15-213

“The course that gives CMU its Zip!”

Linking
October 5, 2007

Topics
m Static linking
= Dynamic linking
m Case study: Library interpositioning

lecture-12.ppt

Static Linking

Programs are translated and linked using a compiler driver:
m unix> gcc -02 -g -0 p main.c swap.c
= unix> ./p

main.c swap.c Source files
Translators Translators
(cpp, ccl, as) | | (cpp, ccl, as)
makn.o Swap.o Separately compiled
- p- relocatable object files
[Linker (1d) |

l Fully linked executable object file
p (contains code and data for all functions

defined in main.c and swap.c
15-213, F07

Example C Program

main.c swap.c
int buf[2] = {1, 2}; extern int buf[];
int mainQ) static int *bufp0 = &buf[0];
static int *bufpl;
swapQ; .
return O; void swap(Q
3

int temp;

bufpl = &buf[1];
temp = *bufpO;
*bufp0 = *bufpl;
*bufpl = temp;

15-213, F0O7

What Do Linkers Do?

Step 1. Symbol resolution

= Programs define and reference symbols (variables and

functions):
e void swap() {.} /* define symbol swap */
e swap(); /* reference symbol swap */

e int *xp = &x; /* define symbol xp, reference x */

= Symbol definitions are stored (by compiler) in symbol table.
e Symbol table is an array of structs
e Each entry includes name, size, and location of symbol.

m Linker associates each symbol reference with exactly one
symbol definition.

15-213, F07

What Do Linkers Do? (cont)
Step 2. Relocation

m Merges separate code and data sections into single sections

m Relocates symbols from their relative locations in the .o files
to their final absolute memory locations in the executable.

= Updates all references to these symbols to reflect their new
positions.

15-213, F07

Why Linkers?

Reason 1: Modularity

= Program can be written as a collection of smaller source
files, rather than one monolithic mass.

= Can build libraries of common functions (more on this later)
® e.g., Math library, standard C library

15-213, F07

Page 1

Why Linkers? (cont)

Reason 2: Efficiency

= Time: Separate Compilation

® Change one source file, compile, and then relink.

© No need to recompile other source files.

m Space: Libraries

e Common functions can be aggregated into a single file...
® Yet executable files and running memory images contain only

code for the functions they actually use.

15-213, F07

Three Kinds of Object Files (Modules)

1. Relocatable object file (.o file)
= Contains code and data in a form that can be combined with
other relocatable object files to form executable object file.
e Each .o fileis produced from exactly one source (.c) file

2. Executable object file

= Contains code and data in a form that can be copied directly
into memory and then executed.

3. Shared object file (.so file)
= Special type of relocatable object file that can be loaded into
memory and linked dynamically, at either load time or run-
time.
= Called Dynamic Link Libraries (DLLs) by Windows

-8- 15-213, F0O7

Executable and Linkable Format

(ELF)

A standard binary format for object files

Originally proposed by AT&T System V Unix
= Later adopted by BSD Unix variants and Linux

One unified format for
= Relocatable object files (.0),
= Executable object files
= Shared object files (.so)

Generic name: ELF binaries

15-213, F07

ELF Object File Format

Elf header 0
; ELF header
= Magic number, type (.0, exec, .s0),
machine, byte ordering, etc.
Segment header table

m Page size, virtual addresses memory
segments (sections), segment sizes.

Segment header table
(required for executables)

.text section

-data section

.text section .bss section
= Code
.data section

= Initialized global variables

.symtab section

-rel.txt section

.rel.data section

-bss section
= Uninitialized global variables
= “Block Started by Symbol”
= “Better Save Space”
m Has section header but occupies no space

.debug section

Section header table

—10- 15-213, F07

ELF Object File Format (cont)

.symtab section
= Symbol table
m Procedure and static variable names
m Section names and locations
.rel.text section
= Relocation info for .text section

m Addresses of instructions that will need to
be modified in the executable

= Instructions for modifying.
.rel .data section
= Relocation info for .data section
= Addresses of pointer data that will need to
be modified in the merged executable
.debug section
= Info for symbolic debugging (gcc -g)

Section header table

= Offsets and sizes of each section
_q1-

ELF header

Segment header table
(required for executables)

-text section

-data section

-bss section

.symtab section

.rel.text section

.rel_data section

.debug section

Section header table

15-213, F07

Linker Symbols

Global symbols

= Symbols defined by module m that can be referenced by other
modules.

