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ABSTRACT

We present a system to segment the medial edges of the
vocal folds from stroboscopic video. The system has two
components. The first learns a color transformation that op-
timally discriminates, according to the Fisher linear crite-
rion, between the trachea and vocal folds. Using this trans-
formation, it is able to make a coarse segmentation of vocal
fold boundaries. The second component uses an active con-
tour formulation recently developed for the Insight Toolkit
to refine detected contours. Rather than tune the internal
energy of our active contours to bias for specific shapes, we
optimize image energy so as to highlight boundaries of in-
terest. This transformation of image energy simplifies the
contour extraction process and suppresses noisy artifacts,
which may confound standard implementations.

We evaluate our system on stroboscopic video of sus-
tained phonation. Our evaluation compares points on auto-
matically extracted contours with manually supplied points
at perceived vocal fold edges. Mean deviations for points
located on the minor axes of the vocal folds averaged 2.2
pixels across all subjects, with a standard deviation of 3.6.

1. INTRODUCTION

Visual evaluation of the vocal folds plays an important role
in the diagnosis of laryngeal disorders. Stroboscopy can re-
veal critical asymmetries in the pliability of the vocal folds
and can help rate glottal closures. Parameterizing this oscil-
lation is the subject of ongoing medical research.

Direct observations are typically made with a strobo-
scopic endoscope and recorded on video at a rate of 30 and
60 frames per second. Because the vocal folds can vibrate
faster than most camera frame rates, a strobe light is used to
guarantee that complete cycles of oscillation are captured.
The light of this strobe varies slightly in phase from the vi-
bration of the folds, thereby reducing aliasing in resulting
stills. Although the images can capture the temporal dynam-
ics of the vocal folds, they can be low contrast and subject
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to noise. This noise and lack of contrast present challenges
to the reliable automatic extraction of fold contours.

Many approaches to vocal fold segmentation make use
of active contours with shape priors [1][2]. Generally, pri-
ors are used to modify internal energy in the active contour
formulation, which is then paired with external energy de-
rived from image pixels. Although priors can yield com-
pelling segmentation results, they can be time consuming to
craft and may not generalize well. Shapes of folds during
oscillation, for example, rarely manifest during periods of
extreme arytenoid abduction, and shapes from healthy in-
dividuals may be very different from those with injuries or
illnesses. In addition, very accurate shape priors may still
become overwhelmed by pervasive image noise.

Our work seeks to enhance the power of existing seg-
mentation methods by focusing, not on the internal energy
of snakes, but on external image energy instead. By means
of a simple training procedure, we learn a color transfor-
mation which optimally separates the pixels in the trachea
from pixels on the vocal folds, as well as pixels on the vo-
cal folds from pixels on surrounding tissues. Optimality, in
this formulation, is judged relative to the Fisher linear cri-
terion. By leveraging the discriminative power of a learned
transformation, we quickly make reasonably accurate seg-
mentations of fold contours in previously unseen images.
These segmentations are subsequently refined with an ac-
tive contour formulation based on the Fourier series.

The Fisher criterion has been employed previously to
learn a discriminative global image transformation in for-
mulations such as FisherFaces [3]. Operating locally, Charmi-
cael and Hebert [4] describe a technique wherein textured
filter responses are used to separate regions that correspond
to an object of interest from ”clutter”. Our problem per-
mits some simplification. The image regions we consider
are more uniform in appearance than components of an ob-
ject or ”clutter,” and only subtly textured. As a result, we
rely principally on color information to populate our feature
space, and still achieve reasonable discrimination results.
The inspiration for the set of color transformations we em-
ploy is found in recent work of Collins and Liu [5], who use
the Fisher criterion to segment background from foreground



for the purpose of online tracking.

2. METHODS

Active Contours, first introduced by Kass and Witkin[6],
are a popular segmentation tool for medical images. Snakes
have the desirable property of being able to enforce continu-
ity and closure, allowing them to precisely represent bound-
aries when portions of the boundaries are obscured. The
accurate automatic placement of a contour in an image is
typically achieved by coupling terms describing image ”en-
ergy” with terms that govern a contour’s stiffness or elastic-
ity, called internal energy. Internal energy can be composed
of heuristic constraints or be learned through training. Im-
age ”energy”, by contrast, is often formed of intensity-based
edge energies, or some measure of coherence in a postulated
segmentation.

