
15-122: Principles of Imperative Computation

Recitation 11 Josh Zimmerman

Checkpoint 0
Is this a correct implementation? Is the hare capable of “skipping over” the tortoise when approaching
from behind? If so, what is the appropriate fix?

This is a correct implementation: the key observation is that the hare approaches the tortoise from
behind, and the distance between them only gets smaller by 1 on every iteration through the loop:

_H_____T___________
___H____T__________
_____H___T_________
_______H__T________
_________H_T_______
___________H_T_____
_____________HT____
_______________!___

Checkpoint 1
How many times is a pointer accessed within the loop? How do we know each access is safe? What
happens if h->next->next is NULL at the beginning of a loop?

There are three pointers that we dereference: t on line 10, h on line 11, and h->next, again on line 11.
If h->next->next is NULL at the start of the loop, then h will be NULL when the loop body terminates.
This means that it would be unsafe to dereference h, but we never will dereference it: On the next run
of the loop we will notice on line 9 that h is NULL and the function will return false.

Checkpoint 2
The check t == NULL on line 8 is unnecessary. First come up with a rough operational reason why this
is the case, then state this reason in terms of a loop invariant involving is_segment.

Operationally, the tortoise is only ever treading along ground that the hare has already covered. Because
our is_segment function doesn’t allow either endpoint of the segment to be NULL, it’s a bit difficult
to write a good loop invariant for the function as written. One option would be to write a variant of
is_segment, another is to rewrite the function slightly. The lecture 11 notes have more discussion of
this point.

1 bool is_circular(list∗ l)
2 {
3 if (l == NULL) return false;
4 list∗ t = l; // tortoise
5 list∗ hprev = l; // one prior to the hare

1

6 while (t != hprev−>next)
7 //@loop_invariant is_segment(t, hprev);
8 {
9 list∗ h = hprev−>next;

10 if (t == NULL) return false;
11 if (h == NULL || h−>next == NULL) return false;
12 t = t−>next;
13 hprev = h−>next;
14 }
15 return true;
16 }

2

