Why Virtual Memory?
15-213

“The course that gives CMU its Zip!” (1) VM uses main memory efficiently

m Main memory is a cache for the contents of a virtual address
space stored on disk.

H m Keep only active areas of virtual address space in memory
VI rtual Memory m Transfer data back and forth as needed.
November 2, 2007

(2) VM simplifies memory management

Topics m Each process gets the same linear address space.
m Motivations for virtual memory
m Address translation

(3) VM protects address spaces
m Accelerating translation with TLBs

m One process can't interfere with another.
® Because they operate in different address spaces.
m User process cannot access privileged information
e Different sections of address spaces have different permissions.

class19.ppt

—2- 15-213, F'07

- L “ ”,’ L - -
Motivation 1: DRAM a “Cache” for Disk Levels in Memory Hierarchy
The full address space is quite large: Smaller, Lo:
m 32-bit addresses: ~4,000,000,000 (4 billion) bytes faStgrv egister } CPU registers hold words retrieved
an from L1 he.
m 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) bytes costlier L1,/ on-chip L1 ot
A . (per byte) cache (SRAM) cache holds cache lines retrieves
Disk storage is ~100X cheaper than DRAM storage storage } from the Ls cashe memory. o
devices L2 off-chip L2
m 1 TB of DRAM: ~ $30,000 / cache (SRAM) L2 cache holds cache lines
m1TB Of dISk - $300 retrieved from main memory.
X i L3: main memory
To access large amounts of data in a cost-effective Larger, (DRAM) i memory holds disk
manner, the bulk of the data must be stored on disk S'Q‘r:v(ff’ blocks retreved fom locl
Isks.
1 TB: ,.,$300 cheaper . local secondary storage
8 68B: ~$300 (perbyte) = (local dis)ll<s) o
4 MB: ~$300 storage Local disks hold files
devices retrieved from disks on
- remote network servers.
L5: remote secondary storage
(tapes, distributed file systems, Web servers)
—-3- 15-213, F'07 -4 - 15-213, F'07

Page 1

DRAM vs. SRAM as a “Cache”

DRAM vs. disk is more extreme than SRAM vs. DRAM
m access latencies:
® DRAM is ~10X slower than SRAM
® disk is ~100,000X slower than DRAM
m importance of exploiting spatial locality:
o first byte is ~100,000X slower than successive bytes on disk
» vs. ~4X improvement for page-mode vs. regular accesses to DRAM
m “cache” size:
® main memory is ~1000X larger than an SRAM cache

m addressing for disk is based on sector address, not memory
address

—5— 15-213, F'07

Locating an Object in a “Cache”

1. Search for matching tag “Cache”

m SRAM cache
Object Name

= X?

2. Use indirection to look up actual object location
m virtual memory Lookup Table

—7- 15-213, F'07

Page 2

Impact of These Properties on Design

If DRAM was to be organized similar to an SRAM cache,
how would we set the following design parameters?

m Line size?
m Associativity?
m Replacement policy (if associative)?

m Write through or write back?

What would the impact of these choices be on:
m Mmiss rate
m hit time
m miss latency
m tag overhead

—6— 15-213, F'07

A System with Physical Memory
Only

Examples:

m most Cray machines, early PCs, nearly all embedded
Memory

systems (phones, PDAs, etc.)

Store 0x10

Load OxfO

CPU's load or store addresses used directly to access memory.

—8— 15-213, F'07

A System with Virtual Memory

Examples:
m |aptops, servers, modern PCs, etc.

Page Table (MMU)

Physical
| || Addresses
[

Memory

Virtual
Addresses

Address Translation: the hardware converts virtual addresses into
physical addresses via an OS-managed lookup table (page table)

—9— 15-213, F'07

Servicing a Page Fault

1) Initiate Block Read

(1) Processor signals

controller Processor
= Read block of length P (3) Read
starting at disk address X and Done

(2) Read occurs
m Direct Memory Access (DMA)
m Under control of I/O controller

(3) Controller signals
completion
m Interrupt processor

m OS resumes suspended
process

store starting at memory
address Y
Y ETTTOT Y- 1o

(2) DMA

Disk

—

Disk

_11- 15-213, F'07

Page 3

Page Faults (Similar to “Cache Misses”)

What if an object is on disk rather than in memory?
m Page table entry indicates that the virtual address is not in memory

m An OS trap handler is invoked, moving data from disk into memory
e current process suspends, others can resume
e OS has full control over placement, etc.