In our work, we suggest that a good segmentation can be
simply achieved by focusing on the construction of image
energy. By transforming image energies to facilitate region
classification, we extract contours without training priors on
shape.

2.1. Segmentation of Vocal Folds

Our boundary extraction method determines a linear com-
bination of image attributes which optimally discriminate
between different regions of the larynx. More specifically,
we seek a linear function of image attributes that maximizes
the difference between image samples taken from different
sections of the larynx, while simultaneously minimizing the
difference between sample responses from the same portion
of the larynx.

In the two class case, this means discovering some scalar
function of pixels, Φ(x), which maximizes the following
term:
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The numerator represents the scatter of elements between
classes, and the denominator captures scatter within-classes.
N is the number of pairs that are composed of one member
from either class, while M is the number of pairs that can be
made of all members combined.

Φ(x) we define to be composed of a linear combination
of various individual pixel statistics, as follows:

Φ(x) = αT φ(x) (2)

where

α = [α1, α2, ...αn]T ; φ(x) = [φ1(x), φ2(x), ...φn(x)]T

Coefficients, or α, which define Φ(x) can be found by solv-
ing the generalized eigenvalue problem corresponding to

equation (1), as in [4].
As in [5], we choose to use linear combinations of R,

G and B color values as individual features, φi(x), at each
pixel. We could, however, chose to evaluate a much broader
range of image features, including texture cues or various
nonlinear combinations of texture and color. For our task,
however, simple image features suffice, and so we compose
φi(x) as follows:

φi(x) = ω1 × R + ω2 × G + ω3 × B; ω∗ε[−1, 0, 1] (3)

The final process by which trachea and vocal folds are
segmented from input images can now be decomposed into
a simple training and classification procedure. During train-
ing, three images at the begining of a sequence are selected
and regions of interest are segmented by hand. Color-based
pixel features are computed for each region, and optimal
coefficients, α, that discriminate between regions are deter-
mined. In addition for each class, the mean and variance of
embedded training samples (µ(A), σ(A) and µ(B), σ(B))
are stored.

Classification is then performed of the remaining im-
ages in a given input sequence. For each input image, color
features are determined and projected onto α. At every in-
put pixel we determine the ratio of log probabilities:

log(P (αT φ(x)|A)) − log(P (αT φ(x)|B)) (4)

If we assume a uniform distribution for P (A) and P (B),
this corresponds to the Bayes decision criterion, whose de-
cision boundary lies at zero. Values greater than zero indi-
cate a pixel’s membership with the those of class A, while
values less than zero indicate probable membership in class
B. P (αT φ(x)|A) and P (αT φ(x)|B) are defined by nor-
mal distributions with sufficient statistics (µ(A), σ(A) and
µ(B), σ(B)).

In practice, we threshold classified pixel values that lie
under zero and scale remaining values so they lie between
0 and 255. This produces a grayscale image, the gradient
of which is refined with active contours. The boundary
surrounding pixels in a highlighted region forms an initial
guess at a contour for that region. In our experiments, we
create two boundaries to optimize for every image that de-
fine the vocal cord.

2.2. Refinement with Active Contours

Like our classification procedure, our active contour imple-
mentation is similarly driven by image energy as opposed to
priors on shape. The basic algorithm used was developed by
Stetten and Drezek[7] and recently added to the architecture
of the Insight Toolkit by Galeotti.

Using dynamic programming, orthogonal offsets (or cor-
rections) which maximize image energy are located with re-



spect to an input contour at evenly spaced intervals. To fa-
cilitate the search for these offsets, ”swaths” around a given
contour are formed by traversing the input path and inter-
polating image pixels orthogonal to the path at regularly
spaced intervals.

