15-122 Written Homework 5 Page 1 of 10

15-122 : Principles of Imperative Computation, Spring 2014

Written Homework 5

Due before class: Thursday, February 20, 2014

Name:

Andrew 1ID:

Recitation:

The written portion of this week’s homework will give you some practice working with linked
lists, pointers and the principle of an interface. You can either type up your solutions or
write them neatly by hand, and you should submit your work in class on the due date just
before lecture begins. Please remember to staple your written homework before submission.

Question | Points | Score
1 9
2 5
3 6
Total: 20

You must do this assignment in one of two ways and bring the
stapled printout to the handin box on Thursday:

1) Write your answers neatly on a printout of this PDF.

2) Use the TeX template at http://www.cs.cmu.edu/afs/cs.
cmu.edu/academic/class/15122-s14/www/theoryb.tgz

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15122-s14/www/theory5.tgz
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15122-s14/www/theory5.tgz

(7)

15-122 Written Homework 5 Page 2 of 10

1. Linked Lists
You are given the following CO type definitions for a linked list of integers:

struct list_node {
int data;
struct list_nodex*x next;
};
typedef struct list_node list;

struct list_header {
list* start;
list* end;
};
typedef struct list_header* linkedlist;

An empty list consists of one list node. All lists have one additional node at the end
that does not contain any relevant data, as discussed in class.

(a) In this task, we ask you to analyze a list function and reason that each pointer
access is safe. You will do this by indicating the line(s) in the code that you can
use to conclude that an access is safe. Your analysis must be precise and minimal:
only list the line(s) upon which the safety of a pointer dereference depends. If a
line does not include a pointer dereference, indicate this by writing NONE after the
line in the space provided. As an example, we show the analysis for an is_segment
function below.

bool is_segment(list* s, list* e) {

/x 1 x/ if (s == NULL) return false; NONE
/x 2 %/ if (e == NULL) return false; NONE
/* 3 x/ if (s->next == e) return true; 1

/x 4 x/ list* ¢ = s; NONE
/* 5 x/ while (c !'= e && c != NULL) { NONE
/% 6 *x/ c = c->next; 5

/* T */ } NONE
/* 8 x/ if (¢ == NULL) NONE
/*x 9 x/ return false; NONE
/* 10 *x/ return true; NONE

+

Complete the analysis of the mystery function on the next page. The first two lines
of code are analyzed for you.

15-122 Written Homework 5 Page 3 of 10

/* 1 %/

/x 2 */

/* 3 x/

/x4 */

/* 8 x/

/x 9 x/

/* 10 */

/* 11 x/

/* 12 */

/* 13 *x/

/* 14 x/

/* 15 */

Solution:

void mystery(linkedlist a, linkedlist b)
//@requires a != NULL; ___NONE___
//@requires b != NULL; ___NONE___

//@requires is_segment(a->start, a->end);

//@requires is_segment (b->start, b->end);

{

list* nptr = b->start;

list* t1 a->start;

list* t2 b->start;

while (t1 '= a->end && t2 != b->end)

//@loop_invariant is_segment(tl, a->end);

//@loop_invariant is_segment(t2, b->end);

{

list* t = t2;

t2 = t2->next;

t->next = tl->next;

tl->next = t;

tl = tl1->next->next;

b->start = t2;

15-122 Written Homework 5

Page 4 of 10

(2) (b) Let a and b be two linked lists, with m and n data values, respectively, and we call
mystery(a,b); on these two lists. For each of the following pictures, draw the final

state of the lists after the function executes.

a - data next data next data next data next data next
] | |] | |] | |
b |1 | 12 13 14
1
start end
data next data next data next
e [=17 |
start end
Solution:
a -~ data next data next data next
[t [=12 |
bl ¢
start end
data next data next data next data next data next
| |] | |] | |
(K T L® L7

start end

Solution:

If m > n, what is the final length of linked list a?

Solution:

If m < n, what is the final length of linked list a?

Solution:

15-122 Written Homework 5 Page 5 of 10

2. A New Linked List Operation

For the following question, assume the linked list type definitions from the previous
problem. You are also given the following specification function that returns true if and
only if x is greater than every node in the list from start (inclusive) to end (exclusive).

bool gt(int x, list* start, list* end);

(4) (a) Complete the function below that removes the maximum integer from a non-empty
linked list of integers. You may assume there are no duplicate elements. (Note that
loop invariants are not given so we can’t reason about the safety of the code.)