Memory

Page Table (MMU)
Physical
Addresses

Virtual
Addresses

Store Oxf8

—10— 15-213, F'07

Locality to the Rescue

Virtual memory works because of locality.

At any point in time, programs tend to access a set of
active virtual pages called the working set.

m Programs with better temporal locality will have smaller
working sets.

If working set size < main memory size
m Good performance after initial compulsory misses.

If working set size > main memory size

m Thrashing: Performance meltdown where pages are
swapped (copied) in and out continuously

_12- 15-213, F'07

(2) VM as a Tool for Memory Mgmt

Key idea: Each process has its own virtual address space
m Simplifies memory allocation, sharing, linking, and loading.

0
Virtual 0 Address Translation
Address VP 1 PP 2
Space for VP2
Pri 1:
e Y m—
PP 7
Virtual o | /
Address 24
VP 2 PP 10
Space for e
Process 2: nal] M-1

—13-

Physical
Address
Space

(DRAM)

(e.g., read/only
library code)

15-213, F'07

Simplifying Linking and Loading

Memory

0xc0000000

Kernel virtual memory

I invisible to
user code

Linking

User stack
(created at runtime)

m Each program has similar
virtual address space

T

%esp (stack ptr)

m Code, stack, and shared
libraries always start at the

same address. 0x40000000)

Memory mapped region for
shared libraries

Loading

!

«— brk

m execve() maps PTEs to
the appropriate location in

Run-time heap

(created at runtime by malloc)

the executable binary file.
m The .text and .data

Read/write segment
(-data, .bss)

Loaded from

sections are copied, page

by page, on demand by the
0x08048000)

Read-only segment
(-init, .text, .rodata)

executable file

virtual memory system.

0

Unused

15-213, F'07

—15—

Page 4

Simplifying Sharing and Allocation
Sharing code and data among processes
m Map virtual pages to the same physical page (PP 7)

Memory allocation
m Virtual page can be mapped to any physical page

0 .
Virtual 0 Address Translation Physical
Address VP 1 PP 2 Address
Space for VP2 (SDDSZT\/I)
Process 1:
N
(e.g., read/only
. EEY] library code)
Virtual 0 |
Address L viP L
VP 2 PP 10
Space for e
Process2: |\, [] M-1
4 15-213, F07

(3)VM as a Tool for Memory Protection

Extend PTEs with permission bits.

Page fault handler checks these before remapping.

m If violated, send process SIGSEGV (segmentation fault)
Page tables with permission bits

SUP READ WRITE Address Physical memory
VPO No [Yes | No PP6 &
Processi: VP 1| No | Yes | Yes PP4 o] PPO
VP 2| Yes | Yes | Yes PP 2 PP 2
: \ PP 4
PP 6
SUP READ WRITE Address /
. VP O] No | Yes | No PP9 o PP 9
Process j: VP 1] Yes | Yes | Yes PP6 o
VP2 No | Yes | Yes PP11 o f— ——1FPPI11
—16- 15-213, F'07

Address Spaces

A linear address space is an ordered set of contiguous
nonnegative integer addresses:

{0,1,2,3, ...}

A virtual address space is aset of N =2" virtual addresses:
{0,1, 2, ..., N-1}

A physical address space is a set of M = 2™ (for convenience)
physical addresses:

{0, 1,2, ..., M-1}

In a system based on virtual addressing, each byte of main
memory has a virtual address and a physical address.