In order to ensure that the normal of the input contour
is always well defined, the initial path is Fourier smoothed
before execution. Fourier smoothing eliminates high or-
der coefficients in frequency space, thereby removing con-
tour spikes [7]. Representing our curves in Fourier space
also has the desirable property that the normals to a contour
are easily formulated, which facilitates sub-pixel resolution.
Smoothness constraints are additionally imposed by forbid-
ding offsets of adjacent pixels that differ by more than one.

In our application, closure of the vocal cords is detected
during the refinement process by exploring the image region
bounded by an input contour. Vocal cords are only consid-
ered open if the count of interior pixels labeled ”trachea”
exceed a specified threshold.

3. EXPERIMENTS

We evaluate our system on three individuals’ stroboscopic
video taken during sustained phonation. Video was taken
with a rigid endoscope at a rate 30 frames per second and
converted to uncompressed digital images, each 320 by 240
pixels. Two sequences were 120 frames in length, while the
third was 840, and contains periods of both phonation and
arytenoid abduction.

For each video sequence, three frames (less than 1 per-
cent of all data) were selected to train a discriminating color
transformation. Vocal folds were segmented in these images
and two classifiers for each sequence were trained. The first
was trained to distinguish between the trachea and pixels
within a 50 pixel radius of the trachea’s center of mass. The
second was trained to distinguish between the surface of vo-
cal folds and pixels surrounding them, also within a 50 pixel
radius.

All remaining frames were automatically classified to
create pairs of grayscale images depicting classification weights,
as in Figure 1. Positively classified regions were then seg-
mented into connected components, and components shar-
ing overlap with prior segmentations were followed through
the entirety of each sequence. Finally, boudaries were re-
fines with our active contour formulation to yield final re-
sults.

4. RESULTS

As can be seen in Figure 2, thresholding each classification
image achieves a reasonable first approximation to regions
of interest. Active contours are able to refine this first ap-
proximation and delete spurious pixels at borders. Figure

Fig. 1. Input image, classification weights for ”folds” and
”trachea”.

Fig. 2. Input sequences and output segmentations based on
simple thresholding. Rows alternate between input images
and output segmentations.

3 depicts example outputs of the contour refinement proce-
dure in cases where initial segmentations based on thresh-
olds were flawed. As can be seen, active contour refinement
is often capable of achieving a more accurate segmentation.

As an additional form of evaluation, 30 frames from
each sequence were selected at random from periods in videos
corresponding to sustained phonation and a series of 6 points
were placed on perceived boundaries of vocal folds. One
point was on the anterior commissure of the vocal folds
and another at the point maximally opposite it. Remain-
ing points were placed approximately equidistant to these
points on visual boundaries surrounding the vocal folds. We
then compared the distance between manual points and cor-
responding automatically detected contours.



Fig. 3. Top row shows input images, second row shows
thresholded images, and the bottom row depicts thresholded
contours refined.

Fig. 4. Deviation between manually and automatically ex-
tracted points. T1 indicates points on the major internal
axis, T2 indicates points on the minor internal axis and C1
on the minor external axis.

Figure 4 illustrates the results of the comparison. Mean
deviations for points located on the minor axes of trachea
and folds averaged 2.2 pixels across all subjects, with a stan-
dard deviation of 3.6. Deviation around the major axis of the
trachea averaged 4.0 pixels across all subjects, with a stan-
dard deviation of 3.6. Note that pixels on the major axis of
the boundary between vocal folds and trachea exhibit more
error than those on the visual boundary between vocal folds
and surrounding tissue. This is due to the fact that folds,
when closed, exhibit no discernible opening to the trachea
and thus accurate segmentation is difficult. In addition, er-
rors for subject three are larger than those for subject one
and two which, in large part, is a result of the relative scale
of the regions of interest with respect to the image boundary.

5. DISCUSSION

Most techniques for the segmentation of vocal cords rely
on prior shape terms to perform a visual segmentation vocal
cords from stroboscopic endoscopic images. Here, we have
demonstrated the capability to segment vocal cords without
heavy reliance on a shape model that may not be appropriate
in pathological cases. While this work tests our algorithm
on muscular membraneous vocal fold oscillation, we expect
it to extend to arytenoid motion. Eventually, we seek to use
our segmentation tool for the evaluation of gross laryngeal
movement disorders.
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