15-213

“The course that gives CMU its Zip!”

Exceptional Control Flow
Part Il
October 12, 2007

Topics
m Process Hierarchy
= Shells
= Signals
= Nonlocal jumps

lecture-14_ppt

-

The World of Multitasking

System Runs Many Processes Concurrently
m Process: executing program
e State consists of memory image + register values + program
counter
= Continually switches from one process to another
@ Suspend process when it needs 1/0 resource or timer event
occurs
® Resume process when 1/O available or given scheduling priority
= Appears to user(s) as if all processes executing
simultaneously
e Even though most systems can only execute one process at a
time
® Except possibly with lower performance than if running alone

15-213, F07

wait: Synchronizing with Children

int wait(int *child_status)
= suspends current process until one of its children
terminates
m return value is the pid of the child process that terminated
m if child_status !'= NULL, then the object it points to will
be set to a status indicating why the child process
terminated

15-213, F07

ECF Exists at All Levels of a System

Exceptions
= Hardware and operating system kernel

software Previous Lecture

Concurrent processes
= Hardware timer and kernel software

Signals

= Kernel software This Lecture

Non-local jumps
= Application code

15-213, F0O7

Programmer’s Model of Multitasking

Basic Functions
= fork() spawns new process
@ Called once, returns twice
= exit() terminates own process
e Called once, never returns
e Puts it into “zombie” status
= wait() and waitpid() wait for and reap terminated
children
= execl () and execve() run a new program in an existing
process
e Called once, (normally) never returns

Programming Challenge
= Understanding the nonstandard semantics of the functions

= Avoiding improper use of system resources
® E.g. “Fork bombs” can disable a system

15-213, F07

wait: Synchronizing with Children

void fork9() {
int child_status;

if (fork(Q) == 0) {
printf("HC: hello from child\n™);

else {
printf("HP: hello from parent\n');
wait(&child_status);
printf("CT: child has terminated\n™);

3
printf('Bye\n™);
exitQ;

HC Bye .

CT Bye

15-213, F07

Page 1

wait() Example
m |f multiple children completed, will take in arbitrary order

= Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status
void fork10Q)
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = forkQ)) == 0)

exit(100+i); /* Child */

for (i = 0; i <N; i++) {
i wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));

else

printf(’Child %d terminate abnormally\n™, wpid);

exec: Loading and Running Programs

int execl(char *path, char *arg0, char *argl, .., 0)

= Loads and runs executable at path with args argo0, arg1, ...
@ path is the complete path of an executable object file
e By convention, arg0 is the name of the executable object file
@ “Real” arguments to the program start with argl, etc.
e List of args is terminated by a (char *)0 argument
e Environment taken from char **environ, which points to an
array of “name=value” strings:
» USER=droh
» LOGNAME=droh
» HOME=/afs/cs.cmu.edu/user/droh
m Returns -1 if error, otherwise doesn’t return!

m Family of functions includes execv, execve (base
function), execvp, execl, execle, and execlp
15-213, F07

Shell Programs

A shell is an application program that runs programs on
behalf of the user.
m sh - Original Unix Bourne Shell
m csh — BSD Unix C Shell, tcsh — Enhanced C Shell
m bash —Bourne-Again Shell

int mainQ)
char cmdline[MAXLINE];

while (1) {
/* read */
printf('> g
Fgets(cmdline, MAXLINE, stdin);
it (feof(stdin))
exit(0);

Execution is a sequence of
read/evaluate steps

/* evaluate */
eval(cmdline);

“11} 15-213, FO7

waitpid(): Waiting for a Specific Process
= waitpid(pid, &status, options)
e Can wait for specific process
e Various options

void fork11()
{

i++)
= fork()) == 0)
100+i); /* Child */
< N; i++) {

| = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf(’Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else
printf(""Child %d terminated abnormally\n", wpid);

15-213, F07

exec: Loading and Running Programs

main() {
if (forkQ == 0) {
execl(""/usr/bin/cp™, “cp", "foo”, "bar”, 0);
3
wait(NULL);
printf(*'copy completed\n™);
exitQ;

—10- 15-213, F07

Simple Shell eval Function

void eval(char *cmdline)
{

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);

i _command(argv)) {

= Fork()) == 0) { /* child runs user job */

1T (execve(argv|0]J, argv, environ) < 0) {
printf("%s: Command not found.\n", argv[0]);

exit(0);
3
if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)
unix_error("'waitfg: waitpid error’);
else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);

. aomero, T

Page 2

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground jobs.

