In the long term, failures resulting in data
loss are inevitable. The system must be able to record the occurrence of data losses so
they may be detected later. Distributed environments are often heterogeneous, and the
architectures used tend to change over time. Therefore the system should be reasonably
portable to new architectures. In a long-term collection effort, changes are inevitable in
the data being collected as well as in the system collecting it. The system must be flexible

* UNIX is a registered trademark of UNIX Systems Laboratories, Inc.
t AFS is a registered trademark of the Transarc Corporation.

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 707

Client
Workstations

Collection
Servers

Figure 1. Top-level view of DFSTrace

enough to detect and cope with such changes gracefully. Versioning should be used to allow
interchangeability of system components. This implies that the collection mechanism should
not depend on the content of the data being collected. Finally, the system should be easy
to administer. The logistics of gathering the data should be automated wherever possible.

2.2. Architecture
Figure 1 presents a high-level view of DFSTrace, excluding post-processing software.

Trace data is generated by client workstations running kernels instrumented at the system
call level. The data is extracted by a user-level process, or agent, buffered locally in memory,
and then sent to one of a small number of data collection servers, or collectors. A collector
buffers the data on disk; in the background an optional rape daemon moves the data to tape.
The data is post-processed later to obtain a usable set of traces for analysis. Multiple servers
may be used to balance load and maintain availability. This architecture is reminiscent of
the METRIC kernel instrumentation system.15

The agent and collector do not interpret the data, thus their operation is independent from
the data being collected. The kernel, agent and collector may be changed independently.
The agent and collector employ version information in their communication interface to
allow incompatible releases of code to be detected at runtime. If an agent is incompatible
with the collector, the agent exits with an advisory message.

More detail on client operation is provided in Figure 2. We have instrumented system
call code to gather data on file system activity. Relevant data is passed to a logging routine
which packs a trace record and writes it into an circular memory buffer. The agent extracts
blocks of data from the buffer through a simple device driver interface. The agent buffers
data in memory rather than in files to minimize its impact on the data being collected.

708 L. MUMMERT AND M. SATYANARAYANAN

Logging code

I get ,,* to collector

*: agent ;
.... '-. .._._..-

logging buffer

Kernel User

Figure 2. Tracing on a client workstation

2.3. Data format and content
The performance of client workstations is affected directly by the amount of data they

generate. We wanted to collect detailed data on file system operations within the limit of
reasonable client performance. Needless to say, it took a few iterations before the data
generated was complete and struck a good balance between detail and performance. In this
section, we give the history behind the data we decided to collect and discuss some of the
surprises along the way. Then we discuss the content of the data we currently collect.

2.3. I . Evolution

We wanted to collect data on all system calls relating to the file system and any other
calls that would aid in post-processing (such as fork and exit)*. We were not certain that
tracing read and write calls would be feasible, because of the large amount of data that
was likely to result. We began by estimating the amount of data a client workstation would
generate in a day. We instrumented Mach17 kernels running on IBM PC/RTs to count the
system calls of interest. Based on the information we expected to record for each system
call, we estimated that each workstation would generate 6.2 MB per day without reads and
writes and 31 MB per day with reads and writes. We decided not to record reads, writes,
or seeks, but only to record summary information on those operations when the file was
closed.

A prototype implementation yielded only half the data volume we expected. We added

* We assume familiarity with the UNIX system call interface. For more information, see Section 2 of the UNIX Programmer's
Manual.'6

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 709

Record Items recorded (with header)
open flags, mode, file descriptor, index, user ID, old size, size, file type,

c lose

s t a t , l s ta t
seek

chd i r , chroot ,
read1 ink

execve
access, chmod
c r e a t
mkdir
chown
rename

l i n k

symlink
rmdir, unlink
t runca te
u t imes
mknod
mount
unmount
fork
sstt imeof day,

e x i t

fid, directory fid, path
file descriptor, index, # reads, # writes, # seeks, bytes read, bytes
written, size, fid, file type, open count, flags, caller, mode
fid, file type, path
file descriptor, index, # reads, # writes, bytes read, bytes written,
offset
fid, path

size, fid, owner, path
fid, mode, file type, path
fid, directory fid, old size, file descriptor, index, mode, path
fid, directory fid, mode, path
owner, group, fid, file type, path
from fid, from directory fid, to fid, to directory fid, size, file type, #
links, from path, to path
from fid, from directory fid, to directory fid, file type, from path, to
path
directory fid, fid, target path, link path
fid, directory fid, size, file type, # links, path
old size, new size, fid, path
access time, modify time, fid, file type, path
device, fid, directory fid, mode, path
fid, readwrite flag, path
fid, path
child pid, user ID
(header only)

read , wr i te
lookup
getsymlink
root

file descriptor, index, amount
component fid, parent fid, file type, component path
fid, component path, link path
component fid, target fid, path

dump system call counts
no te annotation

Figure 3. Contents of trace records

tracing of seek calls, thinking that it would not increase data volume significantly because
non-sequential access was uncommon in our environment. We were very surprised when
data volume increased dramatically from several workstations. The culprit was a monitoring
program that displays the status of a variety of workstation resources, such as disk and CPU
utilization. The program obtains its information by reading from /dev/kmem, a special file
that allows random locations in kernel virtual memory to be accessed.16 Unfortunately, the
program has to seek to each location in memory containing data of interest. One could argue
that having to read kernel memory to obtain information on resource utilization represents

710 L. MUMMERT AND M. SATYANARAYANAN

I time (usec) I - 4bytes -
Figure 4. Trace record header

a deficiency in the UNIX system call interface. Given that, and the fact that we were not
keenly interested in accesses to special files, we disabled the reporting of individual seeks
on /dev/kmem. The number of seeks is contained in the close record, so our data still shows
that large numbers of non-sequential accesses are performed on /dev/kmem.

We also implemented collection of read and write data as an option that may be enabled
dynamically. Our workstations do not normally enable it because it is not critical to our
studies. We can obtain reasonably detailed information about access patterns from summary
statistics recorded in close and seek records, including the number of reads and writes and
the amount of data read and written.

We discovered a critical omission in the data after using it as input to a simulator for the
Coda file cache manager. The cache manager receives requests not as system calls, but as
Vnode operations." The mapping between system calls and Vnode operations is reasonably
direct, except for name resolution. Name resolution is the mapping of a path name to
a fixed-length low-level identifier. It involves traversing the path name by component,
and is performed beneath the system call interface. Although it is possible to simulate
name resolution if a snapshot of the file system exists,'' snapshots are not feasible in our
environment because workstations access large distributed file systems such as AFS. To fix
the omission we added support for tracing name resolution operations.

2.3.2. Trace records

Figure 3 lists the data we collect. All records begin with a fixed-length header that includes
the length of the record, opcode, process ID, return code, and time. The upper section of
Figure 3 lists the contents of records corresponding to UNIX system calls. In general, these
records contain the arguments and return values for the call, and internal information on
the objects involved in the call.

Trace records are variable in length. Most records contain a path name and one or more
low-level file identifiers, orjds. The fid of a file is constant across rename operations and
immune to aliasing by link operations. The format and length of the fid depends on the file
system in which the object resides, and can vary from eight to sixteen bytes in length. For
example, the fid of a UFS file consists of the device on which the file resides, and the inode
number of the file*. The identity of the file system containing the referenced object is also

* An inode is a data structure that describes the file.20

LONG TERM DISTRIBUTED FiLE REFERENCE TRACING 711

recorded, to allow comparisons of local and distributed file system usage, and to identify
references to the same object through different workstations or pathnames. We record the
fids of all objects that could be affected by an operation. For example, an open might create
a new file, so we record information on the parent directory of the file. A rename of a file
to a different directory where the new name already exists involves four different objects.

Several of the system calls we record involvefifile descriptors, which are used by processes
to perform I/O. A file descriptor is a result of a successful open system call. It is used by the
kernel as an index into a table of open files for the process. Each entry in the process open
file table points to an entry in the system open file table, which contains information about
the file represented by the descriptor. New descriptors for an open file may be created for
a process using the dup system call. If a process creates a child process, all of the parent’s
descriptors are inherited by the child. To avoid recording calls like dup and keeping track
of aliasing, we record the file’s index in the system open file table along with the descriptor.

The lower section of the table corresponds to auxiliary or internal operations. The lookup,
root, and getsymlink records are generated during name resolution. The note record
allows programs to deposit additional information into the trace. Users of DFSTrace have
found this facility convenient for annotating experiments.

The raw form of the trace record header is depicted in Figure 4. The return code of the
call is in the ‘error’ field. Each half of the ‘vnode’ field indicates the file system in which
objects in the record reside. For records referencing more than two objects, such as rename,
a separate word is provided for this purpose. The ‘flags’ field is reserved for internal errors;
flags are set if data required for the record (e.g., pathnames) could not be obtained. The
rest of the record contains the system time, in seconds and microseconds. The trace library,
described in Section 5.2, uses the length and vnode fields internally. The record header it
presents to analysis programs omits these fields.

3. KERNEL INSTRUMENTATION

Our goal in instrumenting the kernel was to modify as little of the existing code as possible.
We added two modules to the kernel - one containing code for packing trace records, and
another for managing the circular buffer. The kernel instrumentation consists of three layers,
as illustrated in Figure 2.

