
Introduction to
Computer Systems

Introduction to
Computer Systems

Topics:Topics:
� Theme
� How this fits within CS curriculum
� Five great realities of computer systems

15-213 F ’07lecture-01a.ppt

15-213
“The Class That Gives CMU Its Zip!”™

Greg Ganger
August 29, 2007

(adapted from Randal E. Bryant’s slides)

– 2 – 15-213, F’07

15-213 Theme15-213 Theme
� Abstraction is good, but don’t forget reality!

Most programming classes emphasize abstractionMost programming classes emphasize abstraction
� Abstract data types
� Asymptotic analysis

These abstractions have limitsThese abstractions have limits
� And those limits can result in nasty bugs
� Need to understand underlying implementations

Useful outcomesUseful outcomes
� Become more effective programmers

z Able to find and eliminate bugs efficiently
z Able to tune program performance

� Prepare for later “systems” classes in CS & ECE
z Compilers, Operating Systems, Networks, Computer

Architecture, Embedded Systems

– 3 – 15-213, F’07

Role within CurriculumRole within Curriculum

Transition from Abstract to Transition from Abstract to
Concrete!Concrete!
� From: high-level language

model
� To: underlying implementation

CS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 447
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 113
C Programming

– 4 – 15-213, F’07

Course PerspectiveCourse Perspective
Most Most ““SystemsSystems”” Courses are BuilderCourses are Builder--CentricCentric

� Computer Architecture
z Design pipelined processor in Verilog

� Operating Systems
z Implement large portions of operating system

� Compilers
z Write compiler for simple language

� Networking
z Implement and simulate network protocols

– 5 – 15-213, F’07

Course Perspective (Cont.)Course Perspective (Cont.)
1515--213 is Programmer213 is Programmer--CentricCentric

� Purpose is to show how by knowing more about the
underlying system, one can be more effective as a programmer

� Enable you to
z Write programs that are more reliable and efficient
z Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers
� Not just a course for dedicated hackers

z We bring out the hidden hacker in everyone

� Lets talk about some example realities

– 6 – 15-213, F’07

Great Reality #1Great Reality #1
IntInt’’ss are not Integers, Floatare not Integers, Float’’s are not s are not RealsReals

ExamplesExamples
� Is x2 ≥ 0?

z Float’s: Yes!
z Int’s:

» 40000 * 40000 --> 1600000000
» 50000 * 50000 --> ??

� Is (x + y) + z = x + (y + z)?
z Unsigned & Signed Int’s: Yes!
z Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

– 7 – 15-213, F’07

Computer ArithmeticComputer Arithmetic
Should not generate random valuesShould not generate random values

� Arithmetic operations have important mathematical properties

But, cannot assume But, cannot assume ““usualusual”” propertiesproperties
� Due to finiteness of representations
� Integer operations satisfy “ring” properties

z Commutativity, associativity, distributivity
� Floating point operations satisfy “ordering” properties

z Monotonicity, values of signs

ObservationObservation
� Need to understand which abstractions apply in which contexts
� Important issues for compiler writers and serious application

programmers

– 8 – 15-213, F’07

Great Reality #2Great Reality #2
Memory Matters: Memory Matters: Random Access Memory is anRandom Access Memory is an

unun--physical abstractionphysical abstraction

Memory is not unboundedMemory is not unbounded
� It must be allocated and managed
� Many applications are memory dominated

Memory referencing bugs especially perniciousMemory referencing bugs especially pernicious
� Effects are distant in both time and space

Memory performance is not uniformMemory performance is not uniform
� Cache and virtual memory effects can greatly affect program

performance
� Adapting program to characteristics of memory system can

lead to major speed improvements

– 9 – 15-213, F’07

Memory Referencing ErrorsMemory Referencing Errors
C and C++ do not provide any memory protectionC and C++ do not provide any memory protection

� Out of bounds array references
� Invalid pointer values
� Abuses of malloc/free

