
1

Cache Memories
September 30, 2008

TopicsTopics
� Generic cache memory organization
� Direct mapped caches
� Set associative caches
� Impact of caches on performance

lecture-10.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, S’08

Announcements
Exam grading doneExam grading done

� Everyone should have gotten email with score (out of 72)
� mean was 50, high was 70
� solution sample should be up on website soon

� Getting your exam back
� some got them in recitation
� working on plan for everyone else (worst case = recitation on

Monday)
� If you think we made a mistake in grading

� please read the syllabus for details about the process for handling
it

3 15-213, S’08

General cache mechanics

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower, cheaper memory
is partitioned into “blocks”

Data is copied between
levels in block-sized
transfer units

8 9 14 3
Smaller, faster, more expensive
memory caches a subset of
the blocks

Cache:

Memory: 4

4

4 10

10

10

From lecture-9.ppt 4 15-213, S’08

Cache Performance Metrics
Miss RateMiss Rate
� Fraction of memory references not found in cache (misses / accesses)

� 1 – hit rate ☺
� Typical numbers (in percentages):

� 3-10% for L1
� can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit TimeHit Time
� Time to deliver a line in the cache to the processor

� includes time to determine whether the line is in the cache
� Typical numbers:

� 1-2 clock cycle for L1
� 5-20 clock cycles for L2

Miss PenaltyMiss Penalty
� Additional time required because of a miss

� typically 50-200 cycles for main memory (Trend: increasing!)

2

5 15-213, S’08

Lets think about those numbers
Huge difference between a hit and a missHuge difference between a hit and a miss
�100X, if just L1 and main memory

Would you believe 99% hits is twice as good Would you believe 99% hits is twice as good
as 97%?as 97%?
�Consider these numbers:

cache hit time of 1 cycle
miss penalty of 100 cycles

So, average access time is:

97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

6 15-213, S’08

Many types of caches
ExamplesExamples
� Hardware: L1 and L2 CPU caches, TLBs, …
� Software: virtual memory, FS buffers, web browser caches, …

Many common design issuesMany common design issues
� each cached item has a “tag” (an ID) plus contents
� need a mechanism to efficiently determine whether given item is
cached
� combinations of indices and constraints on valid locations

� on a miss, usually need to pick something to replace with the
new item
� called a “replacement policy”

� on writes, need to either propagate change or mark item as
“dirty”
� write-through vs. write-back

7 15-213, S’08

Hardware cache memories
Cache memories are small, fast SRAMCache memories are small, fast SRAM--based based
memories managed automatically in hardwarememories managed automatically in hardware
� Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in main memoryCPU looks first for data in L1, then in main memory

Typical system structure:Typical system structure:

main
memorybus interface

ALU

register file
CPU chip

bus

L1
cache

8 15-213, S’08

Inserting an L1 Cache Between
the CPU and Main Memory

a b c dblock 10

p q r sblock 21 ...
...

w x y zblock 30 ...

The big slow main
memory has room for
many 4-word blocks

The tiny, very fast CPU
register file has room for
four 4-byte words

The transfer unit
between the cache
and main memory
is a 4-word block
(16 bytes)

The transfer unit
between the CPU
register file and the
cache is a 4-byte word

The small fast L1 cache has
room for two 4-word blocks

line 0
line 1

3

9 15-213, S’08

Inserting an L1 Cache Between
the CPU and Main Memory

The tiny, very fast CPU
register file has room for
four 4-byte words

The transfer unit
between the cache
and main memory
is a 4-word block
(16 bytes)

The transfer unit
between the CPU
register file and the
cache is a 4-byte word

The small fast L1 cache has
room for two 4-word blocks

line 0
line 1

w w w wblock 10

w w w wblock 21 ...
...

w w w wblock 30 ...