The topmost layer of instrumentation is in the system call code, which contains hooks to
the packing code. For many system calls, a single one-line hook at the end of the call is
sufficient to capture the data of interest. The hook appears at the end of the call to record
the return code and any output parameters.

Unfortunately, not all system calls are structured in a way that allows all the desired
data to be obtained with one hook. Some system calls destroy data. The obvious ones are
unlink and rmdir. Less obvious examples include rename, which may remove the target
if it exists, and open, which will remove a pre-existing file if a new file is being created.
For these cases, there is a hook to record information on the data about to be destroyed,
in addition to the hook at the end of the call. These ‘split’ records are reassembled by the
post-processing library and presented as single records to the user.

An example of a split open record is shown in Figure 5. Split records consist of a pre-
record and a post-record. The pre-record, shown on the left, is recorded if data of interest
will be destroyed during the system call. In this example, a pre-record is written if the file
exists and it is being recreated or truncated at open time. The size of the original file, if it
exists, is recorded in the ‘old size’ field of the pre-record. The post-record, shown on the

712 L. MUMMERT AND M. SATYANARAYANAN - 4 bytes - - 4 bytes -
record header

directory fid

old size

(a) pre-record

thread address
flags

fid

size I

(b) post-record
Figure 5. Split record

right, is always recorded. It contains data that is available at the end of the system call.
For some system calls, the data of interest is scattered throughout several modules. Ex-

amples of this are mkdir and open. When a file or directory is created, the parent directory
changes. Information on the parent directory is most conveniently obtained in a routine
called by the system call. We use split records in these cases to record information that is
not available in the system call itself.

There are sets of system calls that are similar enough that their code is a veneer over
a common routine. Examples of this are open and creat, mknod and mkdir, stat and
lstat, and the attribute-setting variants chmod, chown, utimes, and truncate. In these
cases the best location for the hook is in the common routine, but it is not always obvious
from that routine which operation is the caller. For the cases that are not easily deduced,
we have added a parameter to the common routine that indicates the calling operation.

Another complication is early return points. We have instrumented certain early return
points because they generate file system activity. For example, a common early return point
in system calls that take pathnames as arguments is when there is no file corresponding to
the pathname. Even though the system call fails, we still record the call because the system
must perform name resolution to discover the error, generating file system activity.

It is important to be able to match file opens and closes in a trace. Files are closed
in several places other than the close system call. For example, files are closed when a
process exits. They are also closed in a variant of dup which allows the new file descriptor
to be specified. If there is already a file open with that descriptor, the system will close it
first. Under certain conditions, files are closed in execve as well. Each of these locations
must be instrumented to capture file close events completely.

LONG TERM DISTRIBUTED HLE REFERENCE TRACING 713

All of the hooks are above or within the vnode interface, which is a layer in the kernel
that allows a variety of local, remote, or even non-UNIX file systems to be incorporated
in a single system. Since the vnode layer is file system independent, the hooks capture
references to any file system hooked into the kernel. There is only one piece of file system
dependent tracing code, namely, a routine that packs fids into trace records.

Trace records are packed in the left middle layer of Figure 2. The routines in this layer
gather any additional data that may be needed for the records, such as file attributes and
fids. Packed records are placed in a circular memory buffer, in the bottom left layer of
Figure 2. The interface to this buffer is that of a simple device driver supporting read,
select, and ioctl system calls. If the buffer wraps around, the read call returns an error
and advances the ‘bytes read’ counter by the amount of the read. Through the ioctl call,
tracing may be turned off or on dynamically, and tracing of various classes of operations
(such as reads and writes or name resolution) may be enabled or disabled.

4. COLLECTION MACHINERY

As described in Section 2.2, the collection machinery consists of the agent daemons running
on client workstations, and collectors running on a small number of servers. An optional
tape daemon may be used at collection sites to spool data to tape.

One of the challenges of long-term data collection is coping with the inevitable changes
in tracing software and the format and content of the traces. It is desirable to structure the
system so that older traces are still usable, even though they may not be compatible with
newer ones. We have incorporated version information into each component of DFSTrace,
and the system embeds this information in the header of each trace. The postprocessing
library is structured to accept any of the various formats, and determines which it is by
reading the version information in the trace header.

4.1. Agent

The goal of the agent is to extract trace data from the kernel without consuming excessive
resources on the host machine. The agent is implemented as a multi-threaded user-level
process, with one thread reading data from the kernel through the tracing device described
in Section 3, and another sending data to the collector via remote procedure call. We used
the RPC2 remote procedure call package and the LWP threads package, which provides
non-preemptive (co-routine) threads.*’ The agent reads blocks of data from the kernel and
buffers them in memory. It uses two fixed-size buffers, one for each thread, consuming
roughly 1 MB of memory by default. Users can specify a different memory limit using a
command line argument. The agent is typically started at boot time.

The agent’s kernet thread is responsible for reading blocks of trace data out of the kernel
before the data is overwritten. If data has been overwritten, an error is returned to the agent
on its next read. The agent prepends a header to each block containing the block sequence
number, the level of tracing, the number of bytes lost before the block (if any), and a flag
indicating if there were problems communicating with the collector before the read.

The network thread takes a buffer filled with trace data blocks and headers and sends it
to a collector. If communication fails, the network thread records the failure and attempts
to resend the data. It backs off exponentially if subsequent resends fail. In the meantime,
data may be lost if the kernel thread runs out of space for new trace data.

The agent responds to several UNIX signals that allow users to tell the agent to flush

714 L. MUMMERT AND M. SATYANARAYANAN

Figure 6. Format of trace data

data or shut down. Users may also specify at what level operations are to be traced using a
command line switch. The operations are grouped into the following independent categories
-basic system calls (open, close, etc.), read and write system calls, and name resolution.
Most of our clients traced the basic system calls and name resolution.

4.2. Collector
The collector is a multi-threaded server that receives trace data from potentially many

hosts. Data is ‘staged’ temporarily on disk in sruging$files, one for each host. After a staging
file reaches a certain size (about 5 MB), the collector starts a new staging file for that host,
and the filled file may be archived to tape. The collector prepends a header to each staging

Host last t r ans fe r # bytes (t ransfers) conn open
128.2.209.204 Jan 7 17:20:24 2037568 (4) Jan 5 22:05:52
128.2.222.111 Jan 7 17:25:47 509392 (1) Jan 5 22:03:44
128.2.209.213 Jan 7 16:34:12 509392 (1) Jan 5 22:03:44
128.2.209.215 Jan 7 17:05:49 2546960 (5) Jan 5 21:59:28
128.2.209.217 ***** 0 (0) *****
128.2.206.77 Jan 7 17:00:04 509392 (1) Jan 5 22:08:00

Figure 7. Collector summary report

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 715

tile containing version information for the tracing kernel, agent, and collector - together
these define the format of the trace. The header also contains the client’s network address
and boot time, and the start time of the agent. The format of raw trace data is shown in
Figure 6.

Periodically, the collector prints summary statistics on the clients from which it is re-
ceiving data. The default period for the summary report is one hour. A sample summary
report is given in Figure 7. It is easy to see from this summary which hosts have not
connected recently, and which hosts are active. There is a longer form of the summary that
also includes the client birth time and the versions of client software.

4.3. Tape daemon
The tape daemon is an optional component of DFSTrace that automatically archives filled

staging files to tape. It can scan multiple data partitions, and switch between multiple tape
drives. The tape daemon responds to a signal to scan for new data to archive. The collector
uses this signal to notify the tape daemon when a staging file is ready to be archived.

5. POST-PROCESSING

Thus far we have discussed how trace data is generated. In this section, we discuss how to
use trace data. Once the trace data is generated, it must pass through a post processing step
that assembles the longest possible trace subject to a set of conditions. This is discussed
in Section 5.1, In Section 5.2, we discuss the trace library, which simplifies trace analysis
by hiding the underlyirg structure of a trace beneath a convenient programming interface.
Then in the last part of this section, we discuss the summary suite, which is a set of analysis
programs that generates summary statistics for a trace. We run this suite on every trace and
place the results in a database to aid users in identifying and selecting traces for analysis.

5.1. Maximizing trace length
We need to guarantee that the traces are complete, namely, that they contain every event

that occurred on the client in the interval covered by the trace. To do this, a post-processing
step is necessary to transform staging files into complete traces. This post-processing step
assembles the longest trace from staging files, subject to several termination conditions.
These conditions correspond to machine restarts, agent restarts, and data losses. Data losses
are recorded by the agent in the data block header. When a loss is detected, the trace is
split at that point. Machine reboots and agent restarts cause new staging files to be created.
The new staging files have different trace headers than their predecessors.

The length of post-processed traces varies. Our traces range from approximately five
minutes to weeks in length, and approximately 1 MB to 800 MB. A few traces were broken
at 800 MB even though none of the trace ending conditions applied, because that was the
amount of disk space available when the traces were constructed.

