
Page 1

Virtual Memory
November 2, 2007

Virtual Memory
November 2, 2007

Topics
Motivations for virtual memory
Address translation
Accelerating translation with TLBs

class19.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’07

Why Virtual Memory?Why Virtual Memory?
(1) VM uses main memory efficiently

Main memory is a cache for the contents of a virtual address
space stored on disk.
Keep only active areas of virtual address space in memory
Transfer data back and forth as needed.

(2) VM simplifies memory management
Each process gets the same linear address space.

(3) VM protects address spaces
One process can’t interfere with another.

Because they operate in different address spaces.
User process cannot access privileged information

Different sections of address spaces have different permissions.

– 3 – 15-213, F’07

Motivation 1: DRAM a “Cache” for DiskMotivation 1: DRAM a “Cache” for Disk
The full address space is quite large:The full address space is quite large:

32-bit addresses: ~4,000,000,000 (4 billion) bytes
64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes

Disk storage is ~100X cheaper than DRAM storageDisk storage is ~100X cheaper than DRAM storage
1 TB of DRAM: ~ $30,000
1 TB of disk: ~ $300

To access large amounts of data in a costTo access large amounts of data in a cost--effective effective
manner, the bulk of the data must be stored on diskmanner, the bulk of the data must be stored on disk

1 TB: ~$3008 GB: ~$300
4 MB: ~$300

DiskDRAMSRAM

– 4 – 15-213, F’07

Levels in Memory HierarchyLevels in Memory Hierarchy

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
(per byte)
storage
devices

remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers.

Main memory holds disk
blocks retrieved from local
disks.

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved
from the L2 cache memory.

CPU registers hold words retrieved
from L1 cache.

L2 cache holds cache lines
retrieved from main memory.

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and

costlier
(per byte)
storage
devices

Page 2

– 5 – 15-213, F’07

DRAM vs. SRAM as a “Cache”DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAMDRAM vs. disk is more extreme than SRAM vs. DRAM

access latencies:
DRAM is ~10X slower than SRAM
disk is ~100,000X slower than DRAM

importance of exploiting spatial locality:
first byte is ~100,000X slower than successive bytes on disk

» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
“cache” size:

main memory is ~1000X larger than an SRAM cache
addressing for disk is based on sector address, not memory
address

DRAMSRAM Disk

– 6 – 15-213, F’07

Impact of These Properties on DesignImpact of These Properties on Design
If DRAM was to be organized similar to an SRAM cache, If DRAM was to be organized similar to an SRAM cache,

how would we set the following design parameters?how would we set the following design parameters?
Line size?

Associativity?

Replacement policy (if associative)?

Write through or write back?

What would the impact of these choices be on:What would the impact of these choices be on:
miss rate
hit time
miss latency
tag overhead

– 7 – 15-213, F’07

Locating an Object in a “Cache”Locating an Object in a “Cache”
1. Search for matching tag1. Search for matching tag

SRAM cache

X
Object Name

Tag Data
D 243
X 17

J 105

•••
•••

0:
1:

N-1:

= X?

“Cache”

2. Use indirection to look up actual object location2. Use indirection to look up actual object location
virtual memory

Data
243
17

105

•••

0:
1:

N-1:

X
Object Name

Location

•••

D:
J:

X: 1

0
N-1

“Cache”Lookup Table

– 8 – 15-213, F’07

A System with Physical Memory
Only

A System with Physical Memory
Only

Examples:Examples:
most Cray machines, early PCs, nearly all embedded
systems (phones, PDAs, etc.)

CPU

0:
1:

N-1:

Memory

Store 0x10

Load 0xf0

CPU’s load or store addresses used directly to access memory.

Page 3

– 9 – 15-213, F’07

A System with Virtual MemoryA System with Virtual Memory
Examples:Examples:

laptops, servers, modern PCs, etc.

