15-213
“The Class That Gives CMU lts Zip!”

Bits and Bytes
Aug. 29, 2002

Topics
m Why bits?
m Representing information as bits
® Binary/Hexadecimal
[Byte representations
» numbers

» characters and strings
» |nstructions

m Bit-level manipulations
® Boolean algebra
® Expressing in C

class02.ppt

15-213 F02

Why Don’t Computers Use Base 107?

Base 10 Number Representation
m That's why fingers are known as “digits”

m Natural representation for financial transactions
® Floating point number ¢ annot exactly repres ent $1.20

m Even carries through in scientific notation
® 15213 X 10*

Implementing Electronically

m Hard to store
® ENIAC (First electronic compu ter) used 10 vacuum tubes / digit

m Hard to transmit
® Need high precision to encode 10 signal levels on single wire

m Messy to implement digital logic functions
® Addition, multiplication , etc.

—2_ 15-213, F'02

Binary Representations

Base 2 Number Representation
m Represent 15213 ;, as 11101101101101,
= Represent 1.20 ,, as 1.0011001100110011[0011]...,
= Represent 1.5213 X 10 4 as 1.1101101101101, X 2%3

Electronic Implementation
m Easy to store with bistable elements

m Reliably transmitted on noisy and inaccurate wires
“— 0 1 o>

3.3V
2.8V

0.5V
0.0V

15-213, F02

Byte-Oriented Memory Orgamnization

Programs Refer to Virtual Addresses
m Conceptually very large arra vy of bytes

m Actually implemented with hierarchy of different memory

types
® SRAM, DRAM, disk

® Only allocate for regions actually used by program

m In Unix and Windows NT, address spac e private to particular
“process”
® Program being execute d
® Program can clobber its own data, but not that of othe rs

Compiler + Run-Time System Control Allocation
m Where different program objects should be stored
m Multiple mechanisms: static, stack, and heap

m In any case, all allocation within single virtual address spa ce
—4— 15-213, F02

Encoding Byte Values

Byte = 8 bits
m Binary 00000000, to 11111111,
m Decimal: 040 to 255,
m Hexadecimal 00,, to FFg

® Base 16 number repres entation

® Use characters ‘'O’'to ‘9’ and ‘A’ to ‘F’

® Write FA1D37B ,,in C as 0xFA1D37B
» Or 0xfald37b

N

RN
o oo
0 [0 [0000
1] 10001
2 | 2 | 0010
3 [30011
4| 40100
5 5 0101
6 | 6] 0110
7 | 7 | 0111
8 | 8 | 1000
9 [9 [1001
A [10] 1010
B [11] 1011
C [12] 1100
D [13] 1101
E [14] 1110
F |15] 1111

15-213, F'02

Machine Words

Machine Has “Word Size”

m Nominal size of integer-valued data
® Including addresse s

m Most current machines are 32 bits (4 bytes)
® Limits addresses to 4GB
® Becoming too small for memory-intensive a pplications

m High-end systems are 64 bits (8 bytes)
® Potentially address = 1.8 X 1019 bytes

m Machines support multiple data formats
® Fractions or multiples of word size
® Always integral number of bytes

15-213, F'02

Word-Oriented Memory

Organization |
g 32-bit ~ 64-bit Bytes Addr.
Words Words
0000
] Addr 0001
Addresses Specify Byte =
) 0000 0002
Locations Addr 0003
m Address of first byte in 0000 0004
word Adar 0005
m Addresses of successive 0004 0006
words differ by 4 (32-bit) or 0007
8 (64-bit) 0008
Addr 0009
0008 Addr 0010
- 0011
0008 0012
Addr 0013
0012 0014
0015

15-213, F'02

Data Representations

Sizes of C Objects (in Bytes)
m C Data Type Compaq Alpha Typical 32-bit Intel IA32

® int 4 4 4
® long Int 8 4 4
® char 1 1 1
® short 2 2 2
® float 4 4 4
® double 8 8 8
® long double 8 8 10/12
® char* 8 4 4

» Or any other pointer

-8 - 15-213, F'02

Byte Ordering

How should bytes within multi-byte word be ordered in
memory?