5.2. Trace analysis library
The goals of the trace analysis library are to provide a convenient programmer’s interface

to the traces and to implement common operations. The underlying structure of the trace
is hidden behind a simple interface, shown in Figure 8. The library is structured to accom-

716 L. MUMMERT AND M. SATYANARAYANAN

TraceSetFilter(filep, filterfile-name) TraceXopyRecord(soucep, destpp)
Trace-Close (f ilep) Trace_FreeRecord(filep, recordp)

(a) Initialization and termination (b) Record manipulation

Trace-FidsEqual(fidlp, fid2p)
Trace-GetFid(recordp, fidplist, nump)
Trace-GetFileIndex (recordp)
Trace-GetFileTypebcordp)
Trace-GetPathh-ecordp, pathplist , nump)
Trace-GetRef Count (recordp)
Trace-htUser(fileD. Did. uidu)

(c) Field retrieval

1 TraceStats(fi1ep. statp) I
I I

(e) Miscellaneous

TraceJJrintPreamble (f ilep)
TraceJJrintRecord(recordp)
TraceDumpRecord(recordp)
Trace-OpcodeToStr(opcode)
Trace_NodeIdToStr(addr)
Trace-OpenFlagsToStr(f1ags)
TraceAecTirneToStr(recordp)
Trace-FileTypeToStr(type)
Trace-InodeTypeToStr (type
Trace-FlagsToStr (f lags)
Trace_FidPtrToStr(fidp)

(d) Output and formatting

Figure 8. Library interface

modate traces of various formats, including those of other researchers, while maintaining a
consistent interface to the programmer.

The operations for initialization and termination are shown in Figure 8(a). The Trace-Open
call opens the trace file and determines the format of the trace by reading the preamble at
the beginning of the file.

The library calls for obtaining records are shown in Figure 8(b). The central call is
Trace-GetRecord. The library unpacks the raw, structured trace, and presents it to the
application as a sequence of records through this call. The call returns the next record,
subject to a filter specification, if any, as a pointer to a record structure. The library allocates
the storage necessary for the record and any pathnames included in the record. To free
the storage, programs call Trace-FreeRecord. The Trace-CopyRecord copies a record,
allocating new storage for both the record and any pathnames it references.

The library maintains a good deal of bookkeeping on the trace, such as keeping track
of open files, gluing split records together, and building and tracking process trees, so that
groups of processes may be studied in aggregate (e.g. make). Because of this, the records
that the library presents to the programmer are often more detailed than shown in Figure
3. For example, the library simulates the system open file table for each trace it processes.
This allows it to provide data from the open record for file descriptor based operations (e.g.,
seek and close), such as pathnames.

Certain fields are common amongst a set of records, such as pathnames and fids. In Figure
8(c), we show routines that obtain those fields from records, allowing the fields to be treated
generically. The call Trace-GetUser obtains the user ID (uid) that generated the record.
The uid is not present in all records, only the fork record. The library keeps track of process
activity through fork and exit records, and thus is able to determine which user generated
a record in most cases.

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 717

opcode open close stat lstat chdir chroot creat mkdir access chmod readlink
getsymlink chown utimes truncate rename link symlink unlink rmdir lookup root
type directory regular link
refcount 1
error 0
matchf ds
start 21-Feb-91,12:00:00
end 22-Feb-91,00:00:00
pid exclude 326 2961 3640 4369
path exclude /dev/null

Figure 9. Filter specijcation

In Figure 8(d), we show generic printing routines for records and the file preamble, which
may differ in traces of different versions. The remaining call, for obtaining statistics on a
trace, is shown in in Figure 8(e).

It is common to want to include or exclude various types of records from a trace, such
as by uid or opcode. The library supportsjltering of various kinds, such as by start and
end time, opcode, uid, and path name. The library is a natural place to implement filtering
because it is such a common operation, and because certain types of filtering require data
structures the library already maintains, such as the open file table for matching opens and
closes. Filtering fits neatly beneath the Trace-GetRecord call. Once a filter is applied to
the trace, the library returns only those records that satisfy the filter specification.

Filters are specified in a filter file, which is applied to a trace using Trace-SetFilter.
Filter specifications take the form <attribute> [<modif ier>l <value> <value> . . . ,
where an attribute is the opcode, for example. To keep specifications short, an optional
modifier can be used to specify values to be included or excluded from the trace. Figure
9 gives an example of a filter. The opcode attribute specifies the desired subset of record
types. In addition, the objects referenced in the records must be either directories, files or
symbolic links (no device or special files). The ‘refcount’ filter says for operations that
record a reference count (e.g., close), only return those records with a reference count of
1. The ‘matchfds’ filter says only return close, read, and write records that have matching
open records. The pid filter in this example excludes certain long-running system daemons.
The pathname filter may user regular expressions for pathname matching.

5.3. Summary suite
As the body of data we collected grew larger, summary information of various kinds for

each trace became necessary, so that a user confronted with 150GB of this data has some
idea where to begin. We have built an on-line database for the traces that contains, for each
trace, summary information including composition by system calls, access characteristics,
and activity levels. The summary information is the output of a suite of analysis programs
run on each trace before being archived on tape.

The output is placed in an on-line collection of summary results to assist in finding appro-
priate traces for study. The suite is comprised of the programs tstat, users, sessions,
and patterns. Each of these programs is run on the trace without filtering, then tstat,

718 L. MUMMERT AND M. SATYANARAYANAN

u id processes
2336 1574
0 975
Unknown 3
7 46
1516 15
9 6
4840 9
4035 2
11 1

records (%I
643397 (69.6)
260272 (28.2)
15936 (1.7)
3326 (0.4)
672 (0.0)
388 (0.0)
315 (0.0)
96 (0 . 0)
58 (0.0)

Figure 10. Output of uaers.

sessions, and pa t t e rns are run for each active user found in the trace. The programs
are described below, along with sample output from each.

The users program classifies trace records by user ID where detectable. The user ID is
found in the fork record for the process or any child processes it creates. If the process was
created before the trace starts, and creates no child processes, it falls into the ‘Unknown’
category. Output for u se r s is shown in Figure 10. Uids 0, 7, 9, 11, and 4035 are system
IDS. User 2336 is the primary user of the workstation from which the trace was collected.

The ts ta t program prints a variety of statistics on a trace, including a breakdown of trace
records by opcode and file systems referenced. Figure 1 1 shows the output of tstat. The
percentage is by number of records, not by volume. Dump records, containing system call
counts, are not shown, although they are reflected in the record counts. The ‘fail’ column is
the number of operations that failed. Name lookup usually has a high percentage of failing
operations because of shell pathname searches. The number of objects referenced depends
on the operation and whether or not there was a failure; it is not necessarily the same
as the number of records. The difference between ‘records’ and ‘raw records’ reflects the
presence of split records. The difference between ‘records’ and ‘records returned’ reflects
the presence of a filter.

The pa t t e rns program summarizes the file reference patterns based on c lose records
in the trace. The summary includes the number of read-only, write-only, and read-write
accesses to files, as well as bytes transferred for each access type. Each access type is
further divided into whole-file transfer, other sequential access, and random access. An
access is a whole-file transfer if the amount of data read (or written) is equal to the size of
the file, and there were no seeks. If there are no seeks, but the amount of data is not equal
to the size of the file, then the access falls into the ‘other sequential’ category. If seeks
occur, the access is considered random.

The summary information in c lose records (number of bytes read, written, etc) is cu-
mulative. For example, if a file descriptor is dup’ed, and the file is manipulated under both
descriptors, the statistics reported will be the sum of their accesses, and there is no way to
determine from the final c lose which accesses were performed using a particular descrip-
tor. If the file is read from one descriptor, and written from another, then the activity will
be reported as a read-write access. Figure 12 summarizes the file reference patterns in the
trace for processes owned by user 2336. The format is reminiscent of that used in the study
by Baker.’

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 719

Trace of host 128.2.209.215, versions 3.1, 3.1. 3.2
Host booted Mon Mar 30 12:40:29 1992, agent started Mon Mar 30 13:19:00 1992
Trace starts Mon Mar 30 13:19:04 1992, ends Mon Mar 30 23:15:23 1992
11206644 bytes, 269716 raw records (7/sec>, 249536 records, 249536 returned

Opcode
OPEN
CLOSE
STAT
LSTAT
SEEK

EXECVE
EXIT
FORK
CHDIR
UNLINK
ACCESS

READLINK
CREAT
CHMOD

SETREU ID
RENAME
RMDIR
LINK
CHOWN
MKDIR

SYMLINK
SETTIMEOFDAY

MOUNT
UNMOUNT
TRUNCATE
CHROOT
MKNOD
UTIMES
READ
WRITE
LOOKUP

CETSYMLINK
ROOT

nun
20006
41017
9064
3054
16480
6263
7611
7654
595
297
657
11
445
43
3626
33
10
66
51
4
0
3
3
1
192
0
0
8
0
0

1
8
16
3
1
6
2
3
3
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

111939 44
10655 4
9164 3

fail
802
0
547
143
0
1989
0
0
2
33
486
6
9
27
0
4
7
0
13
1
0
0
0
0
0
0
0
8
0
0
3945
0
244

uf s
19010
40236
8268
2844
15046
4215
0
0
564
508
88
3
838
37
0
81
20
198
49
4
0
0
3
0
192
0
0
0
0
0

afs
535
771
248
67
1434
64
0
0
31
20
83
8
34
4
0
12
0
0
0
2
0
0
0
0
0
0
0
0
0
0

197666 22055
8993 1649
16368 1684

cfs
10
10
1
2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
212
13
32

nfs
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 11. Output of t s t a t

720 L. MUMMERT AND M. SATYANARAYANAN

Access Type Accesses (%)

Read-only 5289 (80.4)

Write-only 1237 (18.8)

Read-write 49 (0.7)

Total 6575

Bytes (%I Transfer Type

Whole-f ile

26470408 (70.3) Other Seq

Random

Whole-f ile
10651214 (28.3) Other Seq

Random

Whole-f ile
543203 (1.4) Other Seq

Random

37664825

Accesses (1)

3022 (57.1)

1154 (21.8)

1113 (21.0)

990 (80.0)

0 (0.0)

247 (20.0)

0 (0.0)
7 (14.3)
42 (85.7)

Bytes (%I

14173603 (53.5)

1513723 (5.7)

10783082 (40.7)

5909950 (55.5)

0 (0.0)

4741264 (44.5)

0 (0.0)

346760 (63.8)
196443 (36.2)

Figure 12. Output of patterns for user 2336

Given a trace over some length of time, how does one decide which periods to analyze?
For example, one may be interested in only those periods during which a user is active.
Activity can be defined in terms of the number of operations performed during a unit of
time. Given that definition, an active period would consist of some number of intervals
in which the activity (number of operations) exceeds some threshold. One may want to
include intervals in which the number of operations falls below the threshold, as long as the
decrease in activity is transient. We call the resulting period a session illustrated in Figure
13. For the trace in this figure, the activity threshold is a, the minimum number of intervals
in a session is four, and one interval below the threshold is allowed.