But, what about background jobs?
= Will become zombies when they terminate
m Will never be reaped because shell (typically) will not
terminate
m Creates a memory leak that will eventually crash the kernel
when it runs out of memory

Solution: Reaping background jobs requires a
mechanism called a signal

13- 15-213, FO7

Signals

A signal is a small message that notifies a process that
an event of some type has occurred in the system.
= akin to exceptions and interrupts
= sent from the kernel (sometimes at the request of another
process) to a process
= signal type is identified by small integer ID’s (1-30)
= the only information in a signal is its ID and the fact that it

arrived
ID Name Default Action Corresponding Event
2 |SIGINT | Terminate Interrupt (e.g., ctl-c from keyboard)
9| SIGKILL | Terminate Kill program (cannot override or ignore)

11 | SIGSEGV | Terminate & Dump | Segmentation violation

14 | SIGALRM | Terminate Timer signal

17 | SIGCHLD | Ignore Child stopped or terminated

-14 - 15-213, F0O7

Signal Concepts

Sending a signal
m Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination
process.
= Kernel sends a signal for one of the following reasons:
o Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)
@ Another process has invoked the kil I system call to explicitly
request the kernel to send a signal to the destination process.

15— 15213, F07

Signal Concepts (continued)

Receiving a signal
= A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal.

= Three possible ways to react:
e Ignore the signal (do nothing)
® Terminate the process (with optional core dump).
e Catch the signal by executing a user-level function called a
signal handler.
» Akin to a hardware exception handler being called in
response to an asynchronous interruptA

16— 15-213, F07

Signal Concepts (continued)

A signal is pending if it has been sent but not yet
received.

= Important: Signals are not queued
o If aprocess has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded.
A process can block the receipt of certain signals.
m Blocked signals can be delivered, but will not be received until
the signal is unblocked.

A pending signal is received at most once.

17— 15-213, FO7

m There can be at most one pending signal of any particular type.

Signal Concepts

Kernel maintains pending and blocked bit vectors in
the context of each process.
= pending - represents the set of pending signals
e Kernel sets bit k in pending whenever a signal of type k is
delivered.
e Kernel clears bit k in pending whenever a signal of type k is
received
= blocked - represents the set of blocked signals
® Can be set and cleared by the application using the
sigprocmask function.

_18- 15-213, FO7

Page 3

Process Groups

Every process belongs to exactly
one process group

pid=32
pgid=32

pid=40
pgid=40

Background

process group 32 process group 40

§ Background
getpgrp() - Return process

pid=21 pid=
Pgid=20 pgi group of current process
Foreground setpgid() — Change process

process group 20 group of a process

_19- 15-213, FO7

Sending Signals with ki ll Program

kill program sends
arbitrary signal to a
process or process

linux> ./forks 16
linux> Childl: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

group
linux> ps
PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
Examples 24818 pts/2 00:00:02 forks |

m kill -9 24818 24819 pts/2 00:00:02 forks |

® Send SIGKILL to 820 PE?ﬁ o 02232;00 ps
ux> 1 -9 -
process 24818 linux> ps
1 -9 -24817 PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
L]
Send SIGKILL to 24823 pts/2 00:00:00 ps

every process in
process group
24817.

linux>

~20- 15213, F07

Sending Signals from the Keyboard

Typing ctrl-c (ctrl-z) sends a SIGINT (SIGTSTP) to every job in the
foreground process group.
m SIGINT — default action is to terminate each process
m SIGTSTP —default action is to stop (suspend) each process

pid=32 |
ground) ! pgid=32!

ackground Background
process process
group 32 group 40

) Foreground
process group 20

21— 15213, F07

Example of ctrl-c and ctrl-z

bluefish> ./forks 17

Child: pid=28108 pgrp=28107

parent: pid=28107 pgrp=28107 STAT (process state)

<types ctrl-z> Legend:
Suspended

R Bo STAT TIME COMMAND First letter:
27699 pts/8 Ss 0:00 -tcsh $_‘ :{g;’;:‘g
28107 pts/8 T 0:01 ./forks 17 " .
28108 pts/8 T 0:01 ./forks 17 R: running
28109 pts/8 R+ 0:00 ps w

Second letter:
s: session leader
+: foreground proc group

bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT
27699 pts/8 Ss
28110 pts/8 R+

TIME COMMAND
-tcsh
ps w

See “man ps” for more
details

0:00

_2o- 15-213, F07

Sending Signals with ki 1l Function

void forki12(Q)
{

pid_t pid[N];
int i, child_status;
for (i =05 1 < N; i++)

if ((pid[i] = forkQ)) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
Ffor (# = 0; 1 < N; 1++) {
printf("Killing process %d\n", pid[i]);
Kill(pid[i], SIGINT);

/* Parent reaps terminated children */
for (i =05 i < N; i++)
pid_t wpid = wait(&child_status);
it (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf(*Child %d terminated abnormally\n™, wpid);

23— 15-213, FO7

Receiving Signals

Suppose kernel is returning from an exception handler
and is ready to pass control to process p.

Kernel computes pnb = pending & ~blocked
= The set of pending nonblocked signals for process p

If (pnb == 0)
m Pass control to next instruction in the logical flow for p.

Else
= Choose least nonzero bit k in pnb and force process p to
receive signal k.

= The receipt of the signal triggers some action by p
= Repeat for all nonzero k in pnb.
= Pass control to next instruction in logical flow for p.