—17— 15-213, F'07

VM Address Translation

Virtual Address Space
mV={0,1,..N-1}

Physical Address Space
" P={0,1,.., M-1}
m M<N (usually, but >=4 Gbyte on an IA32 possible)

Address Translation
s MAP: V> P U {&}
m For virtual address a:
e MAP(a) = a’ if data at virtual address a at physical address a' in P
® MAP(a) =@ if data at virtual address a not in physical memory
» Either invalid or stored on disk

—18— 15-213, F'07

Address Translation with a Page Table

VIRTUAL ADDRESS

Page table n-1 pp-1 0
base register _(_. Virtual page number (VPN) l Virtual page offset (VPO)
(PTBR)

{ Valid _Physical page number (PPN)

o e Page
The VPN acts table
as index into
the page table

If valid=0

then page

not in memory
(page fault)

m-1 p p-1 0
Physical page number (PPN) |Physical page offset (PPO)

PHYSICAL ADDRESS

_19- 15-213, F'07

Address Translation: Page Hit

memory

MMU : @ Cache/

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory
4) MMU sends physical address to L1 cache

5) L1 cache sends data word to processor

20— 15-213, F'07

Address Translation: Page Fault

r""I‘E'X‘C‘QpIIp'n""(Page fault exception handler ‘
CPUCchip. ... S NO)
1 ' | PTEA Y
! : Victim page|
i | Processor | ache)
; VA 1 @ memory Disk
; @) ; New page

1) Processor sends virtual address to MMU

2-3) MMU fetches PTE from page table in memory

4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim, and if dirty pages it out to disk
6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction.
—21— 15-213, F'07

Speeding up Translation with a TLB

Translation Lookaside Buffer (TLB)
m Small hardware cache in MMU
m Maps virtual page numbers to physical page numbers

m Contains complete page table entries for small number of
pages

23— 15-213, F'07

Page 6

Integrating VM and Cache

CPU chip PTE
: : PTEA PTE
H ! hit
} i PTEA prea| PTEA
: ' miss
: Processor VA MMU : Memory
! 1 PA PA PA
' ' miss]
i oA Data
: T hit

”””””””””””””” Data L1

cache

Page table entries (PTEs) are cached in L1 like any other memory word.
m PTEs can be evicted by other data references
m PTE hit still requires a 1-cycle delay

Solution: Cache PTEs in a small fast memory in the MMU.
m Translation Lookaside Buffer (TLB)

—22— 15-213, F'07

TLB Hit

CRUchip i,

i B | !

@ven| | PTEI®

% Processor Trans- ‘ @ Cache/

! VA lation i PA memory
@ Data

A TLB hit eliminates a memory access.

— 24 — 15-213, F'07

TLB Miss

CPU chip
TLB : @
Q@ ven i PTE
i PTEA
Processor Trans- Cache/
VA lation PA memory
""""""""""""""" Data T

A TLB miss incurs an additional memory access (the PTE).

Fortunately, TLB misses are rare. Why?

— 25— 15-213, F'07

Simple Memory System Page Table

m Only show first 16 entries (out of 256)

VPN | PPN | Valid | VPN | PPN | Valid
00 28 1 08 13 1
01 - 0 09 17 1
02 33 1 0A 09 1
03 02 1 0B — 0
04 — 0 oc — 0
05 16 1 0D 2D 1
06 - 0 OE 11 1
07 — 0 OF 0D 1
27— 15-213, F'07

Page 7

Simple Memory System Example

Addressing
m 14-bit virtual addresses
m 12-bit physical address
m Page size = 64 bytes
13 12 11 10 9 8 7 6 5 4 3 2 1 0

N I N I O O
VPN VPO
(Virtual Page Number) (Virtual Page Offset)

PPN PPO
(Physical Page Number) (Physical Page Offset)

— 26— 15-213, F'07

Simple Memory System TLB

TLB
m 16 entries
m 4-way associative

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN VPO
Set Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid | Tag | PPN | Valid
0 03 - 0 09 oD 1 00 - 0 o7 02 1
1 03 2D 1 02 - 0 04 - 0 0A - 0
2 02 - 0 08 - 0 06 - 0 03 - 0
3 07 - 0 03 oD 1 0A 34 1 02 - 0
— 28— 15-213, F07