The sessions program finds sessions in a trace, given the interval length, minimum
session length, activity threshold, and transient length as parameters. Defaults were chosen
ad-hoc as follows: an interval length of 15 minutes, session length of 16 intervals (4 hours),
activity level of 16 operations per interval, and a transient length of 4 intervals. The default
settings locate long stretches of fairly low activity. The summary suite uses three settings
- low activity (session length of one interval, other parameters at default values), medium
activity (session length of one interval, activity level of 180 operations per interval), and
high activity (session length of one interval, activity level of 900 operations per interval).
Figure 14 shows intervals of high activity for the primary user of a workstation. A transient
ended the first session, even though the following interval was sufficiently active. For each
active session, sessions reports the session length and the amount of activity in mutating
and non-mutating operations.

5.4. Replaying traces
One of the principal advantages of trace-based workloads is realism. The most direct

way to subject a file system to such a workload is to replay a trace on it. To replay a
trace, one must first construct a skeleton of the file system over which the traced operations

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 72 1

Figure 13. Example of a session

will execute. Then commands representing operations in the trace may be replayed on this
skeleton.

We have developed an ‘untrace’ facility that allows a trace to be replayed in a subtree of
the name space. Untrace takes a trace as input, and produces command files for constructing
the skeleton and replaying the trace. Sample output for the skeleton and replay command

Trace starts Wed May 6 06:30:42 1992

Begin Wed May 6 08:10:40 1992, end Wed May

Begin Wed May 6 09:40:40 1992, end Wed May

Begin Wed May 6 13:10:40 1992, end Wed May

6 09:40:40 1992 (1.49 hours)
ActiveIntervals = 1, Activity = 3821m+n (34m. 3787n)

6 12:55:40 1992 (3.25 hours)
ActiveIntervals = 6, Activity = 10405m+n (98~1, 10307n)

6 15:53:40 1992 (2.72 hours)
ActiveIntervals = 4, Activity = 7423m+n (4m, 7419n)

Trace ends Wed May 6 15:55:28 1992

Figure 14. Output of sessions for user 2336, high activity

722 L. MUMMERT AND M. SATYANARAYANAN

mkdir root
mkdir root/ufs.700.800
mkdir root/ufs.700.800/.LOCALROOT
mkdir root/ufs.700.800/.LOCALROOT/usr2
mkdir root/ufs.700.800/.LOCALROOT/usr2/lily
mkdir root/ufs.700.800/.LOCALROOT/usr2/lily/src
rnkdir root/ufs.700.800/.LOCALROOT/usr2/lily/src/xmines
open root/ufs.700.800/.LOCALROOT/usr2/lily/src/xrnines.c 2562 -1
open root/ufs.700.800/.LOCALROOT/usr2/lily/src/Makefile 2562 -1
mkdir root/ufs.700.800/.LOCALROOT/sys0
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs/include
mkdir root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys/types.h 2562 -1
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/stdio.h 2562 -1

(a) Skeleton commands

stat root/ufs.700.800/.LOCALROOT/usr2/lily/src/Makefile
open root/ufs.700.800/.LOCALROOT/usr2/1ily/src/Makefile 0 296
close 296 -1
open root/ufs.700.800/.LOCALROOT/usr2/lily/src 0 298
stat root/ufs.700.800/.LOCALROOT/usr2/1ily/src/xmines.c
open root/ufs.700.800/.LOCALROOT/sysO/tmp/cc.131914 2562 301
stat root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/sys/types.h 0 302
close 302 -1
stat root/ufs.700.800/.LOCALROOT/sysO/cs/include
open root/ufs.700.800/.LOCALROOT/sysO/cs/include/stdio.h 0 305
close 305 -1

(b) Replay file

Figure 15. Sample untrace output.

files is shown in Figure 15. The trace was of a compile of the game xmines; we show
the beginning of the compile. The commands in Figure 15(a) show the construction of the
file system skeleton, starting at ‘root’. The open calls in the skeleton file create the named
files. Commands in Figure 15(b) are operations derived from the trace. The arguments to
the open calls are the flags with which the file is to be opened, and an index which, if
non-negative, is used to refer to the open fiie.

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 723

6. STATUS AND EXPERIENCE

DFSTrace runs on DECstations, Sun 4s, SPARCstations, IBM RTs, and i386s running Mach
2.6. We have traced up to 36 machines on various projects for up to two years. In this
section, we present qualitative observations about DFSTrace, paying particular attention to
the requirements set forth in Section 2.1.

The most important requirement of DFSTrace was that it be unobtrusive. We have found
that the performance degradation caused by tracing is virtually unnoticeable to users. The
system requires very little user intervention, usually just at installation time. DFSTrace is
prevented from consuming excessive client resources by using fixed-length buffers in both
the kernel and the agent. If the buffer capacity is exceeded, data is lost.

Data losses occur for two reasons. First, a failure may occur, such as a server crash or a
network outage, for which the buffering on the client is not sufficient. Such failures are a
fact of life in a distributed environment. The second source of data loss is improper tuning
of the kernel and agent buffer size on the client. Clearly, one cannot trace system events in
unlimited detail, and expect the client to keep up with a fixed amount of resources. Ideally,
one should choose buffer sizes that balance the amount of data being generated with the
resources available on the client. If the traced workload generates a large amount of data,
either the buffer sizes must be increased, or the losses must be accepted.

Data losses can yield information about the clients and the system in general. Persistent
losses can be an indication of improper tuning or of system or hardware failures. This
class of losses generally merits investigation. For example, one of our clients had a faulty
Ethernet card that caused it to lose more data than it sent. Another group of machines was
separated from the collector by a gateway that was faulty, so those clients tended to lose
data more than clients on the same side of the gateway as the server. As an example of
improper tuning of the agent buffers, we found that some clients running a certain text
processing tool lost data. When they started the tool, it read a large number of font files
and generated data faster than the agent could read it from the kernel.

Our use of extensive version information has paid off. The system has gone through three
major revisions and many minor revisions, and the transitions were painless. In addition to
compatibility checks, versioning is useful for detecting buggy versions of traces. We have
had one buggy release of the tracing kernel that generated unusable traces. Using version
information we were able to find and discard traces generated by that release of the kernel.

The separation between data collection and interpretation is critical not only for good
performance but also for extensibility. Although extensibility was not one of our original
goals, this separation allowed others to extend DFSTrace to record other classes of events,
and still take advantage of the existing collection machinery. The extensions are discussed
further in Section 8.

An important lesson we have learned is that it is critical to use the data as soon as possible
to ensure that it is complete and sufficient for its intended purpose. We went through several
iterations of collecting and then attempting to use data before we arrived at the final set
and content of records. The traces were validated using comparison to known workloads,
such as the Andrew benchmark,22 and comparison to kernel data structures.

The library has proven to be effective in simplifying development of analysis programs.
It allows the user to concentrate on the analysis of the trace rather than on manipulating
the trace itself. For example, Kumar was able to read the library documentation, then write
and debug the analysis program for his in about one hour.

724 L. MUMMERT AND M. SATYANARAYANAN

Table I. Tracing overhead for the Andrew benchmark.

Elapsed time (min:sec)
Tracing level UFS (%) AFS (%) Coda (%)
off 220 (6) 0% 3:18 (6) 0% 3:40 (5) 0%

default, readlwrite 2:25 (0) 3.5% 3:19 (1) 0.5% 352 (6) 5.4%
default, name res 2:29 (1) 6.4% 3:26 (3) 4.0% 334 (5) 6.3%

default 2:26 (4) 4.2% 3:22 (4) 2.0% 3:47 (3) 3.1%

all 2:27 (1) 5.0% 3:25 (3) 3.5% 3:55 (9) 6.8%

Each entry is the mean of three trials. The standard deviation in seconds is given
in parentheses. UFS is the local UNIX file system. The slowdown is calculated
as 100 x (t level - t , f f) / t , f f . The benchmark was run on a DECstation 3100.
File caches were warm for the AFS and Coda results.

7. EVALUATION

7.1. Tracing overhead
This section presents the performance of various levels of tracing for the Andrew bench-

mark. The benchmark was run in three file systems - the local UNIX file system, the
Andrew file system, and the Coda file system. In each file system, tracing was run at four
levels. The default tracing level records all of the operations listed in Figure 3 except for
read and write system calls and name resolution. We then added read and write calls and
name resolution separately. Tracing all activity records all operations listed in Figure 3.

