15-213

“The course that gives CMU its Zip!”

Floating Point
Sept 5, 2007

Topics
= |EEE Floating Point Standard
= Rounding
= Floating Point Operations
= Mathematical properties

lecture-03.ppt 15-213, F07

Frac. Binary Number Examples

Value Representation
5-3/4 101.11,
2-7/8 10.111,
63/64 0.111111,

Observations
m Divide by 2 by shifting right
= Multiply by 2 by shifting left
= Numbers of form 0.111111.., just below 1.0
©1/2+1/4+1/8+ ... +1/2 + ... 5 1.0
eUse notation 1.0 —¢

15-213, F07

Fractional Binary Numbers

by by e+ b, b, by.b b, by ses b

-
I

1/8

2
Representation
= Bits to right of “binary point” represent fractional powers of 2
= Represents rational number: i ‘
X2
k="
15-213, F07

Representable Numbers

Limitation
= Can only exactly represent numbers of the form x/2%
eand limited based on number of bits
= Other numbers have repeating bit representations

Value Representation
1/3 0.0101010101[01]..,
1/5 0.001100110011[0011]..,
1/10 0.0001100110011[0011]..,

15-213, F07

IEEE Floating Point

IEEE Standard 754

m Established in 1985 as uniform standard for floating point
arithmetic
e Before that, many idiosyncratic formats

= Supported by all major CPUs

Driven by Numerical Concerns
= Nice standards for rounding, overflow, underflow

= Hard to make go fast
® Numerical analysts won over hardware types in defining
standard

15-213, F07

Floating Point Representation

Numerical Form
m-1sM 28
eSign bit s determines whether number is negative or positive
eSignificand M normally a fractional value in range [1.0,2.0).
eExponent E weights value by power of two

Encoding
(=1
= MSB is sign bit

m exp field encodes E
m frac field encodes M

exp I frac |

15-213, F07

Page 1

Floating Point Precisions

Encoding
(=] exp I
m MSB is sign bit
m exp field encodes E
m frac field encodes M

frac

Sizes

m Single precision: 8 exp bits, 23 frac bits
32 bits total

m Double precision: 11 exp bits, 52 £rac bits
64 bits total

m Extended precision: 15 exp bits, 63 frac bits
eOnly found in Intel-compatible machines
eStored in 80 bits

» 1 bit wasted

15-213, F07

“Normalized” Numeric Values

Condition
m exp=000..0and exp#111...1

Exponent coded as biased value
E = Exp - Bias
®Exp : unsigned value denoted by exp
eBias : Bias value
» Single precision: 127 (Exp: 1...254, E: -126...127)
» Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
»in general: Bias = 2¢1 - 1, where e is number of exponent bits

Significand coded with implied leading 1
M = 1.xxx..x,
® xxx...x: bits of frac
eMinimum when 000...0 (M = 1.0)
eMaximum when 111...1 (M=2.0-¢)
e Get extra leading bit for “free”

15-213, F0O7

Normalized Encoding Example
Value

Float F = 15213.0;

= 15213, =11101101101101, =1.1101101101101, X 213

Significand

M = 1.1101101101101,

frac= 11011011011010000000000,
Exponent

E = 13

Bias = 127

Exp = 140 = 10001100,

Floating Point Representation:

Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
140: 100 0110 O
15213: 1110 1101 1011 01
_10- 15-213, F07

Denormalized Values

Condition
= exp =000...0

Value
= Exponent value E = -Bias + 1

= Significand value M =
@ xxx...x: bits of frac

0.xxx...X,

Cases
m exp =000...0, frac = 000...0
® Represents value 0
e Note that have distinct values +0 and -0
m exp = 000...0, frac # 000...0
® Numbers closest to 0.0, evenly spaced
® “Gradual underflow”

_11- 15-213, F07

Special Values

Condition
m exp=111...1

Cases

m exp=111...1, frac = 000...0
® Represents value @ (infinity)
® Operation that overflows
® Both positive and negative
e E.g., 1.0/0.0 =-1.0/~0.0 = +00, 1.0/-0.0 =-00

m exp = 111...1, frac # 000...0
©® Not-a-Number (NaN)
e Represents case when no numeric value can be determined
® E.g., sqrt(-1), o —o0,00 % 0

12— 15-213, FO7

Interesting Numbers

Description exp frac Numeric Value

00...00 00...00 0.0
Smallest Pos. Denorm. 00...00 00...01

= Single = 1.4 X 1045

= Double ~ 4.9 X 10-3%4
Largest Denormalized 00...00 11..11

= Single = 1.18 X 10-%8

= Double ~ 2.2 X 10-3%8
Smallest Pos. Normalized 00...01 00...00

m Just larger than largest denormalized
01...11 00...00 1.0
11..10 11..11 (2.0 — g) X 2(127.1023)

