15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation ll
October 30, 2003

Topics
= Explicit doubly-linked free lists
= Segregated free lists
= Garbage collection
= Memory-related perils and pitfalls

class20.ppt

Keeping Track of Free Blocks (recap.)

® Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

® Method 2: Explicit list among the free blocks using
pointers within the free blocks

A
(sIA[[a6l [T 11

[2[]

® Method 3: Segregated free lists
n Different free lists for different size classes

® Method 4: Blocks sorted by size (not discussed)

= Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

15-213, F'03

Explicit Free Lists
N N e

Use data space for link pointers
= Typically doubly linked
= Still need boundary tags for coalescing

A
(4[]

B
plafal T Tale[Tel [[o[a[[Ta]4] o]4]
o4

Back links

m |t is important to realize that links are not necessarily in the
same order as the blocks

15-213, F'03

Allocating From Explicit Free Lists

it
Before: CIOCTTTITTITT]

b

(with splitting)

After:

15-213, F'03

Page 1

Freeing With Explicit Free Lists

Insertion policy: Where in the free list do you put a
newly freed block?
m LIFO (last-in-first-out) policy
© Insert freed block at the beginning of the free list
® Pro: simple and constant time
e Con: suggest frag tati
ordered.
= Address-ordered policy
© Insert freed blocks so that free list blocks are always in address
order
» i.e. addr(pred) < addr(curr) < addr(succ)
® Con:requires search
® Pro: studies suggest fragmentation is better than LIFO

is worse than address

15-213, F'03

Freeing With a LIFO Policy (Case 1)

free ()
Before:
Root (T[T TT1] [slor
After:
Root D <ol [[E

Insert the freed block at the root of the list

15-213, F'03

Freeing With a LIFO Policy (Case 2)

£
Before: D% ree (p)
Root P18 T LT [elo]
After: D%
Root (Ol T TTTTITTT] E

Splice out predecessor block, coalesce both memory
blocks and insert the new block at the root of the list

15-213, F'03

Freeing With a LIFO Policy (Case 3)

free ()
Before: D%
Root DR L o8 1] [elo]
After: ;
1
Root CITTI<o] |

Splice out successor block, coalesce both memory
blocks and insert the new block at the root of the list

15-213, F'03

Page 2

Freeing With a LIFO Policy (Case 4)

Before: free (o)

Root EE [¢[o[
After: Dﬂ

Root igﬁk\%

Splice out predecessor and successor blocks, coalesce
all 3 memory blocks and insert the new block at the
root of the list

15-213, F'03

Explicit List Summary

Comparison to implicit list:

= Allocate is linear time in number of free blocks instead of
total blocks -- much faster allocates when most of the
memory is full

u Slightly more complicated allocate and free since needs to
splice blocks in and out of the list

= Some extra space for the links (2 extra words needed for
each block)
Does this increase internal fragmentation?

Main use of linked lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or
possibly for different types of objects

—10- 15-213, F'03

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

Method 2: Explicit list among the free blocks using
pointers within the free blocks

A
(IAT T T Tel T[]

EIN

Method 3: Segregated free list
n Different free lists for different size classes

Method 4: Blocks sorted by size
= Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

—11- 15-213, F'03

Segregated Storage

Each size class has its own collection of blocks

s[ITT P ITHITHITHKITE
s JTTBHIITHITITH

se [T TTTTHITITTIIT
o6 [[[T TTTTTTTTTITITTIP>

= Often have separate size class for every small size (2,3,4,...)
= For larger sizes typically have a size class for each power of 2

—12- 15-213, F'03

Page 3

Simple Segregated Storage

Separate heap and free list for each size class
No splitting
To allocate a block of size n:

u [f free list for size n is not empty,
e allocate first block on list (note, list can be implicit or explicit)
u [f free list is empty,
e getanew page
e create new free list from all blocks in page
e allocate first block on list
m Constant time
To free a block:
= Add to free list
u If page is empty, return the page for use by another size (optional)
Tradeoffs:

= Fast, but can fragment badly

13- 15-213, F'03

Segregated Fits

Array of free lists, each one for some size class

To allocate a block of size n:
m Search appropriate free list for block of size m > n
= If an appropriate block is found:
® Split block and place fragment on appropriate list (optional)
= If no block is found, try next larger class
= Repeat until block is found