Table I shows the elapsed time of the Andrew benchmark for each level of tracing.
The overhead ranges between 3-7 per cent, depending on the events traced. Tracing a
large compile had lower overhead than the Andrew benchmark, ranging from 3-5 per cent.
CPU overhead for both workloads was negligible. Table I1 shows the amount of trace data
generated per run of the Andrew benchmark, again at four tracing levels and in three file
systems. Background system activity accounts for the variability in the amount of data
generated. The benchmark under AFS generated more data because of longer pathnames
and longer fids. The benchmark under Coda generated more data than under AFS because
the Coda cache manager operates at user level as opposed to within the kernel. Thus its
activity is captured in the trace.

7.2. Importance of kernel implementation
In Section 2.1, we emphasized the importance of good performance in a long-term tracing

system. We used this requirement along with application transparency to justify a kernel
implementation of DFSTrace. But is a kernel implementation strictly necessary to satisfy
this requirement?

To answer this question, DFSTrace was reimplemented using a toolkit for interposing code
between applications and the UNIX system call i n t e r f a ~ e . ~ ~ , ~ ~ The toolkit allows the kernel
code and agent to be replaced by an out-of-kernel interposition agent and log merge sewer.
Instances of the toolkit agent run as part of user programs. Each toolkit agent constructs
trace records and sends them to the log merge server, which creates a single trace for
the host and sends it to the collector. Because tracing is performed in user space, the
interposition agent and the log merge server must synthesize information that is normally

LONG TERM DISTRIBUTED FILE REFERENCE TRACING

Table 11. Volume of trace data generated during the Andrew benchmark.

725

Data (KB)
Tracing level UFS (%) AFS (%) Coda (%)

default, readwrite 747.4 (0.2) 799.7 (1.4) 1073.9 (5.6)

default, name res 1298.6 (1.2) 1520.4 (1.3) 1541.4 (1.2)

Each entry is the mean of three runs. Standard deviations are given
in parentheses.

default 500.8 (3.2) 548.2 (3.7) 600.5 (0.5)

a1 1 1584.2 (23.5) 1805.6 (11.5) 2038.2 (2.5)

obtained from kernel data structures, such as the system time, and file attributes. The
interposition agents make additional system calls, such as g e t t imeof day and getuid
to obtain this information. In addition, since name resolution is transparent to user-level
processes, the toolkit implementation must traverse the name space explicitly using 1st a t
to produce name resolution records.

The two implementations were compared along several dimensions, including code size
and modularity, implementation time, and performance using the Andrew benchmark. The
two implementations were comparable in code size. The toolkit implementation was con-
siderably more modular, requiring changes to only 60 per cent as many files as DFSTrace,
and no changes to existing kernel files. Implementation time using the toolkit was an or-
der of magnitude less than DFSTrace, primarily because the final content of the records
had already been determined, and because the latter involved building, debugging, and
maintaining kernels.

Performance of the toolkit implementation was an order of magnitude worse than DFS-
Trace, ranging from 64-138 per cent slowdown, compared to the 3-7 per cent in the original.
Most of the slowdown in the toolkit implementation is attributable to additional system calls
the toolkit agent must make to construct equivalent log records. These results reaffirm our
decision to gather data in the kernel, avoiding the performance penalty of repeated cross-
ings of the system interface boundary. Note that while a kernel implementation is necessary
for good performance, it is not sufficient. The overhead of DFSTrace is lower than that
of more generalized kernel tracing facilities such as GTFZ6 because it is selective in the
events it traces.

8. APPLICATIONS

DFSTrace has proven to be invaluable for a variety of purposes. Our original goal was to
answer questions about the Coda file system. Since then, DFSTrace has been applied to a
number of other areas. In this section, we discuss the uses of DFSTrace in five areas - in
trace-driven simulation, in trace replay experiments, as a diagnostic tool, as an instrument
for exploration, and as the basis of extensions for understanding low-level system behavior.

7.3. Simulation studies
Trace-driven simulation has been used to evaluate many aspects of computer systems,

such as paging and CPU scheduling algorithms. The virtues of trace-driven simulation, in
particular credibility and reproducibility of results, are well known.27 In this section, we
present some of the simulation studies conducted using traces generated by DFSTrace.

726 L. MUMMERT AND M. SATYANARAYANAN

7.3.1. Cache size for disconnected operation

The first serious use of DFSTrace was for a simulation of the file cache manager in the
Coda file system. One of the questions that arose during the development of Coda was
how large a file cache would be needed to support disconnected operation for a day.28 An
analysis based on traces from five active Coda workstations calculated a high-water mark
of disk usage for the file cache of approximately 30 MB. Thus a portable computer with a
50-60 MB disk would be adequate for operating disconnected for a twelve hour day. The
analysis was later extended to cover a five-day work week.29 Ten of the most active traces
were selected from over 1700 for which on-line summaries were available at the time. The
maximum cache space usage for the full week traces was less than 100 MB, and the median
was less than 50 MB.

7.3.2. Log space requirements for directory resolution

Information on long-term file reference behavior was needed during the design of the Coda
resolution subsystem.” Coda supports replication, and uses an optimistic replica control
strategy that allows updates in any network partition. The resolution subsystem is responsible
for detecting and classifying partitioned updates to directories, and merging them if they
do not conflict. A log-based strategy to support resolution was being considered, in which
each server would maintain a history of directory updates it performed during a partition.
A concern was whether or not the logs would consume excessive space on the servers.
Since a log grows linearly with work done during the partition, any realistic estimate of log
size had to be derived from empirical data. A feasibility study was conducted to determine
average and peak log growth. A total of 44 AFS and Coda volumes were studied in traces
from 20 workstations over a 10 week period. Long-term log growth was only 94 bytes per
hour per volume on average, and peak hourly growth rates were less than l O K B for over
99.5 per cent of the data points. Thus a 20KB log would be sufficient for most hour-long
partitions. This estimate was confirmed by data gathered from the implementation in actual
use, which showed that 99 per cent of the logs grew less than 240KB per day.3*

7.3.3. Improvements due to prefetching

Traces were used to estimate the performance improvements possible for TIP,31932 a system
which exploits application-supplied hints about future YO activity to reduce file read latency.
Experiments were conducted with several applications, including a make of an X windows
calculator tool. The make program was augmented with a prefetching process, which read
exactly the files needed. By using traces, perfect accuracy of future file access could be
achieved to estimate the maximum performance gain.

7.4. Trace replay experiments
We have developed a methodology for performance evaluation involving trace replay,

using the untrace facility described in Section 5.4. Trace replay differs from trace-driven
simulation in that the traces are replayed on a live system. This methodology increases
realism and credibility of results while preserving reproducibility. In this section we discuss
the evaluation of two aspects of the Coda file system using trace replay.

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 727

7.4. I . Reintegration latency

Reintegration is the propagation of updates made on a client during disconnected oper-
ation. To evaluate reintegration latency, highly active day-long and week-long traces were
replayed on a disconnected client and then reintegrated upon reconnection. The results sug-
gested that typical one-day disconnections would take about one minute to reintegrate and
typical work-week disconnections would take about five minutes on the hardware in use
at the time.29 The experiments also exposed performance bugs in code pertaining to long
disconnections.

7.4.2. Trickle reintegration

Trickle reintegration is the asynchronous propagation of updates from a client to a server
when network communication is slow. Its purpose is to decouple foreground activity on the
client from the performance of the network while remaining unobtrusive. To evaluate trickle
reintegration, we replayed a set of active trace segments on clients with network bandwidths
ranging from 10 Mb/sec to 9.6 Kb/sec. We were able to incorporate the effects of user think
time into the trace replay and conduct a sensitivity analysis for that experimental parameter.
The results showed that even though bandwidth varied by three orders of magnitude, the
performance of the trace workload was nearly unchanged.33

7.5. DFSTrace as a diagnostic tool
In complex system software, performance problems often mask bugs. In this section, we

describe how the tracing system was useful as a diagnostic tool for discovering problems
with systems and software.

7.5.1. Performance tuning

Tracing of read and write system calls has been useful for profiling the I/O activity of
RVM,34 a package providing persistent virtual memory. RVM manages recoverable storage
in unstructured segments, which are backed by files or disk partitions. Tracing helped
uncover a serious performance problem in mapping of large segments into memory; the
read buffers being used were too large and were causing the system to thrash. Tracing has
also been useful as a diagnostic tool for understanding the I/O behavior of incremental log
truncation in RVM.

7.5.2. Mobile client conjiguration

Tracing has been used for more mundane tasks, such as determining which programs
should be installed on the local disk of portable machines (as opposed to fetched into a file
cache), and discovering problems with tracing clients. If a client generated large amounts of
data (over 50 MB/day) it was almost invariably because something was wrong. For example,
one new client generated over 400 MB of data in a single weekend. An examination of
a few of the traces showed that the machine had a large mail backlog, which the mailer
was attempting to rectify with enthusiasm. The primary user of the machine maintained a
mailing list, but he had not noticed that some of the addresses were no longer valid.