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

CPU

0:
1:

N-1:

Memory

Load 0xf0

0:
1:

P-1:

Page Table (MMU)

Store 0x10

Disk

Virtual
Addresses Physical

Addresses

– 10 – 15-213, F’07

Page Faults (Similar to “Cache Misses”)Page Faults (Similar to “Cache Misses”)
What if an object is on disk rather than in memory?What if an object is on disk rather than in memory?

Page table entry indicates that the virtual address is not in memory
An OS trap handler is invoked, moving data from disk into memory

current process suspends, others can resume
OS has full control over placement, etc.

CPU

0:
1:

N-1:

Memory

Load 0x05

0:
1:

P-1:

Page Table (MMU)

Store 0xf8

Disk

Virtual
Addresses Physical

Addresses

– 11 – 15-213, F’07

Servicing a Page FaultServicing a Page Fault
(1) Processor signals

controller
Read block of length P
starting at disk address X and
store starting at memory
address Y

(2) Read occurs
Direct Memory Access (DMA)
Under control of I/O controller

(3) Controller signals
completion

Interrupt processor
OS resumes suspended
process

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controller

Reg

(2) DMA
Transfer

(1) Initiate Block Read

(3) Read
Done

– 12 – 15-213, F’07

Locality to the RescueLocality to the Rescue
Virtual memory works because of locality.Virtual memory works because of locality.

At any point in time, programs tend to access a set of At any point in time, programs tend to access a set of
active virtual pages called the active virtual pages called the working setworking set. .

Programs with better temporal locality will have smaller
working sets.

If working set size < main memory size If working set size < main memory size
Good performance after initial compulsory misses.

If working set size > main memory size If working set size > main memory size
Thrashing: Performance meltdown where pages are
swapped (copied) in and out continuously

Page 4

– 13 – 15-213, F’07

(2) VM as a Tool for Memory Mgmt(2) VM as a Tool for Memory Mgmt
Key idea: Each process has its own virtual address space

Simplifies memory allocation, sharing, linking, and loading.

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

– 14 – 15-213, F’07

Simplifying Sharing and AllocationSimplifying Sharing and Allocation
Sharing code and data among processes

Map virtual pages to the same physical page (PP 7)

Memory allocation
Virtual page can be mapped to any physical page

Virtual
Address
Space for
Process 1:

Physical
Address
Space
(DRAM)

VP 1
VP 2

PP 2
Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

...

...

Virtual
Address
Space for
Process 2:

– 15 – 15-213, F’07

Simplifying Linking and LoadingSimplifying Linking and Loading
Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created at runtime by malloc)

User stack
(created at runtime)

Unused0

%esp (stack ptr)

Memory
invisible to
user code

brk

0xc0000000

0x08048000

0x40000000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded from
executable file

Linking
Each program has similar
virtual address space
Code, stack, and shared

libraries always start at the
same address.

Loading
execve() maps PTEs to
the appropriate location in
the executable binary file.
The .text and .data
sections are copied, page
by page, on demand by the
virtual memory system.

– 16 – 15-213, F’07

(3)VM as a Tool for Memory Protection(3)VM as a Tool for Memory Protection
Extend Extend PTEsPTEs with permission bits.with permission bits.
Page fault handler checks these before remapping.Page fault handler checks these before remapping.

If violated, send process SIGSEGV (segmentation fault)
Page tables with permission bits

Process i:

AddressREAD WRITE
PP 6Yes No
PP 4Yes Yes
PP 2Yes

VP 0:
VP 1:
VP 2:

•••

Process j:

PP 0

Physical memory

Yes

•••

PP 4

PP 6

PP 9

SUP
No
No
Yes

AddressREAD WRITE
PP 9Yes No
PP 6Yes Yes

PP 11Yes Yes

SUP
No
Yes
No

VP 0:
VP 1:
VP 2:

PP 2

PP 11

Page 5

– 17 – 15-213, F’07

Address SpacesAddress Spaces
A A linear address space linear address space is an ordered set of contiguous is an ordered set of contiguous

nonnegative integer addresses:nonnegative integer addresses:

{0, 1, 2, 3, {0, 1, 2, 3, …… }}

A A virtual address spacevirtual address space is a set of N = 2is a set of N = 2nn virtual addressesvirtual addresses::

{0, 1, 2, {0, 1, 2, ……, N, N--1}1}

A A physical address spacephysical address space is a set of M = 2is a set of M = 2mm (for convenience) (for convenience)
physical addressesphysical addresses::

{0, 1, 2, {0, 1, 2, ……, M, M--1}1}

In a system based on virtual addressing, each byte of main In a system based on virtual addressing, each byte of main
memory has a virtual address memory has a virtual address andand a physical address.a physical address.