Conventions

m Sun’s, Mac’s are “Big Endian” machines
® |east significant b yte has highest add ress

m Alphas, PC’s are “Little Endian ” machines
® | east significant b yte has lowest address

-9 - 15-213, F'02

Byte Ordering Example

Big Endian
m Least significant byte has highest address

Little Endian
m Least significant byte has lowest address

Example
m Variable x has 4-byte representation 0x01234567
m Address given by &xis 0x100

Big Endian 0x100 0x101 0x102 0x103

01 23 45 67

Little Endian 0x100 0x101 0x102 0x103

67 45 23 01

—10 -

15-213, F'02

Reading Byte-Reversed Listings

Disassembly

m Text representation of binary machine code
m Generated by program that reads the machine code

Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366 81 c¢3 ab 12 00 00 add $0x1l2ab, $ebx
804836¢c: 83 bb 28 OOV\OO 00 00 cmpl 76x0,0x28(%ebx)
Deciphering Numbers /

m Value: Oxl2ab

m Pad to 4 bytes: 0x000012ab

m Split into bytes: 00 00 12 ab

m Reverse: ab 12 00 00

11— 15-213, F'02

Examining Data Representations

Code to Print Byte Representation of Data

12 —

typedef unsigned char *pointer;

void show bytes (pointer start, int len)
{

int i;

for (i = 0; i < len; i++)

printf ("0x%p\t0x%.2x\n",
start+i, start[i]);

printf("\n") ;

}

Printf directives:
$p. Print pointer

m Casting pointer to unsigned char * creates byte array

$x: Print Hexadecimal

15-213, F'02

show_bytes Execution Example

— 13—

int a = 15213;
printf ("int a

15213;\n");

show bytes ((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;
Ox11ffffchb8
Ox11ffffcb9
Oxll1ffffcba
Ox11ffffcbb

0x6d
0x3b
0x00
0x00

15-213, F02

Representing Integers

Decimal: 15213

int A = 15213;

int B = -15213: Binary: 0011 1011 0110 1101
long int C = 15213; Hex: 3 B 6 D
Linux/Alpha A Sun A Linux C Alpha ¢ Sun C
6D 00 6D
3B 00 3B
00 3B 00

00 6D 00

Linux/Alpha B Sun B

Two’s complement repre sentation

(Covered next lecture)

- 14 - 15-213, F'02

Representing Pointers

Alpha P

A0
int B = -15213; FC
int *P = &B; FE

FF

Alpha Address 01
Hex: 1 F F F F F o A 0 00
00
Binary: o001 1111 1111 1111 1111 1111 1100 1010 o00OO 00
Sun P
Sun Address
EF
== Hex: E F F F F B 2 C
— Binary: 1110 1111 1111 1111 1111 1011 0010 1100 Linux P
2C Linux Address D4
F8
Hex: B F F F F 8 D 4 ==
Binary: 1011 1111 1111 1111 1111 1000 1101 0100 oF

Different compilers & mac hines assign differe nt locations to objects

— 15—

15-213, F'02

Representing Floats

Float F 15213.0;

Linux/Alpha F Sun F

IEEE Single Precision Flo ating Point Representation
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0OOOO
15213: 1110 1101 1011 01

< >

Not same as intege r representation, but cons istent across machi nes

Can see some rela tion to integer representati on, but not obvious

16— 15-213, F'02

Representing Strings

char S[6]

Strings in C
m Represented by array of char acters

m Each character encode din ASCII format
® Standard 7-bit encoding of character set
® Other encodings exist, but uncomm on
® Character “0” has code 0x30

» Digit i has code 0x30+i

m String should be null-terminated
® Final character =0

Compatibility
m Byte ordering not an issue
® Data are single byte quantities

m Text files generally platform independent

31

35

32

31

33

00

= "15213";

Linux/Alpha S Sun s

<+ 31

<+———» 35

<+——» 32

<+ 31

<+———» 33

<+———» 00

® Except for different conv entions of line termina tion character(s)!