Solution:

int remove_max(linkedlist a) {
//@requires a != NULL;
//@requires is_segment(a->start, a->end);

//@requivres _____________________________ ;// List not empty
//@ensures 1is_segment(a->start, a->end);

//@ensures gt(\result, a->start, a->end);

list* first = a->start;

list* curr = first->next;

list* prev = first;

list* max = first;

list* max_prev = first;

}

if (max == max_prev)

return max->data;

15-122 Written Homework 5 Page 6 of 10

(1) (b) Explain in one sentence why the second postcondition specified in the function
above is not strong enough to reason that this function removes and returns the
maximum integer from the non-empty linked list.

Solution:

15-122 Written Homework 5

Page 7 of 10

3. The Stack Interface: Client and Implementation

Consider the following interface for stack that stores elements of the type elem:

/* Stack Interface */
stack stack_new();
bool stack_empty(stack S);
void push(elem e, stack S);
elem pop(stack S)

//@requires !stack_empty(S);

3

/%
/%
/%
/%

0(1)
0(1)
0(1)
0(1)

*/
*/
*/
*/

Write a client function stack_bottom(stack S) that returns, but does not remove,
the bottom element of the given stack, assuming the stack is not empty. For this
question, use only the interface since, as a client, you do not know how this data
structure is implemented. Also, make sure that the stack isn’t changed after the
function. Do not use any stack functions that are not in the interface (including
specification functions like is_stack since these belong to the implementation).

Solution:

{

elem stack_bottom(stack S)
//@requires !stack_empty(S);

15-122 Written Homework 5 Page 8 of 10

Now we look at the implementation side of the stack interface. Suppose we decide
to implement the stack using a doubly-linked list so that each list node contains
two pointers, one to the next node in the list and one to the previous (prev) node
in the list:

prev data next prev data next prev data next prev data next

DX<a [e s |—m~|u|—¢:«r:xx
e

top end

struct list_node {
elem data;
struct list_node* prev;
struct list_node* next;

}s

typedef struct list_node list;

The top element of the stack will be stored in the first (head) node of the list, and
the bottom element of the stack will be stored in the second-to-last node in the list,
with the last node being a "dummy node". An empty stack consists of a dummy
node only.

struct stack_header {

list* top;

list* end; // points to dummy node
¥
typedef struct stack_header* stack;

Modify the singly-linked list implementation of stacks given below to work with the
doubly-linked list representation given above. For each function, either state the
modification(s) that need to be made (e.g. "Insert the statement XXXX after line
Y", "Remove line Z", "Change line Z to XXXX", etc.) or state "No change needs
to be made.". You may assume there is an appropriate is_stack specification
function already defined. Be sure that your modifications still maintain the O(1)
requirement for the stack operations.

Solution:

bool stack_empty(stack S)
//@requires is_stack(S);
{

/* 1 %/ return S->top == S->end;

by

15-122 Written Homework 5

Page 9 of 10

/* 1 %/
/* 2 %/
/* 3 *x/
/* 4 *x/
/* 5 */
/* 1 %/
/* 2 *x/
/* 3 */
/* 4 */
/* 1 %/
/* 2 */
/* 3 x/

stack stack_new()

//@ensures is_stack(\result);
//@ensures stack_empty(\result);
{

stack S = alloc(struct stack_header);
list* 1 = alloc(struct list_node);
S->top = 1;
S->end = 1;
return S;

+

void push(elem x, stack S)
//@requires is_stack(S);
//@ensures is_stack(S);

{
list* 1 = alloc(struct list_node);
1->data = x;
1->next = S->top;
S->top = 1;
+

elem pop(stack S)
//@requires is_stack(S);
//@requires !stack_empty(S);
//Q@ensures is_stack(S);

{
elem e = S->top->data;
S->top = S->top->next;
return e;

by

(1)

(1)

15-122 Written Homework 5 Page 10 of 10

(c) We wish to add a new operation stack_bottom to our stack implementation from

the previous part.
elem stack_bottom(stack S); /x 0(1) */
//@requires !stack_empty(S);

This operation returns (but does not remove) the bottom element of the stack. Write
an implementation for this function using the doubly-linked list implementation of
stacks from the previous part. Be sure that your function runs in constant time.
(NOTE: Remember that the linked list that represents the stack has a dummy
node.)

Solution:

elem stack_bottom(stack S)
//@requires is_stack(S);
//@requires !stack_empty(S);
{

+

(d) If we didn’t add the prev link to each node in the linked list, how long would it

take to return the bottom element of the stack using big O notation if the list had
n elements? Why? (NOTE: There is still a dummy node at the end of the linked
list.)

Solution:

