
Page 1

Cache Memories
September 28, 2007

Cache Memories
September 28, 2007

TopicsTopics
Locality of reference
Caching in the memory hierarchy
Generic cache memory organization
Direct mapped caches
Set associative caches

class10.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’07

An Example Memory HierarchyAn Example Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

– 3 – 15-213, F’07

LocalityLocality
Principle of Locality:Principle of Locality:

Programs tend to reuse data and instructions near those
they have used recently, or that were recently referenced
themselves.
Temporal locality: Recently referenced items are likely to be
referenced in the near future.
Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

Locality Example:
• Data

– Reference array elements in succession
(stride-1 reference pattern):

– Reference sum each iteration:
• Instructions

– Reference instructions in sequence:
– Cycle through loop repeatedly:

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
return sum;

Spatial locality

Spatial locality
Temporal locality

Temporal locality

– 4 – 15-213, F’07

Locality ExampleLocality Example
Claim:Claim: Being able to look at code and get a qualitative Being able to look at code and get a qualitative

sense of its locality is a key skill for a professional sense of its locality is a key skill for a professional
programmer.programmer.

Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

Page 2

– 5 – 15-213, F’07

Locality ExampleLocality Example
Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

– 6 – 15-213, F’07

Locality ExampleLocality Example
Question:Question: Can you permute the loops so that the Can you permute the loops so that the

function scans the 3function scans the 3--d array d array a[]a[] with a stridewith a stride--1 1
reference pattern (and thus has good spatial reference pattern (and thus has good spatial
locality)?locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}

– 7 – 15-213, F’07

CachesCaches
Cache:Cache: A smaller, faster storage device that acts as a A smaller, faster storage device that acts as a

staging area for a subset of the data in a larger, staging area for a subset of the data in a larger,
slower device.slower device.

Fundamental idea of a memory hierarchy:Fundamental idea of a memory hierarchy:
For each k, the faster, smaller device at level k serves as a
cache for the larger, slower device at level k+1.

Why do memory hierarchies work?Why do memory hierarchies work?
Programs tend to access the data at level k more often than
they access the data at level k+1.
Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit.
Net effect: A large pool of memory that costs as much as the
cheap storage near the bottom, but that serves data to
programs at the rate of the fast storage near the top.

– 8 – 15-213, F’07

Caching in a Memory HierarchyCaching in a Memory Hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper storage
device at level k+1 is partitioned
into blocks.

Data is copied between
levels in block-sized transfer
units

8 9 14 3
Smaller, faster, more expensive
device at level k caches a
subset of the blocks from level k+1

Level k:

Level k+1: 4

4

4 10

10

10

Page 3

– 9 – 15-213, F’07

Request
14

Request
12

General Caching ConceptsGeneral Caching Concepts
Program needs object d, which is stored Program needs object d, which is stored

in some block b.in some block b.

Cache hitCache hit
Program finds b in the cache at level
k. E.g., block 14.

Cache missCache miss
b is not at level k, so level k cache
must fetch it from level k+1.
E.g., block 12.
If level k cache is full, then some
current block must be replaced
(evicted). Which one is the “victim”?

Placement policy: where can the new
block go? E.g., b mod 4
Replacement policy: which block
should be evicted? E.g., LRU

9 3

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Level
k:

Level
k+1:

1414

12

14

4*

4*12

12

0 1 2 3

Request
12

4*4*12

– 10 – 15-213, F’07

General Caching ConceptsGeneral Caching Concepts
Types of cache misses:Types of cache misses:

Cold (compulsory) miss
Cold misses occur because the cache is empty.

Capacity miss
Occurs when the set of active cache blocks (working set) is
larger than the cache.

Conflict miss
Most caches limit blocks at level k+1 to a small subset
(sometimes a singleton) of the block positions at level k.
E.g. Block i at level k+1 must be placed in block (i mod 4) at
level k+1.
Conflict misses occur when the level k cache is large enough,
but multiple data objects all map to the same level k block.
E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

– 11 – 15-213, F’07

Examples of Caching in the HierarchyExamples of Caching in the Hierarchy

Hardware0On-Chip TLBAddress
translations

TLB

Web
browser

10,000,000Local diskWeb pagesBrowser
cache
Web cache

Network
buffer cache

Buffer cache

Virtual
Memory

L2 cache
L1 cache

Registers

Cache Type

Web pages

Parts of files
Parts of files

4-KB page
64-bytes block
64-bytes block

4-byte words

What is
Cached?

