
Recitation 8
November 1, 2004 15-213: Intro to Computer Systems

Example 1
Bryant, Nowatzyk

Example 1: Signal Masking and Races

int num_jobs = 0;

int main(int argc, char **argv)

{

char c;

char cmdline[MAXLINE];

/* Install the signal handlers */

Signal(SIGCHLD, sigchld_handler); /* Terminated or stopped child */

/* Execute the shell’s read/eval loop */

while (1)

{

/* print the prompt */

print_prompt();

/* read command line */

if ((fgets(cmdline, MAXLINE, stdin) == NULL) && ferror(stdin))

app_error("Terminated due to fgets error");

/* evaluate the command line */

eval(cmdline);

}

exit(0); /* control never reaches here */

}

/*

* sigchld_handler - The kernel sends a SIGCHLD to the shell whenever

* a child job terminates (becomes a zombie), or stops because it

* received a SIGSTOP or SIGTSTP signal. The handler reaps all

* available zombie children, but doesn’t wait for any other

* currently running children to terminate.

*/

void sigchld_handler(int sig)

{

int status;

pid_t pid;

struct job_t *currentJob = NULL;

int reaping = 1;

debug("Entering sigchld_handler()\n");

/* Reap as many children as possible */

while ((pid = waitpid(-1, &status, WNOHANG|WUNTRACED)) > 0)

{

num_jobs--;

remove_from_joblist(pid);

}

debug("Returning from sigchld_handler()\n");

return;

}

1

Recitation 8
November 1, 2004 15-213: Intro to Computer Systems

Example 1
Bryant, Nowatzyk

void eval(char *cmdline)

{

char *argv[MAXARGS];

pid_t pid;

int bg = parseline(cmdline, argv); /* Initialize argv */

/* Display the current state of the system */

printf("The current number of jobs is %d\n", num_jobs);

print_job_list();

/* Fork and create child */

pid = fork();

if (pid == 0) /* I AM THE CHILD */

{

/* Start new program */

if (execve(argv[0], argv, environ) == -1)

{

debug("Child could not start new program - execve(): %s\n",

strerror(errno));

}

exit(0);

}

else /* I AM THE PARENT */

{

num_jobs++; /* update the number of jobs */

add_to_joblist(pid);

}

return;

}

The main problem here is that the child could change it’s state after the parent returns from fork(), but before
the child gets added to the job list. To make sure that we can track the child’s state correctly, we need to block all
signals from the child until we have set up a record for it. This means that we should block signals (SIGCHLD,
SIGINT, SIGSTP) before we fork and only unblock them once our job list is updated. Note that since the child
inherits signal masks, we need to unblock signals in the child before we call execve().

2

Recitation 8
November 1, 2004 15-213: Intro to Computer Systems

Example 2
Bryant, Nowatzyk

Example 2: Never The Same Thing Twice

NOTE: Adapted from Problem 3, Exam 2, Spring 2004

Consider the following C programs. (For space reasons, we are not checking error return codes, so assume that
all functions return normally.) Assume that printf() is unbuffered and that each call to printf() executes
atomically.

/* parent.c */

#include <stdio.h>

#include <sys/types.h>

#include <sys/wait.h>

#define MAXLEN 32

int main(int argc, char *argv[])

{

int i, status, limit;

char num[MAXLEN+1];

pid_t pid;

for(i = 0; i < 3; i++)

{

if((pid = fork()) == 0) /* child */

{

/* convert i into a string for printing */

snprintf(num, MAXLEN, "%d", i);

execl("./kid", "./kid", num, NULL);

}

/* parent */

if(i == 1)

{

waitpid(pid, &status, 0);

printf("%d\n", status);

}

}

return 0;

}

/* kid.c */

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("%d\n", atoi(argv[1]));

return 0;

}

Assume that parent.c is compiled into parent and kid.c is compiled into kid in the same directory. List all possible
outputs (note the newlines) of the following command:

> ./parent

Since the parent waits for its second child to finish, we must have the output from that child ”1”, followed by the
parent printing the child’s status (”0” since the child is assumed to exit normally), followed by the output from
the parent’s third child (”2”). There are no restrictions placed on the ordering of these events and the parent’s
first child. That child can come and print ”0” anywhere in between the other printf() calls. Because there are
four places where child 0 can come in, we have four different output sequences:

3

Recitation 8
November 1, 2004 15-213: Intro to Computer Systems

Example 2
Bryant, Nowatzyk

10, 11, 0, 12

11, 10, 0, 12

11, 0, 10, 12

11, 0, 12, 10

4