—17 -

15-213, F'02

Machine-Level Code Representation

Encode Program as Sequence of | nstructions

m Each simple operation
® Arithmetic operation
® Read or write memory
® Conditional branch
m Instructions encoded as bytes
® Alpha’s, Sun’s, Mac’s u se 4 byte instructions
» Reduced Instruction Set Computer (RISC)
® PC’s use variable le ngth instructions
» Complex Instruction Set Computer (CISC)
m Different instruction types and encodings for different
machines
® Most code not binary com patible

Programs are Byte Sequences Too!

_ 18— 15-213, F'02

Representing Instructions

int sum(int x, int y)

{ Alpha sum
return x+y; 00
} 00
30

m For this example, Alpha &

42
Sun use two 4-byte
. . 01
Instructions 20
® Use differing numbers of
. : . FA
Instructions in other ca ses =

m PC uses 7 instructions with
lengths 1, 2, and 3 bytes
® Same for NT and for Linux

® NT / Linux not fully bin ary
compatible

Different machines us e totally different instruc
—-19 —

Sun sum

81
C3
EO
08
90
02
00
09

PC sum

55
89
E5
8B
45
ocC
03
45
08
89
EC
5D
C3

tions and encodings

15-213, F'02

Boolean Algebra

Developed by George Boole in 19th Century

m Algebraic representation of logic
® Encode “True” as 1 and “False” as O

And Or
m A&B =1 when both A=1 and m A|B = 1 when either A=1 or
B=L g0 1 B=L 110 1
010 O 010 1
110 1 111 1
Not

Exclusive-Or (Xor)

m A”B = 1 when either A=1 or
~ B=1, but not both

m ~A =1 when A=0

0|1 ANO 1
1|0 010 1
111 O

_ 20— 15-213, F'02

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
m 1937 MIT Master’s Thesis

m Reason about networks of relay switches
® Encode closed switch as 1, open switchas O

A&~B .
— Connection when
A -B
O—< >0 Ag~B|-A&B
~A __ B
N~
~A&B = A"B

—21—

15-213, F02

Integer Algebra

Integer Arithmetic
m [Z, +, * — 0, 1forms a “ring”
m Addition is “sum” operation
m Multiplication is “product” operation
m — IS additive inverse
m O is identity for sum
m 1 is identity for product

— 22 —

15-213, F'02

Boolean Algebra

Boolean Algebra

— 23—

40,1}, |, &, ~, 0, 1[0forms a “Boolean algebra”

Or is “sum” operation

And is “product” operation

~ Is “complement” operation (not additive inverse)
O is identity for sum

1 is identity for product

15-213, F'02

Boolean Algebra = Integer Ring

m Commutativity

A|B =BJ|A A+B = B+A
A&B =B&A A*B = B*A
m Associativity
(Al B) |[C =A|B|C (A+B)+C = A+ (B +C)
(A&B)&C = A&(B&C) (A*B)*C = A*(B*C)

m Product distributes over sum
A&B|C) = (A&B)|(A&C) A*B+C) =A*B+B*C
m Sum and product identities

A|O0O = A A+0 = A
A&l =A A*1l =A
m Zero is product annihilator
A&O =0 A*0 =0
m Cancellation of negation
~(~A)= A —-(-A) = A

— 24 — 15-213, F'02

Boolean Algebra # Integer Ring

Boolean: Sum distributes over product

A|(B&C) = (A|B)&(A|C) A+(B*C) # (A+B)* (B +C)

Boolean: ldempotency

AlA = A A+AZ£A
®“Ais true” or “Alis true " ="Alis true”
A&A = A A*AZA
Boolean: Absorption
A|(A&B) = A A+(A*B) zA
®“Ais true” or “Alistrue and B is true” = “A1 s true”
A&(A|B) = A A*(A+B) A
Boolean: Laws of Complements
A|l~-A =1 A+-A#%1

®“Ais true” or “Ais fa Ise”
Ring: Every element has additive inver se
A|l~A £0 A+-A=0

— 25 _

15-213, F'02

Boolean Ring

90,1}, A, &, 1,0, 10

Properties of & and ™

m Identical to integers mod 2

| 1s identity operation:
AMA=0

Property

I
N
o

I

Commutative sum
Commutative product
Associative sum
Associative product
Prod. over sum