To free a block:
= Coalesce and place on appropriate list (optional)

Tradeoffs
= Faster search than sequential fits (i.e., log time for power of
two size classes)
= Controls fragmentation of simple segregated storage
= Coalescing can increase search times
® Deferred coalescing can help

—14- 15-213, F'03

For More Info on Allocators

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973

= The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

15— 15-213, F'03

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free
Invented 1958 by John McCarthy for Lisp

void foo () {
int *p = malloc(128);
return; /* p block is now garbage */

}

Common in functional languages, scripting languages,
and modern object oriented languages:
m Lisp, ML, Java, Perl, Mathematica, ...

Variants (conservative garbage collectors) exist for C
and C++
= However, cannot necessarily collect all garbage

16— 15-213, F'03

Page 4

Useful malloc Related Information

Debugging Tools for Dynamic Storage Allocation and
Memory Management
http://www.cs.colorado.edu/homes/zorn/public _html/MallocDebug.html

Electric Fence from Bruce Perens
http://perens.com/FreeSoftware/

IBM P-Series (AIX) systems
http://publib16.boulder.ibm.com/pseries/en _US/aixprggd/genprogc/mastertoc.htm

Memory Allocator for Multithreaded programs (FYI)
http://www.cs.utexas.edu/users/emery/hoard/

17— 15-213, F'03

Garbage Collection

How does the memory manager know when memory
can be freed?
= In general we cannot know what is going to be used in the
future since it depends on conditionals
= But we can tell that certain blocks cannot be used if there
are no pointers to them

Need to make certain assumptions about pointers
= Memory manager can distinguish pointers from non-
pointers
= All pointers point to the start of a block
= Cannot hide pointers (e.g., by coercing them to an int, and
then back again)

18- 15-213, F'03

Classical GC algorithms
Mark and sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)
Reference counting (Collins, 1960)

= Does not move blocks (not discussed)
Copying collection (Minsky, 1963)

= Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
= Collects based on lifetimes

For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 1996.

—19- 15-213, F'03

Memory as a Graph

We view memory as a directed graph
= Each block is a node in the graph
= Each pointer is an edge in the graph

= Locations not in the heap that contain pointers into the heap are
called root nodes (e.g. registers, locations on the stack, global
variables)

Root nodes P (P q

Heap nodes O reachable
O Not-reachable
@ O (garbage)

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (never needed by the application)

20— 15-213, F'03

Page 5

Assumptions For This Lecture

Application
= new (n): returns pointer to new block with all locations cleared
m read (b, i) : read location i of block b into register
m write(b,i,v): writevinto location i of block b

Each block will have a header word
m addressed as b[-1], for a block b
= Used for different purposes in different collectors

Instructions used by the Garbage Collector
m is_ptr(p): determines whetherp is a pointer
= length (b): returns the length of block b, not including the header
m get_roots (): returns all the roots

21— 15-213, F'03

Mark and Sweep Collecting

Can build on top of malloc/free package
= Allocate using malloc until you “run out of space”

When out of space:
m Use extra mark bit in the head of each block
m Mark: Start at roots and sets mark bit on all reachable memory
= Sweep: Scan all blocks and free blocks that are not marked

root D Mark bit set
Be " ¥ \v A
eforemart | \‘Q/IMI e [[[T T 11
¥ \¢ A
afermak T T T T e[e[[T TT1 11
~——
» A
N i 73 97 WA T
~—
_22- 15-213, F03

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark (ptr p) {
if ('is_ptr(p)) return;
if (markBitSet(p)) return;

// do nothing if not pointer
// check if already marked

setMarkBit(p) ; // set the mark bit

for (i=0; i < length(p); i++) // mark all children
mark(p[i]);

return;

}

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {
while (p < end) {
if markBitSet (p)
clearMarkBit () ;
else if (allocateBitSet(p))
free(p) ;
p += length(p);

—23- 15-213, F'03

Conservative Mark and Sweep in C

A conservative collector for C programs
m is ptr() determines if a word is a pointer by checking if it
points to an allocated block of memory.
= But, in C pointers can point to the middle of a block.
ptr
header

v
LI T [T |

So how do we find the beginning of the block?

