15-213
“The Class That Gives CMU lIts Zip!”

Bits, Bytes, and Integers
September 1, 2006

Topics
= Representing information as bits
= Bit-level manipulations
e Boolean algebra
e Expressingin C
= Representations of Integers
e Basic properties and operations
e Implications for C

lecture-02.ppt 15-213 F'07

Encoding Byte Values

Byte = 8 bits

= Binary 00000000, to 11111111,
= Decimal: 0, to 255,,
= Hexadecimal 00,, to FFg

e Base 16 number representation

® Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

e Write FA1D37B,; in C as OxFA1D37B

» Or Oxfald37b

M| O[O Ta| 3>(O| 00 ~| O U B W N | O

-3- 156-213, F'07

Word-Oriented Memory
organization 32-bit 64-bit

Words Words Bytes Addr.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
—-5- 15-213, F'07

Addr

Addresses Specify Byte oo

Locations Addr

» Address of first byte in 0000

word Addr

m Addresses of successive 0004
words differ by word size

® e.g., 4 (32-bit) or 8 (64-bit)

Addr

0008
Addr

0008
Addr

0012

Page 1

Binary Representations

Base 2 Number Representation
= Represent 15213,, as 11101101101101,
= Represent 1.20,, as 1.0011001100110011[0011]....,
= Represent 1.5213 X 10* as 1.1101101101101, X 2™

Electronic Implementation
m Easy to store with bistable elements
= Reliably transmitted on noisy and inaccurate wires

3.3V
2.8V

0.5V
0.0v
_2- 15-213, F07

Memory organization

Programs refer to data by address
m address space viewed as a large array of bytes
m an address is like an index into that array

Any given computer has a “Word Size”
m nominal size of integer-valued data
® and, usually, of addresses
m 32 bits is still most common
o though 64 bits is emerging

—4- 15-213, F'07

Data Representations

Sizes of C Objects (in Bytes)
= C Data Type Typical 32-bit
® unsigned [int]
e int
® long int
e char
e short
o float
e double
® long double
® char*
» Or any other pointer

Intel IA32

x

(=]
‘.”
(-
e

AN =B~ AN

10/1

o
=3
=

B NOOAEAN=BBH
© N ®AN=ABAN

»

-6- 15-213, F'07

Byte ordering in multi-byte “words”

Big Endian (e.g., SPARC, Power PC)

m Least significant byte has highest address

Little Endian (e.g., x86)
= Least significant byte has lowest address
Example
= Variable x has 4-byte representation 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
[T TJoifzs]aTJer[T]
Little Endian 0x100 0x101 0x102 0x103
[T TerfaJ23Joa] []
—7- 15-213, F07

Back to bits: Boolean Algebra

Developed by George Boole in 19th Century

m Algebraic representation of logic
® Encode “True” as 1 and “False” as 0

And Or
= A&B =1 when both A=1 and = A|B =1 when either A=1 or
B=1 g0 1 B=1 |0 1
olo o ofo 1
110 1 111 1

Not Exclusive-Or (Xor)

= A”B =1 when either A=1 or
B=1, but not both

0 1

m ~A =1 when A=0

-9- 156-213, F'07

Bit-Level Operations in C

Operations &, |, ~, * Available in C
= Apply to any “integral” data type
e long, int, short, char, unsigned
= View arguments as bit vectors
= Arguments applied bit-wise

Examples (Char data type)
m ~0x41 --> OxBE
~01000001, --> 10111110,
= ~0x00 --> OxFF
~00000000, --> 11111111,
m Ox69 & 0x55 --> O0Ox41
01101001, & 01010101, --> 01000001,
m 0x69 | 0x55 --> Ox7D
01101001, | 01010101, --> 01111101,

11— 15-213, F07

Representing Strings

Strings in C char S[6] = "15213";

= Represented by array of characters

u Each character encoded in ASCIl format ~ x86 S SPARC S
e Standard 7-bit encoding of character set 31 31
e Character “0” has code 0x30 35 35
» Digiti has code 0x30+i 32 32
= String should be null-terminated 31 31
e Final character =0 33 33
Compatibility 00 00
= Byte ordering not an issue
_g- 15-213, F07
General Boolean Algebras
Operate on Bit Vectors
= Operations applied bitwise
01101001 01101001 01101001
& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

All of the Properties of Boolean Algebra Apply

10— 15-213, F07

Contrast: Logic Operations in C

Contrast to Logical Operators
=&, ||,!