Web proxy
server

1,000,000,000Remote server
disks

OS100Main memory

Hardware1On-Chip L1
Hardware10Off-Chip L2

AFS/NFS
client

10,000,000Local disk

Hardware+
OS

100Main memory

Compiler0CPU core

Managed
By

Latency
(cycles)

Where is it
Cached?

– 12 – 15-213, F’07

Cache MemoriesCache Memories
Cache memories are small, fast SRAMCache memories are small, fast SRAM--based memories based memories

managed automatically in hardware. managed automatically in hardware.
Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main CPU looks first for data in L1, then in L2, then in main
memory.memory.

Typical system structure:Typical system structure:

main
memory

I/O
bridgebus interfaceL2 data

ALU

register file
CPU chip

SRAM Port system bus
memory busL1

cache
L2

tags

Page 4

– 13 – 15-213, F’07

Inserting an L1 Cache Between
the CPU and Main Memory
Inserting an L1 Cache Between
the CPU and Main Memory

a b c dblock 10

p q r sblock 21 ...
...

w x y zblock 30 ...

The big slow main
memory has room for
many 4-word blocks.

The small fast L1 cache has
room for two 4-word blocks.

The tiny, very fast CPU
register file has room for
four 4-byte words.

The transfer unit
between the cache
and main memory
is a 4-word block
(16 bytes).

The transfer unit
between the CPU
register file and the
cache is a 4-byte block.

line 0
line 1

– 14 – 15-213, F’07

General Organization of a CacheGeneral Organization of a Cache

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0:

B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

Cache size: C = B x E x S data bytes

• • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets.

Each set contains
one or more lines.

Each line holds a
block of data.

1 valid bit per line

– 15 – 15-213, F’07

Addressing CachesAddressing Caches
t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>.

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

– 16 – 15-213, F’07

Addressing CachesAddressing Caches
t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
1. Locate the set based on

<set index>
2. Locate the line in the set based on

<tag>
3. Check that the line is valid
4. Locate the data in the line based on

<block offset>

Page 5

– 17 – 15-213, F’07

Direct-Mapped CacheDirect-Mapped Cache
Simplest kind of cache, easy to buildSimplest kind of cache, easy to build

(only 1 tag compare required per access)(only 1 tag compare required per access)

Characterized by exactly one line per set.Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

Cache size: C = B x S data bytes
– 18 – 15-213, F’07

Accessing Direct-Mapped CachesAccessing Direct-Mapped Caches
Set selectionSet selection

Use the set index bits to determine the set of interest.

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

selected set
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block

– 19 – 15-213, F’07

Accessing Direct-Mapped CachesAccessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection

Line matching: Find a valid line in the selected set with a
matching tag
Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the

cache line must
match the tag bits
in the address

If (1) and (2), then cache hit

– 20 – 15-213, F’07

Accessing Direct-Mapped CachesAccessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection

Line matching: Find a valid line in the selected set with a
matching tag
Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 w3w0 w1 w2

30 1 2 74 5 6

(3) If cache hit,
block offset selects
starting byte.

Page 6

– 21 – 15-213, F’07

Direct-Mapped Cache SimulationDirect-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v tag data

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]

– 22 – 15-213, F’07

Set Associative CachesSet Associative Caches
Characterized by more than one line per setCharacterized by more than one line per set

E=2
lines per set

valid tagset 0:

set 1:

set S-1:

• • •

cache block
valid tag cache block

valid tag cache block
valid tag cache block

valid tag cache block
valid tag cache block

E-way associative cache

– 23 – 15-213, F’07

Accessing Set Associative CachesAccessing Set Associative Caches
Set selectionSet selection

identical to direct-mapped cache
valid
valid

tag
tag

set 0:

valid
valid

tag
tag

set 1:

valid
valid

tag
tagset S-1:

• • •

cache block
cache block

cache block
cache block

cache block
cache block

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

selected set

– 24 – 15-213, F’07

Accessing Set Associative CachesAccessing Set Associative Caches
Line matching and word selectionLine matching and word selection

must compare the tag in each valid line in the selected set.

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

=1? (1) The valid bit must be set

= ?