Zero

2- {2352} X 2- {126,1022}

(1.0 — &) X 2- 1262022}

1.0 X 2- 1261022}

One

Largest Normalized
= Single = 3.4 X 1038
= Double ~ 1.8 X 10308

13- 15-213, FO7

Page 2

Summary of Floating Point
Real Number Encodings

roo| -Normalized (-Denorm . , ; +Denorm +Normalized 'I"°|0
= T /!\ T 1
NaN
phiay 0 40 =
14— 15213, F07

Distribution of Values

6-bit IEEE-like format
= e = 3 exponent bits
= f = 2 fraction bits
= Biasis 3

Notice how the distribution gets denser toward zero.

A—h—&

&
-15 -10 -5 0 5
Denormalized A Normalized

A—A—k & & A

10

A—A—A—k

15

Infinity

_15- 15213, F07

Distribution of Values
(close-up view)

6-bit IEEE-like format
m e = 3 exponent bits
= f =2 fraction bits
m Biasis 3

h—h kA A A A A GG OO OO O A hhhih A A —A—A
-1 -0.5 0 0.5 1
4 Denormalized A Normalized B Infinity

16— 15213, F07

A Tiny Floating Point Example

8-bit Floating Point Representation
= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

® Same General Form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

32 0
exp | frac

76
[s]

17— 15-213, F07

Values Related to the Exponent

Exp exp E 28

0 0000 -6 1/64 (denorms)
1 0001 -6 1/64

2 0010 -5 1/32

3 0011 -4 1/16

4 0100 -3 1/8

5 0101 -2 1/4

6 0110 -1 1/2

7 0111 0 1

8 1000 +1 2

9 1001 +2 4

10 1010 +3 8

11 1011 +4 16

12 1100 +5 32

13 1101 +6 64

14 1110 +7 128

15 1111 n/a (inf, NaN)

_18- 15-213, FO7

Dynamic Range

s exp frac E Value
0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 *—closest to zero
Denormalized 0 0000 010 -6 2/8%1/64 = 2/512
numbers
0 0000 110 -6 6/8%1/64 = 6/512
0.0000 111 . -6 7/8*1/64.=.7/512 = largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 +— smallest norm
0 0001 001 -6 9/8%1/64 = 9/512
0 0110 110 -1 14/8%1/2 = 14/16
) 0 0110 111 -1 15/8%1/2 = 15/16 *— Closestto 1 below
Normalized 4 4117 goo o 8/8%1 =1
numbers 0 0111 001 0 9/8%1 = 9/8 <+ closestto 1 above
0 0111 010 © 10/8*1 = 10/8
0 1110 110 7 14/8%128 = 224
01110 111 7 15/8%128 = 240 *largestnorm
0 1111 000 n/a inf

_19- 15-213, FO7

Page 3

Special Properties of IEEE Encoding

FP Zero Same as Integer Zero
u All bits =0

Can (Almost) Use Unsigned Integer Comparison
m Must first compare sign bits
= Must consider -0 =0
= NaNs problematic
o Will be greater than any other values
® What should comparison yield?
m Otherwise OK
e Denorm vs. normalized
® Normalized vs. infinity

~20- 15-213, FO7

Closer Look at Round-To-Even

Default Rounding Mode
m Hard to get any other kind without dropping into assembly
m All others are statistically biased
eSum of set of positive numbers will consistently be over- or under-
estimated
Applying to Other Decimal Places / Bit Positions
= When exactly halfway between two possible values
eRound so that least significant digit is even
m E.g., round to nearest hundredth

Floating Point Operations

Conceptual View
m First compute exact result

= Make it fit into desired precision
e Possibly overflow if exponent too large
e®Possibly round to fit into frac

Rounding Modes (illustrate with $ rounding)

$1.40 $1.60 $1.50 $250 -$1.50
m Zero $1 $1 $1 $2 -$1
= Round down (-) $1 $1 $1 $2 -$2
= Round up (+x) $2 $2 $2 $3 -$1
= Nearest Even (defaul) $1 $2 $2 $2 -$2

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

- 15-213, F07

Rounding Binary Numbers

Binary Fractional Numbers
m “Even” when least significant bitis 0
= Half way when bits to right of rounding position =100...,

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)
_22- 15-213, F07
FP Multiplication
Operands
(-1)st M1 28t . (-1)2 M2 282
Exact Result
(-1)*M 2t
m Signs: sl”s2
= Significand M: M1 * M2
= Exponent E: E1+E2
Fixing
m [f M > 2, shift M right, increment E
= |f E out of range, overflow
= Round M to fit £rac precision
Implementation
m Biggest chore is multiplying significands
o4 15-213, FO7