® View 0 as “F;

e Anything

one of the more common booboos in
C programming

m 0x69 && Oxb5 --> OxO0I
= 0x69 || Ox55 0x01
= p && *p (avoids null pointer access)

—12-

-

15-213, F'07

Page 2

Shift Operations

Left Shift: X <<y
= Shift bit-vector x left y positions
» Throw away extra bits on left << 3 00010000
© Fill with 0’s on right

Argument x| 01100010

Log. >> 2 | 00011000

Right Shift: x >>y Arith. >> 2| 00011000
= Shift bit-vector x right y
positions
e Throw away extra bits on right Argument x| 10100010
= Logical shift << 3 00010000

® Fill with 0’s on left
= Arithmetic shift

® Replicate most significant bit on
right

Log.>> 2 | 00101000

Arith. >> 2| 11101000

13- 15-213, F07

Encoding Example (Cont.)

15213: 00111011 01101101 H

“ y

y -15213: 11000100 10010011
Weight 15213 15213
1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0
16 0 0 1 16)
32 1 32 0 0
64 1 64 0 0
128 0 0 1 128
256 1 25§ 0 0
512 1 512 0 0
1024 0 0 1 1024
2048 1 2048 0
4096 1 4096 0 0
8192 1 8192 0 0
16384 0 0 1 16384
-32768 0 0 1 -32768
s Sum 15213 15213 15.213, Fo7

Signed vs. unsigned ints in C

Constants
= By default, considered to be signed integers

= Unsigned if have “U” as suffix
0U, 4294967259V

Casting
= Can explicitly cast between signed & unsigned
int tx, ty;

unsigned ux, uy;
t™>~ = (int) ux;
uy = (unsigned) ty;
= Implicit casting also occurs via assignments (and function calls)
t>x = ux;
uy = ty;

47— 15-213, F07

Encoding Integers

Unsigned Two’s Complement
-1 w-2
B2UX) = > x-2' B2T(X) = —Xuq-2""4 2 %-2'
i= i=0
short int x = 15213;
short int y = -15213; Sign
Bit
m C short 2 bytes long
Decimal Hex Binary
X 15213| 3B 6D| 00111011 01101101
y -15213| C4 93| 11000100 10010011
Sign Bit
u For 2’s complement, most significant bit indicates sign
e 0 for nonnegative
e 1 for negative
4 15-213, F07
Numeric Ranges
Unsigned Values Two’s Complement Values
= UMin =0 s TMin = —2w
000...0 100...0
s UMax = 2%-1 s TMax = 2w-1 -1
111...1 011...1
Other Values
= Minus 1
111..1
Values for W = 16
Decimal Hex Binary
UMax 65535 FF FF| 11111111 11111111
TMax 32767 7F FF| 01111111 11111111
T™in -32768| 80 00| 10000000 00000000
-1 -1| FF FF| 11111111 11111111
0 0| 00 00| 00000000 00000000
T 15-213, F07

Casting Surprises

Expression Evaluation

= If mix unsigned and signed in single expression, signed values
implicitly cast to unsigned

m Including comparison operations <, >, ==, <=, >=

= Examples for W = 32

Constant, Constant, Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483648 > signed
2147483647U -2147483648 < unsigned
-1 -2 > signed
(unsigned) -1 -2 > unsigned
2147483647 2147483648U < unsigned

-18- 2147483647 (int) 2147483648U > signed Fo7

Page 3

Visual of casting surprises

2’s Comp. — Unsigned

. . UMax
= Ordering Inversion UMax — 1
= Negative — Big Positive
- — /& T™ax +1| ngigned
TMax | @ ®| TMax Range
2’s Comp.
Range 0 |® ®| 0]
=/
-2
TMin
19— - 15-213, F07
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
Decimal Hex Binary
X 15213 3B 60| 00111011 01101101
ix 15213| 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213| C4 93 11000100 10010011
iy -15213| FF FF C4 93 11111111 11111111 11000100 10010011

