15-122 Written Homework 10 Page 1 of 7

15-122 : Principles of Imperative Computation, Spring 2014

Written Homework 10

Due before class: Thursday, April 3, 2014

Name:

Andrew 1ID:

Recitation:

The written portion of this week’s homework will give you some practice working with C
programming issues and AVL trees. You can either type up your solutions or write them
neatly by hand, and you should submit your work in class on the due date just before lecture
begins. Please remember to staple your written homework before submission.

Question | Points | Score
1 4
2 4
3 7
Total: 15

You must do this assignment in one of two ways and bring the
stapled printout to the handin box on Thursday:

1) Write your answers neatly on a printout of this PDF.

2) Use the TeX template at http://www.cs.cmu.edu/afs/cs.
cmu.edu/academic/class/15122-s14/www/theoryl0.tgz

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15122-s14/www/theory10.tgz
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15122-s14/www/theory10.tgz

15-122 Written Homework 10 Page 2 of 7

1. C Program Behavior

For each of the following problems, state what is wrong with the code in one sentence.
Do not just try to compile it and write down the error message. (Some of these will
compile without error, and some will even run and produce output, but they all contain
conceptual errors that may affect correctness.) Read the code and explain what is being
done wrong, conceptually.

(1) (a) #include <stdio.h>
#include <string.h>
int main() {
char *w;
strcpy(w,"C programming") ; // copy string to w
printf ("%s\n", w);

return O;

Solution:

(1) (b) #include <stdio.h>
#define MULT(X,Y) (XxY)
int main() {

int ¢ = MULT(2+3,3+4);
printf (" (2+3)*(3+4) is = %d\n", c);

return O;

Solution:

(1)

(1)

15-122 Written Homework 10 Page 3 of 7

(c) #include <stdlib.h>
#include "xalloc.h"
int main() {
int *a = xmalloc(100);
for (int i=0; i<100; i++)
alil=i;
free(a);
return O;

Solution:

(d) This code fragment shows a C function that is called from another function. It is
supposed to return the result only if no overflow occurs. Hint: You might want to
read the section on integers in the CO to C tutorial http://c0.typesafety.net/
tutorial/From-CO-to-C:-Basics.html#wiki-integers

#include <assert.h>

int oadd(int x, int y) {
int result = x + y;
if (x > 0 & y > 0) assert(result > 0);
if (x < 0 && y < 0) assert(result < 0);
return result;

Solution:

http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html#wiki-integers
http://c0.typesafety.net/tutorial/From-C0-to-C:-Basics.html#wiki-integers

15-122 Written Homework 10 Page 4 of 7

2. Pass by reference using C

At various points in our CO programming experience we had to use somewhat awkward
workarounds to deal with functions that need to return more than one value. The address-
of operator (&) in C gives us a new way of dealing with this issue. In C, the expression
&x evaluates to the address of the variable x.

(2) (a) Sometimes, a function needs to be able to both 1) signal whether it can return a
result, and 2) return that result if it is able to. Consider the following function
parse_string that parses a string into an integer if it is possible:

bool parse(char *s, int *i);
// Returns true iff parse succeeds

void parse_string(char *s) {

REQUIRES(s != NULL);
int *i = xmalloc(sizeof(int));
if (parse(s, 1i))

printf ("Success: %d.\n", *i);
else

printf ("Failure.\n");
free(i);
return;

3

The parse_string function relies on parse which both sets *i to an integer equiv-
alent to the integer pattern in *s (if possible) and also returns a boolean value of
true if the parse succeeds, or false otherwise.

Using the address-of operator, rewrite the body of the parse_string function so
that it does not heap-allocate, free, or leak any memory on the heap. You may
assume parse has been implemented (its prototype is given above).

Solution:

void parse_string(char *s) {
REQUIRES(s != NULL);

return;

by

(2)

15-122 Written Homework 10 Page 5 of 7

(b) In both C and CO0, multiple values can be ‘returned’ by bundling them in a struct:

struct bundle { int x; int y; };
struct bundle xfoo(int p) {

struct bundle *A = xmalloc(sizeof (struct bundle));

A->x = el; // first value to be returned

A->y = e2; // second value to be returned

return A; // return both values together as a struct
}

int main() {

struct bundle *B = foo(p);
int x = B->x;

int y = B->y;

free(B);

}

Rewrite the declaration and the last few lines of the function foo, as well as the
snippet of main, to avoid heap-allocating, freeing, or leaking any memory on the
heap. The rest of the code (. . .) should continue to behave exactly as it did before.

Solution:

void foo(_____ ________________ , int p) {
A->x = el;
A->y = e2;

return;

by

int main() {

struct bundle B;

-
[=]
ct
"
Il

[
=]
ct

<

]

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

15-122 Written Homework 10 Page 6 of 7

3. AVL Trees.

(3) (a) Draw the AVL trees that result after successively inserting the following keys into
an initially empty tree, in the order shown:

89, 79, 45, 58, 10, 63, 31

Show the tree after each insertion and subsequent re-balancing (if any) is completed:
the tree after the first element, 89, is inserted into an empty tree, then the tree after
79 is inserted into the first tree, and so on for a total of seven trees. Make it clear
what order the trees are in.

Be sure to maintain and restore the BST invariants and the additional balance
invariant required for an AVL tree after each insert.

Solution:

15-122 Written Homework 10 Page 7 of 7

(b) Recall our definition for the height A of a tree:

The height of a tree is the maximum length of a path from the
root to a leaf. So the empty tree has height 0, the tree with
one node has height 1, and a balanced tree with three nodes has
height 2.

The minimum number of nodes m in a valid AVL tree is related to its height. The
goal of this question is to quantify this relationship.

1.

ii.

1il.

Fill in the table below relating the variables A and m:

m
0
1
2

S| O = W N = O

Guided by the table in part (i), give an expression for m as a function of h.
Here’s a hint: recall that the nth Fibonacci number F(n) is defined by:
F(0)=0
F(1)=1
F(n)=F(n—-1)+ F(n—2), n>1
You may find it useful to use the Fibonacci function F'(n) in your answer. Your

answer does not need to be a closed form expression; it could be a recursive
definition like the one for F'(n).

Solution:

Give a closed form expression for M (h), the mazimum number of nodes in a
valid AVL tree of height h.

Solution: M(h) =