(2) The tag bits in one
of the cache lines
must match the tag
bits in the address

If (1) and (2), then cache hit

Page 7

– 25 – 15-213, F’07

Accessing Set Associative CachesAccessing Set Associative Caches
Line matching and word selectionLine matching and word selection

Word selection is the same as in a direct mapped cache

1 0110 w3w0 w1 w2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

(3) If cache hit,
block offset selects
starting byte.

– 26 – 15-213, F’07

2-Way Associative Cache Simulation2-Way Associative Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 entry/set

Address trace (reads):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v tag data

0
0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

– 27 – 15-213, F’07

Replacement Algorithms
When a block is fetched, which block in the target set
should be replaced?

Optimal algorithm:Optimal algorithm:
replace the block that will not be used for the longest period
of time
must know the future

Common Algorithms:Common Algorithms:
Least recently used (LRU)

replace the block that has been referenced least recently
tracking this information requires some effort

Random (RAND)
replace a random block in the set
trivial to implement

– 28 – 15-213, F’07

Why Use Middle Bits as Index?Why Use Middle Bits as Index?

HighHigh--Order Bit IndexingOrder Bit Indexing
Adjacent memory lines would

map to same cache entry
Poor use of spatial locality

MiddleMiddle--Order Bit IndexingOrder Bit Indexing
Consecutive memory lines

map to different cache lines
Can hold S*B*E-byte region of

address space in cache at one
time

4-line Cache
High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Page 8

– 29 – 15-213, F’07

Maintaining a Set-Associate CacheMaintaining a Set-Associate Cache
How to decide which cache line to use in a set?How to decide which cache line to use in a set?

Least Recently Used (LRU), Requires ⎡lg2(E!)⎤ extra bits
Not recently Used (NRU)
Random

Virtual vs. Physical addresses:Virtual vs. Physical addresses:
The memory system works with physical addresses, but it
takes time to translate a virtual to a physical address. So
most L1 caches are virtually indexed, but physically tagged.

– 30 – 15-213, F’07

Multi-Level CachesMulti-Level Caches
Options: separate Options: separate datadata and and instruction cachesinstruction caches, or a , or a

unified cacheunified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory

Regs
Unified

L2
Cache

Unified
L2

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

diskdisk

L1
d-cache

L1
i-cache

– 31 – 15-213, F’07

What about writes?What about writes?
Multiple copies of data exist:Multiple copies of data exist:

L1
L2
Main Memory
Disk

What to do when we write?What to do when we write?
Write-through
Write-back

need a dirty bit
What to do on a write-miss?

What to do on a replacement?What to do on a replacement?
Depends on whether it is write through or write back

– 32 – 15-213, F’07

Cache Performance Metrics
Miss RateMiss Rate

fraction of memory references not found in cache
(misses/references)
Typical numbers:

3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit TimeHit Time
time to deliver a line in the cache to the processor (includes
time to determine whether the line is in the cache)
Typical numbers:

1-3 clock cycles for L1
10-14 clock cycles for L2

Miss PenaltyMiss Penalty
additional time required because of a miss

Typically 100-300 cycles for main memory

Page 9

– 33 – 15-213, F’07

Impact of Cache and Block Size
Cache SizeCache Size

Effect on miss rate?

Effect on hit time?

Block SizeBlock Size
Effect on miss rate?

Effect on miss penalty?

– 34 – 15-213, F’07

Impact of Associativity
Direct-mapped, set associative, or fully associative?

Total Cache Size (tags+data)?Total Cache Size (tags+data)?

Miss rate?Miss rate?

Hit time?Hit time?

Miss Penalty?Miss Penalty?

– 35 – 15-213, F’07

Intel Pentium III Cache HierarchyIntel Pentium III Cache Hierarchy

Processor ChipProcessor Chip

L1 Data
1 cycle latency

16 KB
4-way assoc

Write-through
32B lines

L1 Instruction
16 KB, 4-way

32B lines

Regs.
L2 Unified

128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

L2 Unified
128KB--2 MB
4-way assoc
Write-back

Write allocate
32B lines

Main
Memory

Up to 4GB

Main
Memory

Up to 4GB

– 36 – 15-213, F’07

SummarySummary
Caching works!Caching works!

Programming for good Programming for good temporaltemporal and and spatialspatial locality locality
is critical for high performance.is critical for high performance.