– 18 – 15-213, F’07

VM Address TranslationVM Address Translation
Virtual Address Space

V = {0, 1, …, N–1}

Physical Address Space
P = {0, 1, …, M–1}
M < N (usually, but >=4 Gbyte on an IA32 possible)

Address Translation
MAP: V → P U {∅}
For virtual address a:

MAP(a) = a’ if data at virtual address a at physical address a’ in P
MAP(a) = ∅ if data at virtual address a not in physical memory

» Either invalid or stored on disk

– 19 – 15-213, F’07

Address Translation with a Page TableAddress Translation with a Page Table

Virtual page number (VPN) Virtual page offset (VPO)

VIRTUAL ADDRESS

Physical page number (PPN)

PHYSICAL ADDRESS

0p–1pm–1

n–1 0p–1pPage table
base register

(PTBR)

If valid=0
then page
not in memory
(page fault)

Valid Physical page number (PPN)

The VPN acts
as index into
the page table

Page
table

Physical page offset (PPO)

– 20 – 15-213, F’07

Address Translation: Page HitAddress Translation: Page Hit

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU

22--3) MMU fetches PTE from page table in memory3) MMU fetches PTE from page table in memory

4) MMU sends physical address to L1 cache4) MMU sends physical address to L1 cache

5) L1 cache sends data word to processor5) L1 cache sends data word to processor

VA
1

Processor MMU Cache/
memory

PTEA

PTE

PA

Data

2

3

4

5

CPU chip

Page 6

– 21 – 15-213, F’07

Address Translation: Page FaultAddress Translation: Page Fault

1) Processor sends virtual address to MMU 1) Processor sends virtual address to MMU
22--3) MMU fetches PTE from page table in memory3) MMU fetches PTE from page table in memory
4) Valid bit is zero, so MMU triggers page fault exception4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim, and if dirty pages it out to disk5) Handler identifies victim, and if dirty pages it out to disk
6) Handler pages in new page and updates PTE in memory6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting inst7) Handler returns to original process, restarting faulting instruction.ruction.

Page fault exception handlerException

VA

1
Processor MMU Cache/

memory

4

5

CPU chip

Disk

Victim page

New page

6

7

PTEA

PTE

2

3

– 22 – 15-213, F’07

Integrating VM and CacheIntegrating VM and Cache

Page table entries (PTEs) are cached in L1 like any other memory word.
PTEs can be evicted by other data references
PTE hit still requires a 1-cycle delay

Solution: Cache Solution: Cache PTEsPTEs in a small fast memory in the MMU.in a small fast memory in the MMU.
Translation Lookaside Buffer (TLB)

VAProcessor MMU

PTEA

PTE

PA

Data

CPU chip

Memory
PAPA

miss

PTEAPTEA
miss

PTEA
hit

PA
hit

Data

PTE

L1
cache

– 23 – 15-213, F’07

Speeding up Translation with a TLBSpeeding up Translation with a TLB
Translation Lookaside Buffer (TLB)

Small hardware cache in MMU
Maps virtual page numbers to physical page numbers
Contains complete page table entries for small number of
pages

– 24 – 15-213, F’07

TLB HitTLB Hit

A TLB hit eliminates a memory access.A TLB hit eliminates a memory access.

VAProcessor Trans-
lation

Cache/
memoryPA

Data

CPU chip

TLB

VPN PTE

1

2 3

4

5

Page 7

– 25 – 15-213, F’07

TLB MissTLB Miss

A TLB miss incurs an additional memory access (the PTE).A TLB miss incurs an additional memory access (the PTE).

