15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation |
October 24, 2007

Topics
m Simple explicit allocators
® Data structures
® Mechanisms
® Policies

class16.ppt

Dynamic Memory Allocation

Application

Dynamic Memory Allocator

Heap Memory

Explicit vs. Implicit Memory Allocator

m Explicit: application allocates and frees space
e E.g., mallocand freein C

m Implicit: application allocates, but does not free space
® E.g. garbage collection in Java, ML or Lisp
Allocation

m In both cases the memory allocator provides an abstraction of
memory as a set of blocks

m Doles out free memory blocks to application

Will discuss simple explicit memory allocation today

-3- 15-213, F07

Page 1

Harsh Reality

Memory Matters

Memory is not unbounded
m It must be allocated and managed
m Many applications are memory dominated
® Especially those based on complex, graph algorithms
Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform

m Cache and virtual memory effects can greatly affect program
performance

m Adapting program to characteristics of memory system can
lead to major speed improvements

o 15-213, F'07

Process Memory Image

memory invisible

kernel virtual memory I to user code

stack

|
1

Memory mapped region for
shared libraries

%esp—

Allocators request
additional heap memory

from the operating
system using the sbrk T the “brk” ptr
function. . .
run-time heap (via mal loc)
uninitialized data (.bss)
initialized data (.data)
program text (.text)
0

_4- 15-213, F07

Malloc Package
#include <stdlib.h>

void *malloc(size_t size)
m |f successful:
® Returns a pointer to a memory block of at least size bytes, (typically)

aligned to 8-byte boundary.
e If size == 0, returns NULL

m |f unsuccessful: returns NULL (0) and sets errno.

void free(void *p)
m Returns the block pointed at by p to pool of available memory
m p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_t size)
m Changes size of block p and returns pointer to new block.
m Contents of new block unchanged up to min of old and new size.

5 15-213, F'07

Assumptions

Assumptions made in this lecture
= Memory is word addressed (each word can hold a pointer)

— ——
D Free word
Allocated block Free block
(4 words) (3 words) D Allocated word
-7- 15-213, F07

Page 2

Malloc Example

void foo(int n, int m) {

int i, *p;

/* allocate a block of n ints */

p = (int *)malloc(n * sizeof(int));

if (p == NULL) {

perror(*'malloc');

exit(0);
for (i=0; i<n; i++) p[i] = i;
/* add m bytes to end of p block */
if ((p = (int *) realloc(p, (n+tm) * sizeof(int))) == NULL) {

perror(*'realloc™);

exit(0);
3
for (i=n; 1 < n+m; i++) p[i] = i;
/* print new array */
for (i=0; i<n+m; i++)

printf("%d\n", p[i]);

free(p); /* return p to available memory pool */

Allocation Examples

malloc(4)

p2 = malloc(5)

malloc(6)

pl

p3

free(p2)

p4 = malloc(2)

15-213, F'07

Constraints

Applications:
m Can issue arbitrary sequence of allocation and free requests
m Free requests must correspond to an allocated block

Allocators

m Can'’t control number or size of allocated blocks

m Must respond immediately to all allocation requests
ei.e., can't reorder or buffer requests

= Must allocate blocks from free memory
ei.e, can only place allocated blocks in free memory

m Must align blocks so they satisfy all alignment requirements
38 byte alignment for GNU malloc (libc malloc) on Linux boxes

m Can only manipulate and modify free memory

m Can’'t move the allocated blocks once they are allocated
®i.e, compaction is not allowed

_9- 15-213, F'07

Performance Goals:
Peak Memory Utilization

Given some sequence of mal loc and free requests:
u RO' Rlv s Rkv SR Rn-l

Def: Aggregate payload P,:
m malloc(p) results in a block with a payload of p bytes.
m After request R, has completed, the aggregate payload P, is
the sum of currently allocated payloads.
Def: Current heap size is denoted by H,
m Assume that H, is monotonically nondecreasing

Def: Peak memory utilization:

m After k requests, peak memory utilization is:
® U, =(maxy P;) / H,

11— 15-213, F'07

Page 3

Performance Goals: Throughput

Given some sequence of malloc and free requests:
u Rov Rl! R Rk' e Rn-l

Want to maximize throughput and peak memory
utilization.

m These goals are often conflicting

Throughput:
m Number of completed requests per unit time

m Example:
® 5,000 malloc calls and 5,000 free calls in 10 seconds

® Throughput is 1,000 operations/second.

—10- 15-213, F'07

Internal Fragmentation

Poor memory utilization caused by fragmentation.
m Comes in two forms: internal and external fragmentation

Internal fragmentation

m For some block, internal fragmentation is the difference between
the block size and the payload size.

([—~
Internal e 7 Internal
fragmentation | é payload A fragmentation

m Caused by overhead of maintaining heap data structures, padding
for alignment purposes, or explicit policy decisions (e.g., not to
split the block).

m Depends only on the pattern of previous requests, and thus is easy
to measure.

_12- 15-213, F'07

External Fragmentation

Occurs when there is enough aggregate heap memory, but no single
free block is large enough

pl = malloc(4)
(TTTT T I T ITIIT]
p2 = malloc(5)
(TTTTTTTITTITITITIIIT]
p3 = malloc(6)

free(p2)
LTI T T T 11 P [

p4 = malloc(6)

oops!

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

_13- 15-213, F'07

Knowing How Much to Free
Standard method

= Keep the length of a block in the word preceding the block.
o This word is often called the header field or header

m Requires an extra word for every allocated block

p0 = malloc(4)

/?ii]/ 1

Block size data

free(p0)

15— 15-213, F'07

Page 4

Implementation Issues

® How do we know how much memory to free just
given a pointer?
® How do we keep track of the free blocks?