= Can use balanced tree to keep track of all allocated blocks
where the key is the location

= Balanced tree pointers can be stored in header (use two

additional words) head data
=N |
e left right 15-213, F'03

Page 6

Generational Collectors

Idea: exploit the fact that many memory objects are short-lived and
“older” memory objects are likely to live longer.
How?
m Partition Heap logically into multiple generations (for example 2-8)
= GC youngest generation more frequently
= Promote objects in generation x to generation x+1 once they
survived a certain number of GC cycles
Implementation issues:
= To copy or not-to-copy (compaction)
= How to tell which generation an object belongs to?
o Partition the Heap address space vs. record it in header
= Pointer from older to younger generations
e Write-barrier: at start of generation begin recording write to objects in
older generation
e Use a card-table to locate modified old memory objects

25— 15-213, F'03

Memory-Related Bugs

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

26— 15-213, F'03

Dereferencing Bad Pointers

The classic scanf bug

scanf (“%d”, val);

27— 15-213, F'03

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, int *x) {
int *y = malloc(N*sizeof (int));
int i, j;

for (i=0; i<N; i++)
for (j=0; Jj<N; j++)
y[il += A[i1[31*x[31;
return y;

—28- 15-213, F'03

Page 7

Overwriting Memory

Allocating the (possibly) wrong sized object

int **p;
p = malloc (N*sizeof (int)) ;

for (i=0; i<N; i++) {
pl[i] = malloc (M*sizeof (int)) ;

}

29—

15-213, F'03

Overwriting Memory

Off-by-one error

int **p;
p = malloc (N*sizeof (int *));
for (i=0; i<=N; i++) {

}

pl[i] = malloc (M*sizeof (int)) ;

~30-

15-213, F'03

Overwriting Memory

Not checking the max string size

char s[8];
int i;

gets(s) ;

/* reads “123456789” from stdin */

Basis for classic buffer overflow attacks
= 1988 Internet worm
= Modern attacks on Web servers
= AOL/Microsoft IM war

31—

15-213, F'03

Overwriting Memory

Referencing a pointer instead of the object it points to

int *packet;
packet = binheap[0];

binheap[0] = binheap[*size - 1];
*size--;
Heapify (binheap, *size, 0);

return (packet) ;

int *BinheapDelete(int **binheap, int *size) {

32—

15-213, F'03

Page 8

Overwriting Memory

Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != val)
p += sizeof(int);

return p;

~33- 15-213, F'03

Referencing Nonexistent Variables

Forgetting that local variables disappear when a
function returns

int *foo () {
int val;

return &val;

-34- 15-213, F'03

Freeing Blocks Multiple Times

Nasty!

x malloc (N*sizeof (int)) ;
<manipulate x>

free (x) ;

y = malloc (M*sizeof (int)) ;
<manipulate y>
free (x) ;

—35- 15-213, F'03

Referencing Freed Blocks

Evil!

x malloc (N*sizeof (int)) ;
<manipulate x>

free (x) ;

y = malloc (M*sizeof (int)) ;
for (i=0; i<M; i++)
yli]l = x[i]++;

—36- 15-213, F'03

Page 9

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof (int)) ;

return;

—37- 15-213, F'03

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

struct list {
int val;
struct list *next;

Y

foo() {
struct list *head = malloc(sizeof (struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>

free (head) ;
return;

—38- 15-213, F'03

Dealing With Memory Bugs

Conventional debugger (gdb)
= Good for finding bad pointer dereferences
= Hard to detect the other memory bugs

Debugging malloc (CSRI UToronto malloc)

= Wrapper around conventional malloc

= Detects memory bugs atmalloc and free boundaries
© Memory overwrites that corrupt heap structures
® Some instances of freeing blocks multiple times
© Memory leaks

= Cannot detect all memory bugs
® Overwrites into the middle of allocated blocks
® Freeing block twice that has been reallocated in the interim
® Referencing freed blocks

—39- 15-213, F'03

Dealing With Memory Bugs (cont.)

Binary translator (Atom, Purify)
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Can detect all errors as debuggingmalloc
= Can also check each individual reference at runtime
© Bad pointers
® Overwriting
® Referencing outside of allocated block
Garbage collection (Boehm-Weiser Conservative GC)
u Let the system free blocks instead of the programmer.

-40- 15-213, F'03

Page 10