Fortunately, TLB misses are rare. Why?Fortunately, TLB misses are rare. Why?

VAProcessor Trans-
lation

Cache/
memory

PTEA

Data

CPU chip

TLB

VPN PTE

PA

1

2

3

4

5

6

– 26 – 15-213, F’07

Simple Memory System ExampleSimple Memory System Example
Addressing

14-bit virtual addresses
12-bit physical address
Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

(Virtual Page Number) (Virtual Page Offset)

(Physical Page Number) (Physical Page Offset)

– 27 – 15-213, F’07

Simple Memory System Page TableSimple Memory System Page Table
Only show first 16 entries (out of 256)

10D0F0–07
1110E0–06
12D0D11605
0–0C0–04
0–0B10203
1090A13302
117090–01
1130812800

ValidPPNVPNValidPPNVPN

– 28 – 15-213, F’07

Simple Memory System TLBSimple Memory System TLB
TLB

16 entries
4-way associative

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Page 8

– 29 – 15-213, F’07

Simple Memory System CacheSimple Memory System Cache
Cache

16 lines
4-byte line size
Direct mapped

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

––––014F03DFC2111167
D31B7783113E––––0316
15349604116D1DF0723610D5
––––012C098F6D431324
––––00BB––––0363

3BDA159312DA0804020011B2
––––02D9––––0151

8951003A1248112311991190
B3B2B1B0ValidTagIdxB3B2B1B0ValidTagIdx

– 30 – 15-213, F’07

Address Translation Example #1Address Translation Example #1
Virtual Address 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 3 0x03 Y NO 0x0D

0001010 11010

0 0x5 0x0D Y 0x36

– 31 – 15-213, F’07

Address Translation Example #2Address Translation Example #2
Virtual Address 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B NO YES TBD

– 32 – 15-213, F’07

Address Translation Example #3Address Translation Example #3
Virtual Address 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __ PPN: ____

Physical Address

Offset ___ CI___ CT ____ Hit? __ Byte: ____

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 NO NO 0x28

0000000 00111

0 0x8 0x28 NO MEM

Page 9

– 33 – 15-213, F’07

Multi-Level Page TablesMulti-Level Page Tables
Given:

4KB (212) page size
48-bit address space
4-byte PTE

Problem:
Would need a 256 GB page table!

248 * 2-12 * 22 = 238 bytes

Common solution
Multi-level page tables
Example: 2-level page table

Level 1 table: each PTE points to a
page table (memory resident)
Level 2 table: Each PTE points to a
page (paged in and out like other data)

Level 1
Table

...

Level 2
Tables

...

– 34 – 15-213, F’07

A Two-Level Page Table HierarchyA Two-Level Page Table Hierarchy
Level 1

page table

...

Level 2
page tables

VP 0

...

VP 1023

VP 1024

...

VP 2047

Gap

0

PTE 0

...

PTE 1023

PTE 0

...

PTE 1023

1023 null
PTEs

PTE 1023 1023
unallocated

pages
VP 9215

Virtual
memory

(1K - 9)
null PTEs

PTE 0

PTE 1

PTE 2 (null)

PTE 3 (null)

PTE 4 (null)

PTE 5 (null)

PTE 6 (null)

PTE 7 (null)

PTE 8

2K allocated VM pages
for code and data

6K unallocated VM pages

1023 unallocated pages

1 allocated VM page
for the stack

– 35 – 15-213, F’07

Translating with a k-level Page TableTranslating with a k-level Page Table

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

VIRTUAL ADDRESS

PHYSICAL ADDRESS

... ...
Level 1

page table
Level 2

page table
Level k

page table

– 36 – 15-213, F’07

SummarySummary
Programmer’s View of Virtual Memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System View of Virtual Memory
Uses memory efficiently by caching virtual memory pages
stored on disk.

Efficient only because of locality
Simplifies memory management in general, linking, loading,
sharing, and memory allocation in particular.
Simplifies protection by providing a convenient
interpositioning point to check permissions.