The big slow main
memory has room for
many 4-word blocks

10 15-213, S’08

General Organization of a Cache
B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

Cache size: C = B x E x S data bytes

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets

Each set contains
one or more lines

Each line holds a
block of data

1 valid bit
per line

11 15-213, S’08

General Organization of a Cache
B = 2b bytes
per cache block

E lines
per set

S = 2s sets

t tag bits
per line

Cache size: C = B x E x S data bytes

• • • B–110

• • • B–110

valid

valid

tag

tag
set 0: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set 1: • • •

• • • B–110

• • • B–110

valid

valid

tag

tag
set S-1: • • •

• • •

Cache is an array
of sets

Each set contains
one or more lines

Each line holds a
block of data

1 valid bit
per line

12 15-213, S’08

Addressing Caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
The word at address A is in the cache if
the tag bits in one of the <valid> lines in
set <set index> match <tag>

The word contents begin at offset
<block offset> bytes from the beginning
of the block

4

13 15-213, S’08

Addressing Caches

t bits s bits b bits

<tag> <set index> <block offset>

0m-1

Address A:

• • • B–110

• • • B–110

v

v

tag

tag
set 0: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set 1: • • •

• • • B–110

• • • B–110

v

v

tag

tag
set S-1: • • •

• • •
1. Locate the set based on

<set index>
2. Locate the line in the set based on

<tag>
3. Check that the line is valid
4. Locate the data in the line based on

<block offset>
14 15-213, S’08

Example: Direct-Mapped Cache
Simplest kind of cache, easy to buildSimplest kind of cache, easy to build
(only 1 tag compare required per access)(only 1 tag compare required per access)

Characterized by exactly one line per set.Characterized by exactly one line per set.

valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

E=1 lines per setcache block

cache block

cache block

Cache size: C = B x S data bytes

15 15-213, S’08

Accessing Direct-Mapped Caches
Set selectionSet selection
� Use the set index bits to determine the set of interest.

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

selected set
valid

valid

valid

tag

tag

tag

• • •

set 0:

set 1:

set S-1:

cache block

cache block

cache block

16 15-213, S’08

Accessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection
� Line matching: Find a valid line in the selected set with a
matching tag

� Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 b3b0 b1 b2

30 1 2 74 5 6

=1? (1) The valid bit must be set

= ?
(2) The tag bits in the

cache line must
match the tag bits
in the address

If (1) and (2), then cache hit

5

17 15-213, S’08

Accessing Direct-Mapped Caches
Line matching and word selectionLine matching and word selection
� Line matching: Find a valid line in the selected set with a
matching tag

� Word selection: Then extract the word

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

selected set (i): 1 0110 b3b0 b1 b2

30 1 2 74 5 6

(3) If cache hit,
block offset selects
starting byte.

18 15-213, S’08

Direct-Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 entry/set

Address trace (reads):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

x
t=1 s=2 b=1

xx x

0 ? ?
v tag data

miss

1 0 M[0-1]

hit
miss

1 0 M[6-7]

miss

1 1 M[8-9]

miss

1 0 M[0-1]

19 15-213, S’08

Example: Set Associative Cache
Characterized by more than one line per setCharacterized by more than one line per set

E=2
lines per set

valid tagset 0:

set 1:

set S-1:

• • •

cache block
valid tag cache block

valid tag cache block
valid tag cache block

valid tag cache block
valid tag cache block

E-way associative cache
20 15-213, S’08

Accessing Set Associative Caches
Set selectionSet selection
� identical to direct-mapped cache

valid
valid

tag
tag

set 0:

valid
valid

tag
tag

set 1:

valid
valid

tag
tagset S-1:

• • •

cache block
cache block

cache block
cache block

cache block
cache block

t bits s bits
0 0 0 1

0m-1

b bits

tag set index block offset

selected set

6

21 15-213, S’08

Accessing Set Associative Caches
Line matching and word selectionLine matching and word selection
� must compare the tag in each valid line in the selected set.

1 0110 b3b0 b1 b2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

=1? (1) The valid bit must be set

= ?