Can lead to nasty bugs (and painful debuggingCan lead to nasty bugs (and painful debugging
� Whether or not bug has any effect depends on system+compiler
� Action at a distance

z Corrupted object logically unrelated to one being accessed
z Effect of bug may be first observed long after it is generated

How can I deal with this?How can I deal with this?
� Never make mistakes
� Program in Java, Lisp, or ML
� Understand what possible interactions may occur
� Use or develop tools to detect referencing errors – 10 – 15-213, F’07

Memory Referencing Bug ExampleMemory Referencing Bug Example

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

double fun(int i)
{
volatile double d[1] = {3.14};
volatile long int a[2];
a[i] = 1073741824; /* Possibly out of bounds */
return d[0];

}

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

fun(0) –> 3.14
fun(1) –> 3.14
fun(2) –> 3.1399998664856
fun(3) –> 2.00000061035156
fun(4) –> 3.14, then segmentation fault

– 11 – 15-213, F’07

Referencing Bug ExplanationReferencing Bug Explanation

� C does not implement bounds checking
� Out of range write can affect other parts of program state

Saved State

d7 … d4

d3 … d0

a[1]

a[0] 0

1

2

3

4

Location accessed
by fun(i)

Stack

– 12 – 15-213, F’07

Great Reality #3Great Reality #3
ThereThere’’s more to performance than asymptotic s more to performance than asymptotic

complexitycomplexity

Constant factors matter too!Constant factors matter too!
� Easily see 10:1 performance range depending on how code

written
� Must optimize at multiple levels: algorithm, data

representations, procedures, and loops

Must understand system to optimize performanceMust understand system to optimize performance
� How programs compiled and executed
� How to measure program performance and identify

bottlenecks
� How to improve performance without destroying code

modularity and generality

– 13 – 15-213, F’07

Memory System Performance
Example
Memory System Performance
Example

� Hierarchical memory organization (caches)
� Performance depends on access patterns

z Including how step through multi-dimensional array

void copyji(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (j = 0; j < 2048; j++)
for (i = 0; i < 2048; i++)
dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],
int dst[2048][2048])

{
int i,j;
for (i = 0; i < 2048; i++)
for (j = 0; j < 2048; j++)
dst[i][j] = src[i][j];

}

59,393,288 clock cycles 1,277,877,876 clock cycles

21.5 times slower!
(Measured on 2GHz

Intel Pentium 4)

– 14 – 15-213, F’07

Great Reality #4Great Reality #4
YouYou’’ve got to know assemblyve got to know assembly

Chances are, youChances are, you’’ll never write program in assemblyll never write program in assembly
� Compilers are much better & more patient than you are

But, understanding assembly enables one to But, understanding assembly enables one to
understand machineunderstand machine--level execution behaviorlevel execution behavior
� Behavior of programs in presence of bugs

z When high-level language model breaks down
� Tuning program performance

z Understanding sources of program inefficiency
� Implementing system software

z Compiler has machine code as target
z Operating systems must manage device and process state

� Creating / fighting malware
z x86 assembly is the language of choice

– 15 – 15-213, F’07

Great Reality #5Great Reality #5
Computers do more than execute programsComputers do more than execute programs

They need to get data in and outThey need to get data in and out
� I/O system critical to program reliability and performance

They communicate with each other over networksThey communicate with each other over networks
� Many system-level issues arise in presence of network

z Concurrent operations by autonomous processes
z Coping with unreliable media
z Cross platform compatibility
z Complex performance issues

– 16 – 15-213, F’07

What’s nextWhat’s next
Data representation (Fri): bits, bytes, and integersData representation (Fri): bits, bytes, and integers

� Reading
z 2.1-2.3

� Suggested problems
z 2.44, 2.45, 2.49, 2.54

� First lab will be handed out
z and it will be due two weeks from today

� Welcome to 15-213! ☺