= Ex: non-static C functions and non-static global variables.

External symbols
= Global symbols that are referenced by module m but defined by
some other module.
Local symbols
= Symbols that are defined and referenced only by module m.
= Ex: C functions and variables defined with the static attribute.

Note: Local linker symbols are not local program variables

12— 15-213, FO7

Page 2

Ref to external

Resolving Symbols

Ref to external

Def of global
symbol buf symbol buf
R swap.c
main. ¢ tern int buf[]
ex H
int buf[2] = {1,2};
~ _ static int *bufp0 = &buf[0];
int mainQ) static i ufpl;
swapQ); wap() Linker knows
turn 0; /nothing of temp

Def of local
symbol bufp0

iny temp;

ufpl = &buf[1];

Relocating Code and Data

Relocatable Object Files

Executable Object File

temp = *bufpO;
symbol swap *bufp0 = *bufpl;
*bufpl = temp;
Def of global 3
symbol swap
13- 15-213, F07
int buf[2] = {1,2}; 0000000 <main>:
21 { 3 0: 55 push %ebp
a a 1: 89 e5 mov %esp, %ebp
int mainQ 3: 83 ec 08 sub $0x8, %esp
6: e8 fc ff ff ff call 7 <main+0x7>
swapQ; 7: R_386_PC32 swap
return 0; : 31co xor %eax, %eax
3} d: 89 ec mov. %ebp , %esp
H 5d pop %ebp
10: c3 ret
Disassembly of section .data:
00000000 <buf>:
0: 01 00 00 00 02 00 00 00
Source: objdump
15— 15-213, FO7

Syst d .text
YSISMIEote dat 0 Headers
[Systemdata | -cata System code
mainQ)
main.o \ -text
N swap()
mainQ) -text _
int buf[2]={1,2} | -data v More system code
System data
swap.o t buf[2]={1,2} .data
/ int_*bufp0=&buf[0]
swapQ) -text Uninitialized data .bss
int_*bufpo=&buf]0]| -data -symtab
int *bufpl _bss .debug
14— 15-213, FO7
extern int buf[]; Disassembly of section .text:
e A *| - 00000000 <swap>:
static int &t;u:pg - 0: 55 push tebp
Saapeoutor; 1: 8b 15 00 00 00 00 mov Ox0,d%edx
static int *bufpl; 3: R_386 32 bufp0
7: al 0 00 00 00 mov 0x4 ,%eax
void swap() 8: R_386_32 buf
c: 89 e5 mov %esp,%ebp
int temp; e: c7 05 movl $0x4,0x0
15:
bufpl = &buf[1];
:emp = tb:pr; _ 18: 89 ec mov %ebp, %esp
bufp0 = *bufpl; la: 8b Oa mov (%hedx) , %ecx
*bufpl = temp; lc: 89 02 mov %eax, (Y%edx)
3} le: al 00 00 00 00 mov 0x0, %eax
1f: R_386_32 bufpl
23: 89 08 mov. %ecx, (%eax)
25: 5d pop %ebp
26: c3 ret
16— 15-213, F07

swap .o Relocation Info (.data)

extern int buf[];

static int *bufp0 =
&buf[0];

static int *bufpl;
void swap()
int temp;

bufpl = &buf[1];
temp = *bufpO;
*bufp0 = *bufpl;
*bufpl = temp;

Disassembly of section .data:

00000000 <bufp0O>:
0: 00 00 00 00

0: R_386_32 buf

—17-

15-213, F07

Executable After

Relocation (.text)

080483b4 <main>:

80483b4: G5}

80483b5: 89 e5

80483b7: 83 ec 08
80483ba: e8 09 00 00 00
80483bf: 31 c0

80483c1: 89 ec

80483c3: 5d

80483c4: c3

080483c8 <swap>:

80483c8: 55

80483c9: 8b 15 5c 94 04
80483cf: al 58 94 04 08
80483d4: 89 e5

80483d6: c7 05

80483dd:

80483e0: 89 ec

80483e2: 8b Oa

80483e4: 89 02

80483e6: al

80483eb: 89 08

80483ed: 5d

80483ee: c3

push
mov
sub
call
xor
mov.
pop
ret

push
mov.