® \What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

® How do we pick a block to use for allocation -- many
might fit?

® How do we reinsert freed block?

-14- 15-213, F'07

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

[sI [[[FalF el [[[[[2[T

Method 2: Explicit list among the free blocks using
pointers within the free blocks

/_\
(sIA1 [sl el [[[[[2]7]

Method 3: Segregated free list
m Different free lists for different size classes

Method 4: Blocks sorted by size

m Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

16— 15-213, F'07

Method 1: Implicit List

Need to identify whether each block is free or allocated
m Can use extra bit

m Bit can be putin the same word as the size if block sizes are
always multiples of two (mask out low order bit when
reading size).

1 word
R a=1: allocated block
e a
S a = 0: free block
Format of size: block size
allocated and payload ’
free blocks -
payload: application data
(allocated blocks only)
optional
padding
_17- 15-213, F'07

Bitfields

How to represent the Header:

® Masks and bitwise operators
#define SIZEMASK (~0x7)
#define PACK(size, alloc) ((size) | (alloc))
#define GET_SIZE(p) ((p)->size & SIZEMASK)

® Bitfields
struct {
unsigned allocated:1;
unsigned size:31;
} Header;

_19- 15-213, F'07

Page 5

Implicit List: Finding a Free Block

First fit:
m Search list from beginning, choose first free block that fits
p = start;
while ((p < end) && \\ not passed end
p & 1D |1 \\ already allocated

\\ too small
\\ goto next block

Cp <= len)))
p=p+ Cp&-2);
m Can take linear time in total number of blocks (allocated and free)
m In practice it can cause “splinters” at beginning of list
Next fit:
m Like first-fit, but search list from location of end of previous search
m Research suggests that fragmentation is worse
Best fit:
m Search the list, choose the free block with the closest size that fits
m Keeps fragments small --- usually helps fragmentation
m Will typically run slower than first-fit

18- 15-213, F'07

Implicit List: Allocating in Free Block

Allocating in a free block - splitting
m Since allocated space might be smaller than free space, we
might want to split the block
/\/—\

[l T T Tal [T Jel [T 11 20

p

void addblock(ptr p, int len) {

int newsize = ((len + 1) >> 1) << 1; // add 1 and round up

int oldsize = *p & -2; // mask out low bit

*p = newsize | 1; // set new length

if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining

¥ // part of block

addblock(p, 2)

TN TN T N N
[l T [Tal T T Tal T T 12 [217]

20— 15-213, F'07

Implicit List: Freeing a Block

Simplest implementation:

= Only need to clear allocated flag
void free_block(ptr p) { *p = *p & -2}

m But can lead to “false fragmentation”

[al 11 [al [[[a T]2] 21T
free(p) p

/_\/\/\/-\

(4] TTTa[T T Ta[T T [2] [2100
malloc(5) Oops!

There is enough free space, but the allocator won’t be able to
find it

21— 15-213, F'07

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]
m Replicate size/allocated word at bottom of free blocks
m Allows us to traverse the “list” backwards, but requires extra space
= Important and general technique!

1 word
Header — .
size a
a=1: allocated block
Format of a = 0: free block
allocated and payload and ize: total block si
free blocks padding size: total block size
payload: application data
Boundary tag —— size | a (allocated blocks only)
(footer)
[a] T [aJal T Tale] [[[[eJal T T4]
_23- 15-213, F07

Page 6

Implicit List: Coalescing

Join (coalesce) with next and/or previous block
if they are free

m Coalescing with next block

void free_block(ptr p) {
P =P & -2;
next = p + *p;
ifT ((Cnext & 1) == 0)
*p = *p + *next; // add to this block if
3} // not allocated

// clear allocated flag
// find next block

free(p)

m But how do we coalesce with previous block?

_22- 15-213, F'07

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4
X allocated allocated free free
block being
freed allocated free allocated free
—-24 - 15-213, F07

Constant Time Coalescing (Case 1)

mi |1 mi |1

ml 1 ml 1

n 1 n 0
—_—

n 1 n 0

m2 1 m2 1

m2 1 m2 1

—25-

15-213, F'07

Constant Time Coalescing (Case 3)

mi |0 ntml |0
ml
n

_
n 1 n+ml 0
m2 1 m2 1
m2 1 m2 1

_27—

15-213, F07

Page 7

Constant Time Coalescing (Case 2)

mi |1
ml 1
n 1
n 1
m2 0
m2 0

—26—

mi |1
ml 1
n+m2
n+m2 0

15-213, F'07

Constant Time Coalescing (Case 4)

n+ml+m2 ‘ 0

mi |0
ml 0
n 1
n 1
m2 0
m2 0

—28—

n+ml+m2 | O

15-213, F'07

Summary of Key Allocator Policies

Placement policy:
m First fit, next fit, best fit, etc.

m Trades off lower throughput for less fragmentation
® Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to
search entire free list.

Splitting policy:
m When do we go ahead and split free blocks?
m How much internal fragmentation are we willing to tolerate?

Coalescing policy:
m Immediate coalescing: coalesce each time free is called
m Deferred coalescing: try to improve performance of free by
deferring coalescing until needed. e.g.,
® Coalesce as you scan the free list for malloc.

® Coalesce when the amount of external fragmentation reaches

o some threshold. 15-213, FO7

Page 8

Implicit Lists: Summary

® Implementation: very simple
® Allocate cost: linear time worst case
® Free cost: constant time worst case -- even with coalescing

® Memory usage: will depend on placement policy
m First fit, next fit or best fit

Not used in practice for mal loc/free because of linear
time allocate. Used in many special purpose
applications.

However, the concepts of splitting and boundary tag
coalescing are general to all allocators.

30— 15-213, F'07