(2) The tag bits in one
of the cache lines
must match the tag
bits in the address

If (1) and (2), then cache hit

22 15-213, S’08

Accessing Set Associative Caches
Line matching and word selectionLine matching and word selection
� Word selection is the same as in a direct mapped cache

1 0110 b3b0 b1 b2

1 1001
selected set (i):

30 1 2 74 5 6

t bits s bits
100i0110

0m-1

b bits

tag set index block offset

(3) If cache hit,
block offset selects
starting byte.

23 15-213, S’08

2-Way Associative Cache Simulation
M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 entry/set

Address trace (reads):
0 [00002],
1 [00012],
7 [01112],
8 [10002],
0 [00002]

xx
t=2 s=1 b=1

x x

0 ? ?
v tag data

0
0
0

miss

1 00 M[0-1]

hit
miss

1 01 M[6-7]

miss

1 10 M[8-9]

hit

24 15-213, S’08

Notice that middle bits used as index

t bits s bits
0 0 0 0 1

0m-1

b bits

tag set index block offset

7

25 15-213, S’08

Why Use Middle Bits as Index?

HighHigh--Order Bit IndexingOrder Bit Indexing
� Adjacent memory lines would
map to same cache entry

� Poor use of spatial locality

4-line Cache
00
01
10
11

High-Order
Bit Indexing

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Middle-Order
Bit Indexing

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MiddleMiddle--Order Bit IndexingOrder Bit Indexing
� Consecutive memory lines
map to different cache lines

� Can hold S*B*E-byte region of
address space in cache at one
time

26 15-213, S’08

Why Use Middle Bits as Index?

HighHigh--Order Bit IndexingOrder Bit Indexing
� Adjacent memory lines would
map to same cache entry

� Poor use of spatial locality

4-line Cache
00
01
10
11

High-Order
Bit Indexing

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Middle-Order
Bit Indexing

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MiddleMiddle--Order Bit IndexingOrder Bit Indexing
� Consecutive memory lines
map to different cache lines

� Can hold S*B*E-byte region of
address space in cache at one
time

27 15-213, S’08

Sidebar: Multi-Level Caches
Options: separate Options: separate datadata and and instruction cachesinstruction caches, or a , or a
unified cacheunified cache

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory

Regs
Unified

L2
Cache

Unified
L2

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

diskdisk

L1
d-cache

L1
i-cache

28 15-213, S’08

What about writes?
Multiple copies of data exist:Multiple copies of data exist:
� L1
� L2
� Main Memory
� Disk

What to do when we write?What to do when we write?
� Write-through
� Write-back

� need a dirty bit
� What to do on a write-miss?

What to do on a replacement?What to do on a replacement?
� Depends on whether it is write through or write back

8

29 15-213, S’08

Software caches are more flexible
ExamplesExamples
� File system buffer caches, web browser caches, etc.

Some design differencesSome design differences
� Almost always fully associative

� so, no placement restrictions
� index structures like hash tables are common

� Often use complex replacement policies
� misses are very expensive when disk or network involved
� worth thousands of cycles to avoid them

� Not necessarily constrained to single “block” transfers
� may fetch or write-back in larger units, opportunistically

30 15-213, S’08

Locality Example #1
Being able to look at code and get a qualitative sense of Being able to look at code and get a qualitative sense of

its locality is a key skill for a professional programmerits locality is a key skill for a professional programmer

Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum;

}

31 15-213, S’08

Locality Example #2
Question:Question: Does this function have good locality?Does this function have good locality?

int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum;

}

32 15-213, S’08

Locality Example #3
Question:Question: Can you permute the loops so that the Can you permute the loops so that the

function scans the 3function scans the 3--d array d array a[]a[] with a stridewith a stride--1 1
reference pattern (and thus has good spatial reference pattern (and thus has good spatial
locality)?locality)?

int sum_array_3d(int a[M][N][N])
{

int i, j, k, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

for (k = 0; k < N; k++)
sum += a[k][i][j];

return sum;
}

