15-213
“The Class That Gives CMU lIts Zip!”" ™

Introduction to
Computer Systems

Greg Ganger
August 29, 2007

(adapted from Randal E. Bryant’s slides)

Topics:
m Theme
= How this fits within CS curriculum
n Five great realities of computer systems

15-213 F '07

15-213 Theme

= Abstraction is good, but don’t forget reality!

Most programming classes emphasize abstraction
= Abstract data types
= Asymptotic analysis

These abstractions have limits
= And those limits can result in nasty bugs
= Need to understand underlying implementations

Useful outcomes
= Become more effective programmers
® Able to find and eliminate bugs efficiently
® Able to tune program performance
u Prepare for later “systems” classes in CS & ECE
° Compllers, Operatlng Systems, Networks, Computer

Ar 3 y

15-213, F0O7

lecture-Ola.ppt

Role within Curriculum

Cs 441 Oc:r::li Cs 411 ECE 447
Networks P 9 Compllers Architecture
Systems
N ECE 349
Network Processes Machme Code Embedded

Systems

Protocols Mem. Mgmt Optlmlzatlon

\ Exec. Model

Cs 212 Memory System
Execution SCS 213
Models YELCID
o f Transition from Abstract to
ata Structures
Applications Concrete!
Programming .
m From: high-level language
model
Fur::dsarzl|1e1ntal cs 113 " To: derlyi . | tati
Eos C Programming m lo: underlying implementation

15-213, F07

Course Perspective

Most “Systems” Courses are Builder-Centric
= Computer Architecture
e Design pipelined processor in Verilog
= Operating Systems
e Implement large portions of operating system
= Compilers
® Write compiler for simple language

= Networking
© Implement and simulate network protocols

15-213, F07

Course Perspective (Cont.)

15-213 is Programmer-Centric
= Purpose is to show how by knowing more about the
underlying system, one can be more effective as a programmer

= Enable you to

e Write programs that are more reliable and efficient

® Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers

= Not just a course for dedicated hackers

e We bring out the hidden hacker in everyone

m Lets talk about some example realities

15-213, F07

Great Reality #1

Int’s are not Integers, Float's are not Reals

Examples
= s x220?
® Float’s: Yes!
e Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 -->??
mils(x+y)+z = x+(y+2)?
® Unsigned & Signed Int’s: Yes!
® Float’s:
» (120 +-1€20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

15-213, F07

Computer Arithmetic

Should not generate random values
m Arithmetic operations have important mathematical properties

But, cannot assume “usual” properties
= Due to finiteness of representations
= Integer operations satisfy “ring” properties
o Commutativity, associativity, distributivity
= Floating point operations satisfy “ordering” properties
® Monotonicity, values of signs

Observation
= Need to understand which abstractions apply in which contexts

= Important issues for compiler writers and serious application
programmers

-7- 15-213, F07

Great Reality #2

Memory Matters: Random Access Memory is an
un-physical abstraction

Memory is not unbounded
= It must be allocated and managed
= Many applications are memory dominated

Memory referencing bugs especially pernicious
n Effects are distant in both time and space

Memory performance is not uniform
= Cache and virtual memory effects can greatly affect program
performance
= Adapting program to characteristics of memory system can

lead to major speed improvements
-8- 15-213, F07

Memory Referencing Errors

C and C++ do not provide any memory protection
= Out of bounds array references
= Invalid pointer values
= Abuses of malloc/free

Can lead to nasty bugs (and painful debugging
m Whether or not bug has any effect depends on system+compiler

m Action at a distance
e Corrupted object logically unrelated to one being accessed
o Effect of bug may be first observed long after it is generated

How can | deal with this?
m Never make mistakes
m Program in Java, Lisp, or ML
= Understand what possible interactions may occur
o m Use or develop tools to detect referencing errors 15-213, F07

Memory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

fun(0) — 3.14

fun(l) — 3.14

fun(2) — 3.1399998664856

fun(@) — 2.00000061035156

fun(4) — 3.14, then segmentation fault

—10- 15-213, F07

Referencing Bug Explanation

Stack

Saved State

d7 .. d4

L & d

by fun(i)

a[1]
a[o]

4
3
d3 .. do 2
1
0

= C does not implement bounds checking
= Out of range write can affect other parts of program state

- 15-213, FO7

Great Reality #3

There’s more to performance than asymptotic
complexity

Constant factors matter too!
= Easily see 10:1 performance range depending on how code
written

= Must optimize at multiple levels: algorithm, data

representations, procedures, and loops
Must understand system to optimize performance

= How programs compiled and executed

= How to measure program performance and identify
bottlenecks

= How to improve performance without destroying code
modularity and generality

12— 15-213, F07

Memory System Performance
Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])

i=0; 0 <2048; i++) —] < 2048; j++)
for (G = 0; j < 2048; j++)—| i < 2048; i++)
dst[i]10i] = src[illil: dst[il0] = src[il0l;
3
59,393,288 clock cycles 1,277,877,876 clock cycles

_/ (Measured on 2GHz

21.5 times slower! Intel Pentium 4)

m Hierarchical memory organization (caches)

= Performance depends on access patterns
® Including how step through multi-dimensional array

13- 15-213, FO7

Great Reality #4

You've got to know assembly

Chances are, you’ll never write program in assembly
= Compilers are much better & more patient than you are

But, understanding assembly enables one to
understand machine-level execution behavior
= Behavior of programs in presence of bugs
© When high-level language model breaks down
= Tuning program performance
e Understanding sources of program inefficiency
= Implementing system software
e Compiler has machine code as target
e Operating systems must manage device and process state
u Creating / fighting malware

- ® x86 assembly is the language of choice 15213, Fo7

Great Reality #5

Computers do more than execute programs

They need to get data in and out
= /O system critical to program reliability and performance

They communicate with each other over networks
= Many system-level issues arise in presence of network
e Concurrent operations by autonomous processes
e Coping with unreliable media
e Cross platform compatibility
e Complex performance issues

15— 15213, F07

What’s next

Data representation (Fri): bits, bytes, and integers
= Reading
©21-2.3
= Suggested problems
© 2.44,2.45,2.49,2.54

= First lab will be handed out
@ and it will be due two weeks from today

= Welcome to 15-213! ©

16— 15-213, F07