728 L. MUMMERT AND M. SATYANARAYANAN

7.5.3. Application debugging
The traces have also been useful debugging aids. For example, we have discovered several

applications that do not close all of the files they open. Because of per-process limits on the
number of open files, this bug eventually rendered the application unusable. In another case,
we found a bug causing our file servers to crash because of a piece of code that depended
on the system time to be non-decreasing. Although this seems like a reasonable assumption,
the traces showed otherwise. The implementation of the Network Time Protoc01’~ daemon
running on the machine occasionally adjusted the system time backwards.

7.6.
In designing system software, it is important to know which operations are the common

ones. Therefore, understanding user behavior is critical to designing reliable, high perfor-
mance systems. In this section, we describe how traces were useful in providing realistic
examples of user behavior for evaluating file systems.

Traces inspired the micromodels used by s ~ n R G e n , ~ ~ a synthetic file reference generator.
A micromodel is a program that captures the file reference activity exhibited by an applica-
tion. For example, a general reference pattern for a C compiler is reading a .c file, reading
some number of .h files, and creating a .o file. One can create a parameterized micromodel
of a C compiler that takes as input the number of .h file referenced, and the names of the
.c, .h, and .o files. By combining micromodels, one can create a synthetic user that can be
used as a benchmark for comparing systems, or as a test program. New releases of the Coda
file system are tested in this manner. The quality of the references generated by SynRGen
depends on the accuracy of its micromodels. Using traces allows the modeler to obtain a
respectable degree of realism while still retaining the flexibility of a parameterized model.
Traces were used to develop SynRGen micromodels for activities in an ediddebug cycle.
These models, when compared to the activity generated by real users, came within 20 per
cent of the mean values for most system variables.

DFSTrace as an exploratory tool

7.7.
This section describes extensions to DFSTrace for recording low-level system events. Al-

though this work was not part of our original implementation, it demonstrates that DFSTrace
is relatively easy to extend, and is adaptable to the needs of other researchers.

Study of low-level UO behavior

7.7. I .
DFSTrace has been used as a diagnostic tool in understanding UNIX I/O behavior during

the development of TIP. A key component of UNIX I/O is the kernel buffer cache, which
contains copies of recently used disk blocks.*’ DFSTrace was extended to record buffer
cache activity in addition to file reference data. The file reference data is used to identify
and separate sources of low-level activity (e.g., user vs. system activity). The buffer cache
traces contain records for read hits and misses, read ahead hits and misses, buffer releases,
and prefetches by TIP.

UNIX buffer cache diagnosis

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 729

7.7.2. Disk geometry

Tsao extended DFSTrace to record SCSI disk YO operations for his work in determining
disk ge0met1-y.~~ Because SCSI exports a linear block address space, one cannot always
determine the location of a disk block based on its address. Tsao gathered traces of I/O
operations from a known workload, and developed a tool to analyze timing patterns between
operations in the trace of the workload. Based on these patterns, his tool infers a variety of
information about the disk, such as the disk cache size, number of heads, rotational period,
number and location of spare sectors, and track and cylinder skew. This kind of tool is
valuable for measurement studies that employ disks because it allows the performance of a
disk to be diagnosed independent of the application and operating system.

7.7.3. Field reliability test

The SCSI extensions to DFSTrace have enabled its use in a two-year field reliability test
of Seagate disks in an AT&T 6299 disk arraya3* Every I/O to the disk array controller is
recorded as an enqueue and completion event. If a disk fails, the data will be sent along
with the disk back to the manufacturer. It is important that there are no data losses in this
application. Losses are avoided in two ways. First, only SCSI events are recorded, and the
corresponding records are small (approximately 24 bytes). Second, an additional level of
buffering is used at the client, allowing up to 10 MB to be stored on the client's disk.

7.7.4. Isolation
One of the disadvantages of traces is lack of f le~ibi l i ty .~~ In particular, the effects of

multiprogramming are embedded in traces and are often difficult to remove. One might
want to extract the records for a particular process or set of processes, and use them as
if they were the only processes running on a machine. Patterson extended DFSTrace to
record context switches and process times.''" This allows an extraction of a trace, such as
the records for a specific process, to be used as a workload with accurate timing between
events.

9. RELATEDWORK

The value of empirical file usage data was recognized long ago. Data on file references has
been collected and used for many aspects of file system design over the last two decades.64
Broadly, there are two methodologies for collecting trace data.

Early file reference data was collected statically, by taking one or more snapshots of
the file system. The principle advantage of static collection is that it does not require
modifications to the file system or operating system. If the system software is proprietary,
this approach may be the only feasible one. Often, data can be obtained using existing
tools such as accounting or backup programs. Disadvantages of static collection are that
there is no way to determine how many times a file has been accessed between snapshots,
and snapshots may be difficult to obtain in very large distributed file systems. The bodies
of statically collected data are summarized in Table III(a). Note that Table I11 summarizes
file trace collections, not analyses. Thus we omit numerous analyses conducted on data
collected by others, such as those by Smith5s6 that used Stritter's data. Strange's data is the
only set collected from a distributed environment; earlier data was collected in timesharing

730 L. MUMMERT AND M. SATYANARAYANAN

Table 111. Sources of file reference data.

Year Collector System Duration Notes Ref.
(a) Static collections

41

distributed 42
1993 Irlam 100 ws, 650 fsys survey
1992 Strange 6 Sprite fsys, 76-84 sn

I SunOS/NFS fsys
1982 Lawrie 1 CDC NOS 233 sn
1981 Satyanarayanan 1 TOPS-I0 1 sn
1977 Stritter 2 IBM MVS -13 months of sn
1975 Revelle 2 IBM MVS 144 sn

(b) Local, dynamic collections

Appleton
1994 Griffioen, 2 SunOS ws

1992 Miller 1 UNICOS, others
1991 Bozman 2 CMS

Jensen 2 UNICOS, others
Muller, Pasquale
Schilit 1 SunOS

Korner 1 4.2 BSD UNIX
Staelin 2 IBM MVS

1988 Burrows 1 4.2 BSD UNIX
1986 Floyd 1 4.2 BSD UNIX

Majumdar, Bunt 1 4.1 BSD UNIX
1985 Ousterhout 3 4.2 BSD UNIX

Zhou 1 4.2 BSD UNIX
1982 Porcar 2 IBM OS, TSO

1 4.3 BSD UNIX

1990 Biswas, et al. 1 VMS

(c) Distributed, dynamic collections
1994 Kuenning 1-10 fs, DOS/UNIX

Dahlin, et al.
1993 Mummert, 30 Mach ws,

Satyanarayanan Coda fs
1992 Blaze 1 NFS fs, many ws
1991 Baker, et al. - 40 S rite ws, fs
1990 His en - 100 %os ws
1986 Sheftzer. et a1 15 Locus

1 NFS fs, 237 ws

2-4 weeks

2 years
analyzed 1 dayluser
3 years
9 75-minute periods
3 traces, 33-86 hours
9- 12 hour periods
not specified
1 week, 3 days
3 work days
1 week
1 month, 1984
2-3 days
9 hours
9, 13 days

rw

used sys logs
sn, rw
used sys logs
rw, other
used audit trail
sn, rw

used SMF
+2 weeks sn
sn

rw
used SMF

7
43
4

44

45

46

41
48
49

50

51-53

54

55
56

10, 51
1 1

2
58

3

59 7-10 weeks
7 days used net monitor 6o
over 2 years, ns, some rw this

1 week used net monitor 61
8 24-hour eriods ns, +2 wk summary I. 62
4 days, Fe&. 1990

1991-1 993 Paper

6 10-hour periods ns 63

This table summarizes sources of file reference data. We use the following abbreviations: sn (snapshot), ws
(workstation), fs (file server), fsys (file system) rw (includes readwrite operations), ns (includes name resolution
operations).

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 731

or batch environments. Irlam’s data was obtained through an Internet survey in which he
supplied a script that snapshots local file systems and gathers statistics on file sizes.

Most recent data is collected dynamically, using continuous monitoring. Numerous bodies
of data have been collected on individual machines under a variety of operating systems,
Some collections include snapshots to eliminate edge effects during analysis. Most of the
data, listed in Table III(b), was collected from timesharing environments. There are a few
bodies of dynamically collected data from distributed workstation environments; they are
listed in Table III(c). Sheltzer’s data focused on name resolution activity in Locus,65 a
distributed version of UNIX that includes a distributed file system. Hisgen’s data was
collected at DEC SRC from Firefly66 workstations running Taos, which provides an Ultrix
emulation interface. Baker collected traces only on four Sprite67 file servers, however, she
also collected two weeks of summary data from clients. In contrast, DFSTrace has enabled
collection of much longer term data (two years) in a distributed environment.

The sets of file system operations recorded varied between studies. For example, most
studies did not record individual read and write system calls, because the data would be
too voluminous. Exceptions are DFSTrace, Bozman, Biswas et al., Zhou, and Muller and
Pasquale. The latter also recorded other low-level events, as does an extended version of
DFSTrace. In addition to DFSTrace, Sheltzer, Burrows and Baker recorded name resolution
events. Floyd and Ellis were able to study name resolution using Floyd’s data by constructing
a model of the file system from the snapshot.’’

We list several sets of data that were not recorded at the system call interface, but
still represent empirical data on file usage. Miller’s and Jensen’s data from supercomputing
environments consists of activity to archival or mass storage systems, gleaned from existing
system logs. Blaze’s system, NFSTrace, is one of several packages that monitors the network
for NFS traffic, and then generates a plausible series of file system events that could have
resulted in the observed traffic. The resulting trace is an approximation of file system
activity. Dahlin, et al. also used NFSTrace to collect their traces.