Examples
= Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
23/32 10.00011, 10.00, (<1/2—down) 2
23/16 10.00110, 10.01, (>1/2—up) 21/4
27/8 10.11100, 11.00, (1/2—up) 3
25/8 10.10100, 10.10, (1/2—down) 21/2
_23- 15-213, F07
FP Addition
Operands
(-1)st M1 28t [— E1-E2 —
(1) M2 282
m Assume E1 > E2 .
Exact Result
(-1)*M 2t [)M]
m Sign s, significand M:
® Result of signed align & add
m Exponent E: E1
Fixing
m [f M > 2, shift Mright, increment E
m if M < 1, shift M left k positions, decrement E by k
= Overflow if E out of range
= Round M to fit £rac precision
25— 15-213, F07

Page 4

Curious Excel Behavior

Number Subtract 16 Subtract .3 Subtract .01
Default Format 16.31 0.31 0.01 -1.2681E-15
Currency Format $16.31 $0.31 $0.01 ($0.00)

m Spreadsheets use floating point for all computations
m Some imprecision for decimal arithmetic
= Can yield nonintuitive results to an accountant!

_26- 15-213, FO7

Floating Point in C

C Guarantees Two Levels
float single precision
double double precision

Conversions
m Casting between int, float, and double changes numeric
values
m Double or float to int
e Truncates fractional part
o Like rounding toward zero
o Not defined when out of range or NaN
» Generally sets to TMin
m int to double
e Exact conversion, as long as int has < 53 bit word size
m intto float

® Will round according to rounding mode

-27- 15-213, F0O7

Creating Floating Point Number
Steps

Normalize

32 0
| frac |

76
[s] _ew

Requirement
m Set binary point so that numbers of form 1.xxxxx

m Adjust all to have leading one
e Decrement exponent as shift left

76 32 0
= Normalize to have leading 1 [s] exp I frac
= Round to fit within fraction
m Postnormalize to deal with effects of rounding
Case Study
= Convert 8-bit unsigned numbers to tiny floating point
format
m Example Numbers
128 10000000
15 00001111
17 00010001
19 00010011
138 10001010
-28- 63 00111111 15-213, F07
Rounding
1.BBGRXXX

Guard bit: LSB of result

/ Sticky bit: OR of remaining bits
Round bit: 15t bit removed

Round up conditions
= Round =1, Sticky =1=»>0.5
m Guard =1, Round =1, Sticky = 0 = Round to even

Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1110000 100 N 1.111
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 111 Y 1.001
63 1.1111100 111 Y 10.000

_30- 15-213, FO7

Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001111 1.1110000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
—20- 15-213, F07
Postnormalize
Issue

= Rounding may have caused overflow
= Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result
128 1.000 7 128

15 1.111 3 15

17 1.000 4 16

19 1.010 4 20

138 1.001 7 134

63 10.000 5 1.000/6 64

_31- 15-213, F'07

Page 5

Summary

IEEE Floating Point Has Clear Mathematical Properties
= Represents numbers of form M X 2E
m Can reason about operations independent of implementation
® As if computed with perfect precision and then rounded
= Not the same as real arithmetic
® Violates associativity/distributivity

e Makes life difficult for compilers & serious numerical
applications programmers

_a2- 15-213, FO7

Floating Point Puzzles

m For each of the following C expressions, either:
e Argue that it is true for all argument values
® Explain why not true

¢ x == (int) (float) x
int x = ..; * x == (int) (double) x
float £ = ..; * f == (float) (double) f
double d = ..; * d == (float) d

¢ £=-(-1);

Assume neither T 2/3==2/3.0

dnor £is NaN + d<0.0 = ((d*2) < 0.0)

e d>f = =-f>-d

e d*d> 0.0

Mathematical Properties of FP Add

Compare to those of Abelian Group

m Closed under addition? YES
eBut may generate infinity or NaN

= Commutative? YES

m Associative? NO
eOverflow and inexactness of rounding

m 0 is additive identity? YES

m Every element has additive inverse ALMOST
eExcept for infinities & NaNs

Monotonicity
mazb=atc 2 b+c? ALMOST
e Except for infinities & NaNs

—-34- 15-213, F07

* (d+f)-d =
-33- 15-213, F07
.
Math. Properties of FP Mult
Compare to Commutative Ring
= Closed under multiplication? YES
eBut may generate infinity or NaN
= Multiplication Commutative? YES
= Multiplication is Associative? NO
e Possibility of overflow, inexactness of rounding
= 1is multiplicative identity? YES
= Multiplication distributes over addition? NO
e Possibility of overflow, inexactness of rounding
Monotonicity
maxb &c2 0 = a*c2b*c? ALMOST
e®Except for infinities & NaNs
_35- 15-213, F07

Page 6