0 is sum identity

1 is prod. identity

0 is product annihilator
Additive inverse

I(A) = A

Boolean Ring

A"B = B"A

A&B = B&A

(AAB)A"C = A*(B"C)
(A&B)&C = A& (B &C)
A&B"C) = (A&B)"(B&C)
ANO = A

A&l = A
A&0=0
A"A =0

15-213, F'02

—27 —

Relations Between Operations

DeMorgan’s Laws

m Express & in terms of |, and vice-ve rsa
® A&B = ~(~A | ~B)
» A and B are true if and onl Yy if neither A nor B is false
e A|B = ~(~A&~B)
» AorBaretrueifandonlyi fA and B are not both false

Exclusive-Or using Inclus ive Or
e AB = (~rA&B)|(A&~B)
» Exactly one of A and B is true
e AB = (A|B) &~(A &B)
» Either Ais true, or B is true, b ut not both

15-213, F'02

General Boolean Algebras

Operate on Bit Vectors

m Operations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 =~ 01010101

01000001 01111101 00111100 10101010

All of the Properties of Boolean Algebra Apply

og 15-213, F'02

Representing & Manipulating Sets

Representation

m Width w bit vector represents subsets of

mg=1ifj OA

01101001
6543210
01010101
6543210
Operations
m & Intersection
m | Union
m A Symmetric difference
m ~ Complement

— 29—

{0,3,56}

{0,2,4,6}

01000001
01111101
00111100
10101010

{0, ..., w=1}

10,6}
{0,2,3,4,5,6}
{2,3,4,5}
{1,3,5,7}

15-213, F'02

Bit-Level Operations in C

Operations &, |, ~, ~Availa bleinC
m Apply to any “integral” data type

® long, int, short, char
m View arguments as bit vectors
m Arguments applied bit-wise

Examples (Char data type)
m ~0x41 --> OxBE

~01000001, --> 10111110,
m ~0x00 --> OXFF
~00000000, --> 11111111,

m 0x69 & O0x55 --> O0x41
01101001, & 01010101, --> 01000001,

m 0x69 | 0x55 --> O0Ox7D

01101001, | 01010101, --> 01111101,
—~30 -

15-213, F'02

Contrast: Logic Operations im C

Contrast to Logical Operators

&&, | |, !
® View O as “False”
® Anything nonzero as“ True”
® Always return O or 1
® Early termination

Examples (char data type)

—- 31—

10x41 --> 0x00
10x00 --> 0x01
110x41 --> 0x01

0x69 && 0x55 --> 0x01
0x69 || 0x55 --> 0x01
p && *p (avoids null pointer access)

15-213, F'02

Shift Operations

Left Shift: x <<y

m Shift bit-vector x left y positions
® Throw away extra bits on le ft
® Fill with O’s on right

Right Shift: X >> vy

m Shift bit-vector xright y
positions
® Throw away extra bits on righ t

m Logical shift
® Fill with O’s on left

m Arithmetic shift
® Replicate most sign ificant bit on
right
® Useful with two’'s compleme nt
integer representation

— 32 —

Argument x

01100010

<< 3

00010000

Log. >> 2

00011000

Arith. >> 2

00011000

Argument x

10100010

<< 3

00010000

Log. >> 2

00101000

Arith. >> 2

11101000

15-213, F'02

Cool Stuff with Xor

m Bitwise Xor is form void funny(int *x, int *y)
of addition {
. *x = *x A ky. /* #1 */
m With extra prope_rty *y = kx A *y; /* $2 %/
that every value Is kx = *x A *y., /* #3 */
its own additive }
Inverse
AA=0
* 3¢ *y
Begin A B
1 A~B B
2 A~B (AB)~B = A
3 (A°B)~A = B A
End B A

—~33—

15-213, F'02

Main Points

It's All About Bits & Bytes
m Numbers
m Programs
m [ext

Different Machines Follow Different Conventions
m Word size
m Byte ordering
m Representations

Boolean Algebra is Mathematical Basis
m Basic form encodes “false” as 0, “true” as 1

m General form like bit-level operations in C
® Good for representing & manip ulating sets

— 34—

15-213, F'02