Table I11 shows that most file reference data was collected in academic and research
environments. Exceptions are Biswas, et al., who collected traces from seven different
commercial sites including a large newspaper company and a machine parts distribution
company; Bozman, who collected data from an IBM programming center; Staelin, who
collected data from two Amdahl customer sites; Porcar, one of whose data sets was collected
from an installation at Hughes Aircraft; and Kuenning, whose data is the only set we know
of that captures a DOS workload. Unfortunately, little of this data is publicly available.

Most of the dynamic studies cited provide few details on the tools used to collect the data.
A few used existing monitoring tools, such as SMF,68 audit trail facilities, system logs, or
network monitors. The remainder of the efforts involved instrumenting the operating system.
This is a feasible approach particularly in UNIX environments because of the availability
of source code.

Performance is an issue in dynamic collection efforts because tracing runs continuously.
This issue is critical in long-term collections. Of course, if existing system logs or off-site
monitors are used, there is little or no overhead incurred by gathering the data. Only a
fraction of the studies report information on performance. Burrows reported an increase of
CPU utilization of less than 2 per cent, Biswas, et al. reported less than 1 per cent, and
Muller and Pasquale reported less than 5 per cent. Appleton estimates the CPU overhead of
his package at 2 per cent.69 A more meaningful performance measure of tracing overhead
is slowdown. Korner, who used a package by Simonetti7’ for her study, reported a 50
per cent system slowdown. Zhou reported slowdowns of 7-7-10 per cent for YO intensive

132 L. MUMMERT AND M. SATYANARAYANAN

programs, and 2-4 per cent for CPU intensive programs. DFSTrace incurred a 3-7 per cent
slowdown for a file system intensive benchmark. In practice, the performance degradation
was unnoticeable.

It is important to limit local resource use by tracing for several reasons. First, use of local
resources such as disk files may perturb the data, because tracing system activity is recorded
in the trace itself. Second, users may be unwilling to sacrifice significant amounts of local
resources to store the data, especially in the long term. Third, in long-term collections it is
impossible to store all of the data locally. For these reasons, we chose to buffer trace data in
a fixed amount of memory, and then send it to a remote collection site. To our knowledge,
none of the studies cited in Table 111 except DFSTrace placed limits on local resource use.
Only DFSTrace, Muller and Pasquale, and Griffoen and Appleton used remote collection
sites.

In summary, DFSTrace is the only tracing system that has enabled long-term collection of
detailed file reference trace data in a distributed workstation environment. Its low overhead
both in terms of performance and local resource use were critical for successful long-term
data collection. Our emphasis on long-term data has made DFSTrace unique in several
other respects. Versioning of both data and software, and interchangeability of components
simplify the logistics of collecting and handling long-term data. Detection and recording
of data losses was necessary because of limits on local resource use and distribution of
the collection mechanism. Both of these constraints were consequences of the desire for
long-term data.

10. CONCLUSION

DFSTrace is a system that has proven its worth over many years. Its design pays care-
ful attention to efficiency, extensibility, and the logistics of long-term data collection in a
distributed workstation environment. The need for long-term data from a distributed envi-
ronment influenced many aspects of the design of DFSTrace. Low overhead and limits on
local resource use are critical in long- term data collection. The separation of data gathering
from interpretation is key for good performance and extensibility. Practical considerations
such as versioning of data and software and interchangeability of components simplify the
logistics of collecting and handling long-term data.

The importance of long-term data cannot be understated. Much of the work mentioned in
Section 8 would not have been possible without data of the detail and length that DFSTrace
generates. DFSTrace is the only system that we know of that provides data that meets these
requirements. We are confident that it will continue to be valuable for future research in
data storage systems.

ACKNOWLEDGEMENTS

We owe special thanks to Jay Kistler for being our first user, along with all that entails,
and for writing the initial versions of the sessions, untrace, and creplay programs. We
are grateful to members of the Coda project for enduring early versions of DFSTrace and
using the data in their research, and the many members of the Carnegie Mellon School of
Computer Science for allowing us to trace their file references. We wish to thank Hugo
Patterson for first extending DFSTrace to record I/O events, and Garth Gibson and his
students for encouraging the use of DFSTrace for I/O related studies. Maria Ebling, Kathryn
Porsche, and Mirjana Spasojevic were helpful in improving the presentation of this paper.

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 733

This research has been supported by the National Science Foundation under Grant ECD-
8907068, and the Air Force Materiel Command (AFMC) and the Advanced Research
Projects Agency (ARPA) under Contract F19628-93-C-0193. Support also came from the
Digital Equipment Corporation and the IBM Corporation.

OBTAINING DFSTRACE
Information on obtaining DFSTrace is available through the World Wide Web at URL
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/coda/Web/coda.html.

1 .

2.

3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

REFERENCES

Mary G. Baker, John H. Hartmann, Michael D. Kupfer, Ken W. Shirriff and John K. Ousterhout, ‘Measure-
ment of a distributed file system’, Proceedings of the Thirteenth ACM Symposium on Operating Systems
Principles, October 1991, pp. 198-212.
John K. Ousterhout, Hew6 Da Costa, David Harrison, John A. Kunze, Mike Knupfer and James G.
Thompson, ‘A trace-driven analysis of the UNIX 4.2 BSD file system’, Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, December 1985.
Juan M. Porcar, ‘File migration in distributed computer systems’, Ph.D. dissertation, University of Cali-
fornia, Berkeley, July 1982.
Edwin P. Stritter, ‘File migration’, Ph.D. dissertation, Stanford University, March 1977.
Alan Jay Smith, ‘Analysis of long term file reference patterns for application to file migration algorithms’,
IEEE Transactions on Sofware Engineering, 7, (4), 403417 (1981).
Alan Jay Smith, ‘Long term file migration: development and evaluation of algorithms’, Communications
ofthe ACM, 24, (8), 521-532 (1981).
D.H. Lawrie, J.M. Randal and R.R. Barton, ‘Experiments with automatic file migration’, IEEE Computer,

M. Satyanarayanan, James J. Kistler, Puneet Kumar, Maria E. Okasaki, Ellen H. Siege1 and David C. Steere,
‘Coda: a highly available file system for a distributed workstation environment’, IEEE Transactions on
Computers, 39, (4), 447-459 (1990).
M. Satyanarayanan, ‘Scalable, secure, and highly available distributed file access’, IEEE Computer, 23,

Rick Floyd, ‘Short-term file reference patterns in a UNIX environment’, Technical Report TR 177, De-
partment of Computer Science, University of Rochester, March 1986.
Shikharesh Majumdar and Richard B. Bunt, ‘Measurement and analysis of locality phases in file referencing
behaviour’, Proceedings of Pegormance ’86 and ACM SIGMETRICS 1986 Joint Conference on Computer
Pegormance Modelling, Measurement and Evaluation, May 1986.
M. Satyanarayanan, John H. Howard, David A. Nichols, Robert N. Sidebotham, Alfred Z. Spector and
Michael J. West, ‘The ITC distributed file system: principles and design’, Proceedings of the Tenth ACM
Symposium on Operating Systems Principles, December 1-4, 1985, pp. 35-50.
Russel Sandberg, David Goldberg, Steve Kleiman, Dan Walsh and Bob Lyon, ‘Design and implementation
of the Sun network file system’, USENIX Summer Conference Proceedings, USENIX Association, June
1985.
Marshall K. McKusick, William N. Joy, Samuel J. Leffler and Robert S. Fabry, ‘A fast file system for
Unix’, ACM Transactions on Computer Systems, 2, (3), 181-197 (1984).
Gene McDaniel, ‘METRIC: a kernel instrumentation system for distributed environments’, Proceedings of
the Sixth ACM Symposium on Operating Systems Principles, November 1977, pp. 93-99.
Department of Electrical Engineering Computer Systems Research Group, Computer Science Division
and Berkeley Computer Science, University of Californa, Unix Programmer’s Manual Reference Guide,
USENIX Association, April 1986.
Mike Accetta, Robert V. Baron, William Bolosky, David B. Golub, Richard F. Rashid, Avadis Tevanian,
Jr and Michael Wayne Young, ‘Mach: a new kernel foundation for UNIX development’, Proceedings of
the Summer 1986 USENIX Conference, Atlanta, GA, July 1986, pp. 93-1 13.
S. R. Kleiman, ‘Vnodes: an architecture for multiple file system types in Sun UNIX’, USENIX Summer
Conference Proceedings. USENIX Association, 1986,

15, (7), 45-55 (1982).

(9, 9-21 (1990).

734 L. MUMMERT AND M. SATYANARAYANAN

19. Richard A. Floyd and Carla Schlatter Ellis, ‘Directory reference patterns in hierarchical file systems’, IEEE
Transactions on Knowledge and Data Engineering, 1, (2), 238-247 (1989).

20. Samual J. kffler, Marshall Kirk McKusick, Michael J. Karels and John S . Quarterman, The Design and
Implementation of the 4.3BSD UNIX Operating System, Addison-Wesley, Reading, Massachusetts, 1989.

21. M. Satyanarayanan (ed.), RPC2 User Guide and Reference Manual, School of Computer Science, Carnegie
Mellon University, Pittsburgh PA 15213, October 1991.

22. John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M. Satyanarayanan, Robert N.
Sidebotham and Michael J. West, ‘Scale and performance in a distributed file system’, ACM Transactions
on Computer Systems, 6 , (l), 51-81 (1988).

23. Puneet Kumar and M. Satyanarayanan, ‘Log-based directory resolution in the Coda file system’, Pro-
ceedings of the Second International Conference on Parallel and Distributed Information Systems, January
1993, pp. 202-213. Also available as Technical Report CMU-CS-91- 164, School of Computer Science,
Carnegie Mellon University.

24. Michael Blair Jones, ‘Transparently interposing user code at the system interface’, Ph.D. dissertation,
Carnegie Mellon University, September 1992.

25. Michael B. Jones, ‘Interposition agents: transparently interposing user code at the system interface’, Pro-
ceedings of 14th ACM Symposium on Operating Systems Principles. Association for Computing Machinery
SIGOPS, December 1993, pp. 80-93.

26. IBM, ‘OSNS2 system programming library: service aids’, Technical Report GC28-0674-1, IBM Corpo-
ration, (1976).

27. S. W. Sherman and J. C. Browne, ‘Trace driven modeling: review and overview’, Proceedings of the
ACM-SIGSIM Symposium on the Simulation of Computer Systems, June 1973, pp. 201-207.

28. James J. Kistler and M. Satyanarayanan, ‘Disconnected operation in the Coda file system’, ACM Transac-
tions on Computer Systems, 10, (I), 3-25 (1992).

29. James J. Kistler, ‘Disconnected operation in a distributed file system’, Ph.D. dissertation, School of Com-
puter Science, Carnegie Mellon University, April 1993.

30. Brian D. Noble and M. Satyanarayanan, ‘An empirical study of a highly available file system’, Proceedings
of the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Nashville,
TN, May 1994, pp. 138-149.

31. R. Hugo Patterson, Garth A. Gibson and M. Satyanarayanan, ‘A status report on research in transparent
informed prefetching’, Operating Systems Review, 27, (2), 21-34 (1993).

32. R. Hugo Patterson and Garth A. Gibson, ‘Exposing YO concurrency with informed prefetching’, Proceed-
ings of the Third International Conference on Parallel and Distributed Information Systems, September
1994.

33. L. Mummert, M. Ebling and M. Satyanarayanan, ‘Exploiting weak connectivity for mobile file access’,
Proceedings of the Fijieenth ACM Symposium on Operating Systems Principles, December 1995.

34. M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere and James J. Kistler, ‘Lightweight
recoverable virtual memory’, ACM Transactions on Computer Systems, 12, (l), 33-57 (1994). Corrigendum:

35. D.L. Mills, ‘Internet time synchronization: the network time protocol’, IEEE Transactions on Communi-
cations, 39, (lo), 1482-93 (1991).

36. Maria R. Ebling and M. Satyanarayanan, ‘SynRGen: an extensible file reference generator’, Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, Nashville,
TN, May 1994, pp. 108-1 17.

37. Steven Tsao, ‘Disk geometry and performance characteristic’, Data Storage Systems Center, Research for
Undergraduate Students Program, July 1992.

38. Mark Holland and Rachad Youssef, Personal communication, October 1994.
39. Raj Jain, The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Mea-

surement, Simulation, and Modeling, John Wiley & Sons, Inc, New York, NY, 199 l.
40. R. Hugo Patterson, Personal communication, November 1993.
41. Gordon Irlam, ‘A static analysis of Unix file systems circa 1993’,

ftp://cs.dartmouth.edu/pub/file-sizes/ufs93b.tar.gz,(October 1993).
42. Steven Strange, ‘Analysis of long-term Unix file access patterns for application to automatic file migration

strategies’, Technical Report UCBlCSD 92/700, University of California, Berkeley, Computer Science
Division, (August 1992).

43. M. Satyanarayanan, ‘A study of file sizes and functional lifetimes’, Proceedings of the Eighth ACM Sym-
posium on Operating Systems Principles, December 1981, pp. 96-108.

12, (2), 165-172 (1994).

LONG TERM DISTRIBUTED FILE REFERENCE TRACING 735

44. Ron Revelle, ‘An empirical study of file reference patterns’, Technical Report RJ 1557, IBM, April 1975.
45. Jim Griffioen and Randy Appleton, ‘Reducing file system latency using a predictive approach’, USENIX

Summer Conference Proceedings. USENIX Association, June 1994, pp. 197-207.
46. Ethan L. Miller and Randy H. Katz, ‘An analysis of file migration in a Unix supercomputing environ-

ment’, Technical Report UCBlCSD 9217 12, University of California, Berkeley, Computer Science Division,
(November 1992).

47. G.P. Bozman, H.H. Ghannad and E.D. Weinberger, ‘A trace-driven study of CMS file references’, IBM
Journal of Research and Development, 35, (5-6), 815-828 (1991).

48. David W. Jensen and Daniel A. Reed, ‘File archive activity in a supercomputer environment’, Techni-
cal Report UIUCDCS-R-91-1672, University of Illinois at Urbana-Champaign, Department of Computer
Science, April 1991.

49. Keith Muller and Joseph Pasquale, ‘A high performance multi-structured file system design’, Proceedings
of the Thirteenth ACM Symposium on Operating Systems Principles, October 1991, pp. 56-67.

50. Carl D. Tait and Dan Duchamp, ‘Detection and exploitation of file working sets’, Proceedings of the 11th
International Conference on Distributed Computing Systems, May 1991, pp. 2-9.

5 1 . Prabuddha Biswas and K.K. Ramakrishan, ‘File access characterization of VAXNMS environments’,
Proceedings of the Iffth International Conference on Distributed Systems, May 1990, pp. 227-234.

52. K. K. Ramakrishnan, P. Biswas and R. Karedla, ‘Analysis of file VO traces in commercial computing
environments’, Proceedings of the I992 ACM SIGMETRICS and Performance ’92 International Conference
on Measurement and Modeling of Computer Systems, June 1992, pp. 78-90.

53. Prabuddha Biswas, K. K. Ramakrishnan and Don Towsley, ‘Trace driven analysis of write caching policies
for disks’, Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, June 1993, pp. 13-23.

54. Kim Korner, ‘Intelligent caching for remote file service’, Proceedings of the l f f th Inrernational Conference
on Distributed Systems, May 1990, pp. 220-226.

55. Carl Staelin and Hector Garcia-Molina, ‘File system design using large memories’, Technical Report CS-
TR-246-90, Princeton University, Department of Computer Science, February 1990. Appeared in 5th
Jerusalem Conference on Information Technology, Jerusalem, Israel, October 1990.

56. Michael Burrows, ‘Efficient data sharing’, Ph.D. dissertation, University of Cambridge, December 1988.
57. Rick Floyd, ‘Directory reference patterns in a UNIX environment’, Technical Report TR 179, Department

of Computer Science, University of Rochester, August 1986.
58. Songnian Zhou, Hem6 Da Costa and Alan Jay Smith, ‘A file system tracing package for Berkeley UNIX’,

USENIX Summer Conference Proceedings, USENIX Association, June 1985.
59. Geoffrey H. Kuenning, Gerald J. Popek and Peter L. Reiher, ‘An analysis of trace data for predictive

file caching in mobile computing’, USENIX Summer Conference Proceedings, USENIX Association, June
1994.

60. Michael Dahlin, Clifford Mather, Randolph Wang, Thomas Anderson and David Patterson, ‘A quantitative
analysis of cache policies for scalable network file systems’, Proceedings of the 1994 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, Nashville, TN, May 1994, pp. 150-160.

61, Matt Blaze, ‘NFS tracing by passive network monitoring’, USENIX Winter Conference Proceedings,
USENIX Association, January 1992, pp. 333-343.

62. Ken W. Shirriff and John K. Ousterhout, ‘A trace-driven analysis of name and attribute caching in a
distributed system’, USENIX Winter Conference Proceedings, USENIX Association, January 1992, pp.

63. Alan B. Sheltzer, Robert Lindell and Gerald J. Popek, ‘Name service locality and cache design in a
distributed operating system’, Proceedings of the Sixth International Conference on Distributed Computing
Systems, May 1986, pp. 515-522.

64. M. Satyanarayanan, Distributed File Systems, chapter 14, pp. 353-383, Distributed Systems, (2nd ed.)
Addison-Wesley, Reading, Massachusetts, 1993.

65. B. Walker, G. Popek, R. English, C. Kline and G. Thiel, ‘The LOCUS distributed operating system’,
Proceedings of the Ninth Symposium on Operating System Principles, October 1983.

66. C. Thacker, L. Stewart and E. Satterthwaite, ‘Firefly: a multiprocessor workstation’, IEEE Transactions on
Computers, 37, (8) 909-920 (1988).

67. Michael N. Nelson, Brent B. Welch and John K. Ousterhout, ‘Caching in the Sprite network file system’,
ACM Transactions on Computer Systems, 6 , (I) , 134-154 (1988).

68. IBM, ‘OSlVS2 MVS system programming library: system management facilities (SMF)’, Technical Report
GN28-2903, IBM Corporation, May 1978.

3 15-3 1 .

736 L. MUMMERT AND M. SATYANARAYANAN

69. Randy Appleton, Personal communication, July 1994.
70. J.D. Simonetti, 'A system call trace facility', Technical Report 85/13, State University of New York at

Stony Brook, 1985.