= Converting from smaller to larger integer data type
= C automatically performs sign extension

21— 15-213, F07

Visualizing Integer Addition

Integer Addition Add,(u, v)

m 4-bit integers u, v

Integer Addition

= Compute true sum
Add,(u, v)

m Values increase
linearly with u and v

= Forms planar
surface

23— 15-213, F07

Page 4

Sign Extension

Task:

= Given w-bit signed integer x

= Convert it to w+k-bit integer with same value
Rule:

= Make k copies of sign bit:

WX = Ky g geens Xt s Xooq s Xyg eees Xo

| ——)
— >
x OIT=<=<"TTT]

X' ==l === 11717

k copies of MSB

-20- <« k w

15-213, F'07

Unsigned Addition

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits UAdd,(u, v)

Standard Addition Function
= Ignores carry output

Implements Modular Arithmetic
UAdd,(u,v) = u+v mod2"

u+v
u+v-2"

s =

u+v<2®

UAddy, (u,v) = vl

- 15-213, F07

Visualizing unsigned int addition

Wraps Around

= If true sum 2 2v \
UAdd,(u , v)

Overflow

= At most once

True Sum
ZWM
Overflow

g

Modular Sum

—24 - 15-213, F'07

Two’s Complement Addition

Operands: w bits

+v OTT—=~=~"TTT]
True Sum: w+1 bits u+v - - -
Discard Carry: w bits TAdd,(u, v) EI:EIIEEEI

TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:
int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) Vv);
t =
= Willgive s == t

u+ v

_25- 15-213, F07

Visualizing 2’s Comp. Addition

NegOver

Values \
= 4-bit two’s comp.

= Range from -8 to +7

TAdd,(u , v)

Wraps Around
= If sum > 2%
© Becomes negative
e At most once
m If sum < -2
© Becomes positive
® At most once

PosOver

_o7- 15-213, F07

Signed Multiplication in C
v IT—==~-"TTT]

* oy . o o

Operands: w bits

True Product: 2*w bits u-v [T 7s7 s T TTT][] << TTT]

™ty I ==<"TTT]

Discard w bits: w bits

Standard Multiplication Function
m Ignores high order w bits

= Some of which are different for
signed vs. unsigned multiplication

m Lower bits are the same

_29- 15-213, F07

Characterizing TAdd

Functionality True Sum
= True sum requires 01111 2wq 5
. PosOver
w+1 bits TAdd Result
= Drop off MSB 01000 pw-1 011...1
m Treat remaining
bits as 2’s comp. 0000..0 ¢ 000...0
integer
PosOverflow 1100..0 _pw-1 100...0
TAdd(u , v) |
50 1 1000...0 —2W NegOver
v
<0 Ju-*—v+2""’1 u+v <TMin,, (NegOver)
i TAdd,, (U,v) = Ju+v TMin,, <u+v<TMax,,
/ <0 >0 | w1
u+v-2 TMaxy <U+V (PosOver)
NegOverflow

_26- 15-213, F07

Unsigned Multiplication in C

v OOT—==~"TTT1
OTT—==~-"TTT1

Operands: w bits
*ov

True Product: 2*w bits u-v [T e s TTTTTTT]T ==- JTTT1]

UMuity,v) CITT ==<"TTT]

Discard w bits: w bits

Standard Multiplication Function
= Ignores high order w bits

Implements Modular Arithmetic
UMult,(u,v) = u -v mod 2%

_28- 15-213, F07
Power-of-2 Multiply with Shift
Operation
m U << kgivesu * 2t
= Both signed and unsigned
k
v OOT—==="TTT]
Operands: w bits
* 2¢ [0 === JOJT[O[===]O[O]
True Product: w+k bits u - 2¢ [O] === TO]O]
Discard k bits: w bits UMult,(u, 29 [0 === [O[0]
TMult (u, 2¢
Examples .29
mu << 3 = u*38
mU<<5-u<<3 == u* 24
= Most machines shift and add faster than multiply
e Compiler generates this code automatically
-30 15-213, F07