—24 - 15-213, F07

Page 4

Default Actions

Each signal type has a predefined default action, which
is one of:
= The process terminates
= The process terminates and dumps core.
m The process stops until restarted by a SIGCONT signal.
m The process ignores the signal.

Installing Signal Handlers

The signal function modifies the default action
associated with the receipt of signal signum:
= handler_t *signal (int signum, handler_t *handler)

Different values for handler:
= SIG_IGN: ignore signals of type signum
= SIG_DFL: revert to the default action on receipt of signals of
type signum.
m Otherwise, handler is the address of a signal handler
@ Called when process receives signal of type signum
e Referred to as “installing” the handler.
e Executing handler is called “catching” or “handling” the signal.
® When the handler executes its return statement, control passes
back to instruction in the control flow of the process that was
interrupted by receipt of the signal.

_26- 15213, F07

25— 15-213, FO7
Signal Handling Example
void int_handler(int sig)
printf("Process %d received signal %d\n",
getpid(). sig);
exit(0);
~ linux> _/forks 13
void fork13() Ki process 24973
{ B } K process 24974
pid_t pid[N]; Ki process 24975
int i, d_status; K process 24976
signal (SIGINT, int_handler); K process 24977
Process 24977 received signal 2
Child 24977 terminated with exit status O
Process 24976 received signal 2
Child 24976 terminated with exit status O
Process 24975 re signal 2
Child 24975 term with exit status 0
Process 24974 re signal 2
Child 24974 term with exit status 0
Process 24973 re signal 2
with exit status 0
27— 15-213, F07

Signals Handlers as Concurrent Flows

A signal handler is a separate logical flow (thread) that
runs concurrently with the main program.

Process A Process A Process B
while (1) handlerQ{
3

Time |

28— 15-213, F07

Another View of Signal Handlers as
Concurrent Flows

Process B
code

Process A :

code !

) . |
Signal delivered=—> |cwl H

user code (main)

kernel code } context switch

user code (main)

kernel code } context switch

Signal received =

kernel code } context switch

user code (main)

_29- 15-213, FO7

Nonlocal Jumps: setjmp/longjmp

Powerful (but dangerous) user-level mechanism for transferring
control to an arbitrary location.
= Controlled to way to break the procedure call / return discipline
m Useful for error recovery and signal handling

int setjmp(Gmp_buf j)
= Must be called before longjmp
= Identifies a return site for a subsequent longjmp.
= Called once, returns one or more times

Implementation:
= Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf.
= Return 0

_30- 15-213, FO7

Page 5

setjmp/longjmp (cont)

void longjmp(mp_buf j, int i)
= Meaning:
e return from the setjmp remembered by jump buffer j again...
e ...this time returning i instead of 0

= Called after setjmp
= Called once, but never returns

longjmp Implementation:
= Restore register context from jump buffer j
= Set %eax (the return value) to i
= Jump to the location indicated by the PC stored in jump buf j.

31— 15-213, F07

setjmp/longjmp Example

#include <setjmp.h>
Jmp_buf buf;

mainQ) {
it (setjmp(buf) 1= 0) {
printf(back in main due to an error\n™);
else
printf("first time through\n");
p1Q; /* pl calls p2, which calls p3 */

P30 {
<error checking code>
if (error)
longjmp(buf, 1)

32— 15-213, F07

Limitations of Nonlocal Jumps

Works within stack discipline
= Can only long jump to environment of function that has been

called but not yet completed env
Jmp_buf env; P1
zl() p2 After longjmp
if (setjmp(env)) {
/* Long Jump to here */ P2
¥ else {
P20);
X P2
ks
P20 P3
{ - . .P20; - - - P30; }
P30 Before longjmp
{
s |y longjmp(env, 1); 15213, FO7

Limitations of Long Jumps (cont.)

Works within stack discipline

= Can only long jump to environment of function that has been
called but not yet completed

P1
Jmp_buf env;
P1O p2
{ env
P03 PO At setjmp
3
P20 p1
{
if (setjmp(env)) { env
/* Long Jump to here */ Vs
b3
b P2 returns P1
env
T ey P3
{
e At longjmp
o 15-213, FO7

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d

#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

while(1) {
sleep(1);
printf('processing...\n"");

>

void handler(int sig) {
siglongjmp(buf, 1);

else
printf('restarting\n™);

—35-

bass> a.out

starting

processing. ..
processing. ..

mainQ) { restarting +«——Ctrl-c
signal (SIGINT, handler); processing. ..
processing. ..

if (Isigsetimp(buf, 1)) restarting ~ —CUlc
printf(’starting\n); processing. ...

15-213, F07

Summary

Signals provide process-level exception handling
= Can generate from user programs
= Can define effect by declaring signal handler

Some caveats
= Very high overhead
e >10,000 clock cycles
@ Only use for exceptional conditions
= Don’t have queues
e Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within
process

= Within constraints of stack discipline

_36- 15-213, F07