Simple Memory System Cache

Cache
m 16 lines
m 4-byte line size
m Direct mapped

PPN PPO
ldx Tag | Valid BO B1 B2 B3 ldx Tag | Valid BO B1 B2 B3
0 19 1 99 11 23 11 8 24 1 3A 00 51 89
1 15 0 - - - - 9 2D 0 - - - -
2 1B 1 00 02 04 08 A 2D 1 93 15 DA 3B
3 36 0 - - - - B 0B 0 - - - -
4 32 1 43 6D 8F 09 C 12 0 - - - -
5 oD 1 36 72 FO 1D D 16 1 04 96 34 15
6 31 0 — — — — E 13 1 83 77 1B D3
7 16 1 11 C2 DF 03 F 14 0 — — — —
—29 — 15-213, F'07
™
Address Translation Example #2
Virtual Address OxOB8F
TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0
[oJofsfofaJaJaJoJoJoJafafafa]
VPN VPO
vPN OX2E 1B 2 TBTOXOB 1B Hit? NO page Fault?VES ppN: TBD.
Physical Address
cT cl < co~>
11 10 9 8 7 6 5 4 3 2 1 0
N I N O O
PPN PPO
Offset__ Cl___ CT___ Hit? Byte:
-31- 15-213, F'07

Page 8

Address Translation Example #1

Virtual Address 0x03D4

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[ofofofJofaJaJsfaJoJsJof1]ofo]

VPN VPO

vPN OXOF 11l 3 7iBT 003 TLB Hit? Y Page Fault? NO ppnOX0D

Physical Address

cT cl
1 10 9 8 7 6 5 4 3 2 1 0
[0fof1[1Jof1Jof1[oJ1[0fo0]
PPN PPO
cT 0x0D

offset_ O ¢ 0x5

Hit? Y Byte: 036

—30— 15-213, F'07

Address Translation Example #3

Virtual Address 0x0020

TLBT < TLBI >
13 12 11 10 9 8 7 6 5 4 3 2 1 0

[0foJoJofoJoJoJoJ1JoJoJoJofo]

VPN VPO

veN _0x00 1181 0 TiBT 900 1B Hit? NO Ppage Fault? NO ppN:0X28

Physical Address

CcT Cl <-COo~—~

1 10 9 8 7 6 5 4 3 2 1 0
[1]oJ1]oJoJoJ1fofofoJoJo]
PPN PPO

Hit’?N_O Byte: MEM

offset_ 0 ¢ 0x8

cT 0x28

_32- 15-213, F'07

Multi-Level Page Tables

. Level 2
Given: Tables

m 4KB (2'?) page size —
m 48-bit address space

m 4-byte PTE Level 1

Problem: Table -
P

= Would need a 256 GB page table! —]
® 248* 2-12 * 22 = 238 hytes g

Common solution \7
= Multi-level page tables —
m Example: 2-level page table
e Level 1table: each PTE points to a
page table (memory resident)
® Level 2 table: Each PTE points to a
page (paged in and out like other data)
— 33— 15-213, F'07

A Two-Level Page Table Hierarchy

Level 1 Level 2 Virtual
page table page tables memory
a
veo |
PTE O PTEO
p— VP 1023 2K allocated VM pages
for code and data
VP 1024
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047 |
PTE 4 (null) PTE O 3
PTE 5 (null)
PTE 6 (null) PTE 1023
PTE 7 (null) Gap > 6K unallocated VM pages
PTE 8
1023 null
(1K - 9) PTEs)
null PTEs PTE 1023 1023
\ unallocated 1023 unallocated pages
pages
VP 9215 1 allocated VM page
for the stack
—34- : 15-213, F07

Translating with a k-level Page Table

" VIRTUAL ADDRESS , ,
(ven1 [ywen2 [Jyvenk [veo |
——

Level 2 Level k
page table page table

Level 1
page table

PHYSICAL ADDRESS

_35- 15-213, F'07

Summary

Programmer’s View of Virtual Memory
m Each process has its own private linear address space
m Cannot be corrupted by other processes

System View of Virtual Memory

m Uses memory efficiently by caching virtual memory pages
stored on disk.
e Efficient only because of locality
m Simplifies memory management in general, linking, loading,
sharing, and memory allocation in particular.
m Simplifies protection by providing a convenient
interpositioning point to check permissions.

36— 15-213, F'07