Page 5

Unsigned Power-of-2 Divide with
Shift

Quotient of Unsigned by Power of 2
mu >> kgives Lu 7 2]
m Uses logical shift

k
u [TT==-TTOISSSNNN Binary Point
Operands:
/% o---010|~«oo/
Division: w2 [Tee [T T===T | umeemmm
Result: Lur2x)] T===TTTTT===T]
Division Computed Hex Binary
X 15213 15213[3B 6D| 00111011 01101101
X >> 1 7606.5 7606] 1D B6| 00011101 10110110
X >> 4 950.8125 950 03 B6| 00000011 10110110
X >> 8 | 59.4257813 59| 00 3B 00000000 00111011
31— 15-213, F'07
Quotient of Negative Number by Power of 2
= Want [x /7 2<] (Round Toward 0)
u Compute as | (x+2¢-1)/ 2]
®InC: (x + (1<<k)-1) >> k
o Biases dividend toward 0
Case 1: No rounding K
Dividend: u [I[T===TT0[=== T0O[0]
+2¢-1 [O] === JOJO[I] === TI[1]
A I===TTil==-T13[1] Binary Point
Divisor: /% .o e
2] =TT

Biasing has no effect
15213, F07

What’s next

No recitations on Monday (Labor Day)
= But, need to get started on lab #1
m Everything should be ready for you by 5pm

TAs are now associated with recitation sections
m Take a look at the revised syllabus on the web page

Floating point (Wed): representations and arithmatic

= Reading
© 2425

_35- 15-213, F07

Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2
m x >> kgives Lx /7 2]
m Uses arithmetic shift
= Rounds wrong direction when u k< 0

x [T===TTHNSSSNNN Binary Point

Operands:
/ 2< [O[=== TO[T[O[=== TO[0] /
Division: x/2 [=== (s
Result: RoundDown(x / 2) [EIE===0NINIA] [===T11
Division Computed Hex Binary

y -15213 -15213 C4 93| 11000100 10010011
y>1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4] 11111111 11000100

15-213, F'07

Correct Power-of-2 Divide (Cont.)

Case 2: Rounding)

Dividend: x [A[T===TT]
+2k—1 cee cee
[Tee=TTT===TT]
——

Incremented by 1

/ 2< [O] === JOJI]O] === [O[O] /

Binary Point

Divisor:

VA
[x/2<] === A === T===11]

Biasing adds 1 to final result Incremented by 1

—34- 15-213, F'07

Examining Data Representations

Code to Print Byte Representation of Data
= Casting pointer to unsigned char * creates byte array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)

; 1 < len; i++)
printf('Ox%p\tox%.2x\n"",
start+i, start[i]);
printf('\n");

Printf directives:
%p: Print pointer
%x: Print Hexadecimal

_36- 15-213, F07

Page 6

show_bytes Execution Example

int a = 15213;
printf(int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux):

int a = 15213;

Ox11ffffcb8 0Ox6d
Ox11ffffcb9 0x3b
Ox11ffffcha 0x00
Ox11ffffcbb 0x00

_a7- 15-213, F07

Reading Byte-Reversed Listings

Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 CBW add $0x12ab, %ebx
804836¢: 83 bb 28 00 ‘pO 00 00 cmpl ?ﬁx0,0x28(%ebx)
Deciphering Numbers

= Value: 0x12ab

= Pad to 4 bytes: 0x000012ab

= Split into bytes: 00 00 12 ab

= Reverse: ab 12 00 00

156-213, F'07

Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon
m 1937 MIT Master’s Thesis

= Reason about networks of relay switches
o Encode closed switch as 1, open switch as 0

A&~B .
— Connection when
A~ -~B
—_ >—0 pg~B|~A8B
~A B
~
~A&B =A"B

—41 - 15-213, F'07

Page 7

Representing Integers

Decimal: 15213

int A = 15213;

int B -15213; Binary: 0011 1011 0110 1101
long int C = 15213; Hex: 3 B 6 D
1A32, x86-64 A Sun A 1A32C
6D
3B
00
00