t%ebp
%esp, %ebp

$0x8, %esp
80483c8 <swap>
Y%eax ,%heax
%ebp,%esp

%ebp

%ebp

0x804945c¢, %edx
0x8049458 , %eax
%esp,%ebp
$0x8049458,0x8049548

%ebp, %esp
(%edx) , %ecx
%eax, (bedx)
0x8049548 , %eax
%ecx, (heax)
%ebp

Page 3

Executable After Relocation (.data)

Disassembly of section .data:

08049454 <buf>:

8049454 : 01 00 00 00 02 00 00 00
0804945¢c <bufp0>:
804945c: 54 94 04 08
19— 15-213, F07

Linker’s Symbol Rules

Rule 1. A strong symbol can only appear once.

Rule 2. A weak symbol can be overridden by a strong
symbol of the same name.
m references to the weak symbol resolve to the strong symbol.

Rule 3. If there are multiple weak symbols, the linker
will pick an arbitrary one.
= Can override this with gcc —fno-common

21— 15213, F07

Strong and Weak Symbols

Program symbols are either strong or weak
= strong: procedures and initialized globals
= weak: uninitialized globals

pl.c p2.c
strong tint foo=5; int foo+ weak
strong +p1QO { p2() «—— strong
3 3
20— 15-213, F07

Link time error: two strong symbols (p1)

References to x will refer to the same
uninitialized int. Is this what you really want?

::: ;’ Writes to x in p2 might overwrite y!
2 Evil!
P10 {3

double x; Writes to x in p2 will overwrite y!
P20 {3 Nasty!

References to x will refer to the same initialized
variable.

int y=!
P10 {

Nightmare scenario: two identical weak structs, compiled by different compilers
with different alignment rules.
_22- 15-213, FO7

Packaging Commonly Used Functions

How to package functions commonly used by
programmers?

= Math, I/O, memory management, string manipulation, etc.

Awkward, given the linker framework so far:
= Option 1: Put all functions in a single source file
o Programmers link big object file into their programs
® Space and time inefficient
= Option 2: Put each function in a separate source file

e Programmers explicitly link appropriate binaries into their
programs

e More efficient, but burdensome on the programmer

23— 15-213, FO7

Static Libraries

Solution: static libraries (.a archive files)

= Concatenate related relocatable object files into a single file
with an index (called an archive).

= Enhance linker so that it tries to resolve unresolved external
references by looking for the symbols in one or more
archives.

= |f an archive member file resolves reference, link into
executable.

—24 - 15-213, F07

Page 4

Creating Static Libraries

atoi.c printf.c random.c
| Translator | | Translator | | Translator |
atoi.o printf.o random.o

|

| Archiver (ar)

| unix> ar rs libc.a \

atoi.o printf.o random.o

libc.a C standard library

Archiver allows incremental updates:
« Recompile function that changes and replace .o file in archive.

25— 15-213, FO7

Linking with Static Libraries

addvec.o multvec.o

main2.c vector.h

Archiver
(ar)

libvector.a

Static libraries

Translators
(cpp, ccl, as)

libc.a

Relocatable printf.o and any other

! ¢ main2.o addvec.o "~
object files modules called by printf.o
[Linker (I1d) |
p2 Fully linked

executable object file

_o7- 15213, F07

Two Commonly Used Libraries

libc.a (the C standard library)
= 8 MB archive of 900 object files.

= |/O, memory allocation, signal handling, string handling, data and
time, random numbers, integer math

libm.a (the C math library)
= 1 MB archive of 226 object files.

= floating point math (sin, cos, tan, log, exp, sqrt, ...)

% ar -t /usr/lib/libc.a | sort % ar -t /usr/lib/libm.a | sort
fork.o e_acos.o

= e_acosf.o

fprintf.o e_acosh.o

fpu_control.o e_acoshf.o

fputc.o e_acoshl.o

freopen.o e_acosl.o

fscanf.o e_asin.o

fseek.o e_asinf.o

fstab.o e_asinl.o

Using Static Libraries

Linker’s algorithm for resolving external references:
m Scan .o files and .afiles in the command line order.

= During the scan, keep alist of the current unresolved
references.

m As each new .o or .afile, obj, is encountered, try to resolve
each unresolved reference in the list against the symbols
defined in obj.