IA32, x86-64B SunB

~~

Two’s
(Covered later)

it repr

_38- 15-213, F07

Representing Pointers

int B = -15213;
int *P = &B;

Different compilers & machines assign different locations to objects

—40 - 15-213, F'07

Integer C Puzzles

m Assume 32-bit word size, two’s complement integers
m For each of the following C expressions, either:

® Argue that is true for all argument values

® Give example where not true

« Xx<0 = ((x*2) < 0)
e ux >= 0
* X &7 =17 = (x<<30) < 0
. ux > -1
Initialization c X >y = -X < -y
- ¢« X*x>0
int x = fooQ: e X>08&&y>0 =>x+y>0
int y = barQ; « x>=0 = -x <= 0
unsigned ux = X; « x<=0 = -x>=0
unsigned uy = y; ¢ (x]-)>>81 == -1
* ux >> 3 == ux/8

¢ X >> 3 == x/8

—42- ¢« X & (x-1) =0 15-213, F'07

Values for Different Word Sizes

w
8 16 32 64

UMax | 255 65,535 4,294,967,295| __ 18,446,744,073,709,551,615

TMax | 127| 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin | -128] -32,768 2,147,483,648| __ -9,223,372,036,854,775,808

C Programming
m #include <limits.h>

Observations

m [TMin| = TMax+1
® Asymmetric range ® K&R App. B11
m UMax = 2*TMax+1 = Declares constants, e.g.,
® ULONG_MAX
® LONG_MAX
® LONG_MIN

= Values platform-specific

—43 - 15-213, F'07

Relation between Signed & Unsigned

Two’s Complement Unsigned

T2U
« —flrzp {52 — w
X

Maintain Same Bit Pattern
w-1 0
ux [F+H] = = < [H[+]H]

x EFEF == = [F+*

! [
ux =
x+2"

Large negative weight
-
Large positive weight

x>0
x<0

—45- 156-213, F'07

Negating with Complement &
Increment

Claim: Following Holds for 2’'s Complement
~x + 1 == -Xx
Complement
= Observation: ~x + x == 1111.11, == -1
x [1]o[o[1]1[1[o[1]
+ ~x [0[1]1]oJo[o[1[o]

-1
Increment

Bx + X+ (K + 1)

m~x + 1

== _/1_/+ (-x +/_[)

-X

Warning: Be cautious treating int’s as integers

-47- m OK here 15-213, F07

Unsigned & Signed Numeric Values

X___[B2U(X) | B2T(X) Equivalence
0000 0 0 .
0001 1 1 = Same encodings for
0010 > > nonnegative values
ggég 3 3 Uniqueness
0101 5 5 m Every bit pattern represents
0110 6 6 unique integer value
0111 7 7 = Each representable integer
1000 8) has unique bit encoding
1001 9 -7 .
1010 10 = = Can Invert Mappings
1011 11 -5 = U2B(x) = B2U"(x)
1100 12 —4 e Bit pattern for unsigned
1101 13 -3 integer
1110 14 =2 = T2B(x) = B2T(x)
1111 15 —1 e Bit pattern for two’s comp

—44- integer 15-213, F'07

When should | use unsigned?

Don’t Use Just Because Number Nonzero
= Easy to make mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)
a[i] += a[i+1];
= Can be very subtle
#define DELTA sizeof(int)
int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

Do Use When Need Extra Bit’'s Worth of Range

= Working right up to limit of word size

15-213, F'07

Comp. & Incr. Examples

x=15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010
~x+1 | -15213| C4 93| 11000100 10010011
y -15213| C4 93| 11000100 10010011
0
Decimal Hex Binary
0 0f 00 00| 00000000 00000000
~0 -1| FF FF[11111111 11111111
~0+1 00 00| 00000000 00000000

—48 - 15-213, F'07

Page 8

Mathematical Properties

Modular Addition Forms an Abelian Group
m Closed under addition
0 <UAdd,(u,v) < 2v-1
= Commutative
UAdd,(u,v) = UAdd,(v,u)
m Associative
UAdd,,(t, UAdd,(u, v)) = UAdd,(UAdd,(t, u), V)
= 0 is additive identity
UAdd,(u,0) = u
u Every element has additive inverse
e Let UComp,, (u) =2"-u
UAdd, (u, UComp,, (u)) = 0

—49 - 15-213, F'07

Mathematical Properties of TAdd

Isomorphic Algebra to UAdd
» TAdd,(u, v) = U2T(UAdd,(T2U(u), T2U(v)))
e Since both have identical bit patterns
Two’s Complement Under TAdd Forms a Group
= Closed, Commutative, Associative, 0 is additive identity
= Every element has additive inverse

—-u u=TMin,,

TCompy, () = {TMinw u=TMin,,

_50- 15-213, F07

Multiplication

Computing Exact Product of w-bit numbers X, y
m Either signed or unsigned

Ranges
m Unsigned: 0sx*ys(2W—1)2 = 22w _ 2w+ + 1
e Up to 2w bits
= Two’s complement min: x *y = (=2%-1)*(2%-1-1) = —22w-2 4 Qw-1
e Up to 2w-1 bits
= Two’s complement max: x *y < (-2%-1) 2 = 22w-2
e Up to 2w bits, but only for (TMin,)?

Maintaining Exact Results
= Would need to keep expanding word size with each product
computed
= Done in software by “arbitrary precision” arithmetic
packages

51— 156-213, F'07

Compiled Multiplication Code

C Function
int mull2Cint x)

return x*12;

Compiled Arithmetic Operations Explanation

leal (%eax,%eax,2), %eax t <- X+x*2
sall $2, %eax return t << 2;

= C compiler automatically generates shift/add code when
multiplying by constant

_52- 15-213, F07

Compiled Unsigned Division Code

C Function

unsigned udiv8(unsigned x)

return x/8;

3

Compiled Arithmetic Operations Explanation

|| shrl $3, %eax

u # Logical shift
return x >> 3;

m Uses logical shift for unsigned

For Java Users

u Logical shift written as >>>

53— 15-213, F07

Compiled Signed Division Code

C Function
int idiv8(int x)

return x/8;

3
Compiled Arithmetic Operations Explanation
testl %eax, %eax ifx<o0
is L4 X += 7;
L3: # Arithmetic shift
sarl $3, %eax return x >> 3;
ret
b Uses arithmetic shift for int
addl $7, teax m Uses arithmetic shift for in
Jmp_ L3 For Java Users

u Arith. shift written as >>

—54 - 15-213, F'07

Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

= Addition is commutative group

m Closed under multiplication
0 <UMult,(u,v) < 21

= Multiplication Commutative
UMult,(u,v) = UMult,(v,u)

= Multiplication is Associative
UMult, (t, UMult,(u , v)) = UMult,(UMult,(t, u), v)

= 1 is multiplicative identity
UMult,(u,1) = u

= Multiplication distributes over addtion
UMult, (t, UAdd, (u,v)) = UAdd,(UMult,(t, u), UMult,(t, v))

Properties of Two’s Comp. Arithmetic|

Isomorphic Algebras
= Unsigned multiplication and addition
® Truncating to w bits
= Two’s complement multiplication and addition
® Truncating to w bits

Both Form Rings
= Isomorphic to ring of integers mod 2%

Comparison to Integer Arithmetic
m Both are rings
m Integers obey ordering properties, e.g.,
u>0 = u+tv>v
u>0,v>0 = u-v>0
m These properties are not obeyed by two’s comp. arithmetic
TMax + 1 == TMin

—56- 15213 * 30426 ==

-10030 (16-bit words) 15-213, F'07

_55- 15-213, F07
*x<0 = ((x*2) <0)
e ux >=0
e X&7 =217 = (x<<30) < 0
ux > -1
e X >y = -X < -y
e X*x>0
*+Xx>08& y>0 = x+y>0
Initialization e x>=0 = -x <=0
int x = foo(Q); T x<=0 = x>0
B _ A o (X|-x)>>31 == -1
int y = barQ; . ux >> 3 == ux/8
unsigned ux = X; X >> 3 == x/8
unsigned uy = y; X & (x-1) =0
_57- 15213, F07

Page 10