= |f any entries in the unresolved list at end of scan, then error.
Note:

= Command line order matters!
Moral: put libraries at the end of the command line.

bass> gcc -L. libtest.o -Imine
bass> gcc -L. -Imine libtest.o
libtest.o: In function “main®:
libtest.o(.text+0x4): undefined reference to ~libfun*

28— 15-213, F07

Shared Libraries

Static libraries have the following disadvantages:
m Potential for duplicating lots of common code in the
executable files on a filesystem.
® e.g., every C program needs the standard C library
m Potential for duplicating lots of code in the virtual memory
space of many processes.

= Minor bug fixes of system libraries require each application
to explicitly relink
Modern Solution: Shared Libraries
m Object files that contain code and data that are loaded and
linked into an application dynamically, at either load-time or
run-time
m Also called: dynamic link libraries, DLLs, .so files

_29- 15-213, FO7

Shared Libraries (cont)

Dynamic linking can occur when executable is first
loaded and run (load-time linking).

= Common case for Linux, handled automatically by the
dynamic linker (Id-linux.so).

= Standard C library (Iibc.so) usually dynamically linked.

Dynamic linking can also occur after program has
begun (run-time linking).
= In Unix, this is done by calls to the dlopen() interface.
e High-performance web servers.
@ Runtime library interpositioning

Shared library routines can be shared by multiple
processes.
= More on this when we learn about virtual memory.

_30- 15-213, FO7

Page 5

Dynamic Linking at Load-time

main2.c vector.h
addvec.c multvec.c

libc.so
libvector.so

Rs!oca;a‘ble aiﬁz_o Relocation and symbol
object file table info
)
Linker (1d)
Partially linked v
executable object file P2
libc.so

libvector.so

Code and data
Fully linked
executable
in memory

! L
Dynamic linker (Id-linux.so) |

_a1- 15-213, FO7

unix> gcc -shared -o libvector.so \

Dynamic Linking at Run-time

#include <stdio.h>
#include <dlIfcn.h>

int x[2] = {1, 2};
int y[2] = {3, 4};
int z[2];
int mainQ)

void *handle;
void (*addvec)(int *,
char *error;

int *, int *, int);

/* dynamically load the shared lib that contains addvec() */
handle = dlopen(*"./libvector.so", RTLD_LAZY);
if (thandle) {

fprintf(stderr, "%s\n", dlerror(Q));

exit(l);

_a2- 15213, F07

Dynamic Linking at Run-time

/* get a pointer to the addvec() function we just loaded */
addvec = dlIsym(handle, "addvec™);
if ((error = dlerror()) !'= NULL) {

fprintf(stderr, "%s\n", error);

exit(l);

/* Now we can call addvec() it just like any other function */
addvec(x, y, z, 2);
printf("z = [%d %d]\n", z[0], z[1]);

/* unload the shared library */

if (diclose(handle) < 0) {
fprintf(stderr, "%s\n", dlerror(Q));
exit(l);

return 0O;

_33- 15213, F07

Case Study: Library Interpositioning

Library interpositioning is a powerful linking technique
that allows programmers to intercept calls to
arbitrary functions

Interpositioning can occur at:
= compile time
® When the source code is compiled
= link time
® When the relocatable object files are linked to form an
executable object file
= |oad/run time
® When an executable object file is loaded into memory,
dynamically linked, and then executed.

See Lectures page for real examples of using all three
interpositioning techniques to generate malloc traces.

-34- 15-213, F07

Some Interpositioning Applications

Security
= Confinement (sandboxing)
@ Interpose calls to libc functions.
m Behind the scenes encryption
e Automatically encrypt otherwise unencrypted network

connections.
Monitoring and Profiling
= Count number of calls to functions
m Characterize call sites and arguments to functions

= Malloc tracing
® Detecting memory leaks
® Generating malloc traces

_35- 15-213, FO7

Example: mal loc() Statistics

Count how much memory is allocated by a function

void *malloc(size_t size){
static void *(*fp)(size_t) = 0;
void *mp;
char *errorstr;

/* Get a pointer to the real malloc() */
it (!fp) {
fp = dIsym(RTLD_NEXT, "malloc™);
if ((errorstr = dlerror()) != NULL) {
fprintf(stderr, "%s(): %s\n", fname, errorstr);
exit(l);

3

/* Call the real
mp = fp(size);

malloc function */

mem_used += size;

return mp;

~3-} 15-213, FO7

Page 6

