15-213

“The course that gives CMU its Zip!”

Cache Memories
September 30, 2008

Topics
= Generic cache memory organization
« Direct mapped caches
« Set associative caches
« Impact of caches on performance

lecture-10.ppt

Announcements

Exam grading done
« Everyone should have gotten email with score (out of 72)
= mean was 50, high was 70
= solution sample should be up on website soon
« Getting your exam back
= some got them in recitation

« working on plan for everyone else (worst case = recitation on
Monday)

« If you think we made a mistake in grading

= please read the syllabus for details about the process for handling
it

2 15-213, S'08

General cache mechanics

Smaller, faster, more expensive
cache: || 4 J[9 |[20 |[3] memory caches a subset of
the blocks

Data is copied between

levels in block-sized

transfer units

Lo J[2 J[2 |[s]

Memory: | 4 ” 5 H 6 H 7 I Larger, slower, cheaper memory
l 8 H 9 H 10 H 1 I is partitioned into “blocks”
[12 J[13][14 |[15 |

3 From lecture-9.ppt 15-213, S'08

Cache Performance Metrics

Miss Rate
« Fraction of memory references not found in cache (misses / accesses)
= 1-hitrate ©
« Typical numbers (in percentages):
« 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
Hit Time
« Time to deliver aline in the cache to the processor
=« includes time to determine whether the line is in the cache
« Typical numbers:
= 1-2 clock cycle for L1
» 5-20 clock cycles for L2

Miss Penalty
« Additional time required because of a miss
=« typically 50-200 cycles for main memory (Trend: increasing!)

4 15-213, S'08

Lets think about those numbers

Huge difference between a hit and a miss
=100X, if just L1 and main memory

Would you believe 99% hits is twice as good
as 97%?
«Consider these numbers:

cache hit time of 1 cycle
miss penalty of 100 cycles

So, average access time is:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles

99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles
5 15-213, S'08

Many types of caches

Examples
«Hardware: L1 and L2 CPU caches, TLBs, ...
« Software: virtual memory, FS buffers, web browser caches, ...

Many common design issues

=each cached item has a “tag” (an ID) plus contents

«need a mechanism to efficiently determine whether given item is
cached
= combinations of indices and constraints on valid locations

= 0N a miss, usually need to pick something to replace with the
new item
« called a “replacement policy”

= 0N writes, need to either propagate change or mark item as
“dirty”
= write-through vs. write-back

6 15-213, S'08

Hardware cache memories

Cache memories are small, fast SRAM-based
memories managed automatically in hardware

« Hold frequently accessed blocks of main memory
CPU looks first for data in L1, then in main memory

Typical system structure:

CPU chip

register file
L1)
cache 7@
L main
¢7 memory

7 15-213, S'08

)
-

bus interface

Inserting an L1 Cache Between
the CPU and Main Memory

The tiny, very fast CPU
E register file has room for
four 4-byte words

The transfer unit

between the CPU

register file and the
is a 4-byte word

lineO|[|| The small fast has
linel|[]| room for two 4-word blocks

The transfer unit
between the

and main memory
is a 4-word block black 10
(16 bytes) The big slow main
block 21 memory has room for
many 4-word blocks
block 30
8 15-213, S'08

Inserting an L1 Cache Between
the CPU and Main Memory

The transfer unit

between the CPU

register file and the
is a 4-byte word

register file has room
four 4-byte words

lineOf]| The small fast

The tiny, very fast CPU

for

has

linet|[] room for two 4-word blocks

The transfer unit
between the

and main memory
is a 4-word block

block 10

(16 bytes) The big slow main
block 21 memory has room for
many 4-word blocks
block 300 wwwu]
9 15-213, S'08

General Organization of a Cache

Cacheisanarray | 1valid bit TTagbits B =2bpytes

of sets per line per line per cache block
Each set contains | N ! = ‘
onhe or more lines Lvalid]{_tag J{0]1]--- e E lines
set 0 g per set
Each line holds a [valid|[tag J[O[1]---][B-1]
block of data
Ivalid” tag HOIII---IB-II
S=Zsse'rs< set 1.
Ivalid” tag HOIII---IB-II
[valid][tag |[O]1]---]B-1]
set S-1: o
L [valid][tag |[O]1]---]B-1]

Cache size: C = B x E x S data bytes

10 15-213, S'08

General Organization of a Cache

Cacheisanarray | fvalid bit Ttagbits B =2bpytes
of sets per line per line per cache block

1
r 1T

sogigtunl (1) N E TR =
set O
Each line holds a ' [valid|[tag J{O[1]---[B-1]
block of data
Ivulid” tag H 0 l 1 l IB—II
5=25““< N vaia][tag J[0] 1] [o1]
[valid|[tag |[O]1]---]B-1]
set S-1:
L [valid|[tag |[O]1]---]B-1]

E lines
per set

Cache size: C = B x E x S data bytes

11 15-213, S'08

Addressing Caches

Address A:
| t bits I s bits I b bits]
m-1 0
[v] [tag J[0OT]1 \ J\)\ J

set 0:

--— <tag>
[v] [tag J[OT1]---[B-1

sert E
[v] Ctag JL0]

<set irdex> <block of fset>

o] 5TiT e | The word at address A is in the cache if

et S-1 the tag bits in one of the <valid> lines in

(v] [tag] _ set <set index> match <tag>

The word contents begin at offset
<block offset> bytes from the beginning
of the block

12 15.213.5.08

Addressing Caches

Address A:
| t bits s bits I b bits]
m-1 0
[v][tag J[0O]1 \ J\)\ J

set O:

[v] [tag] _ <tag> <set irdex> <block offset>
[v] [tag JLO[1]---[B-1

set 1t
[v] [tag | -E

vl Lg_] 5T 1. Locate the set based on
set S-1 <set index>
Lv] [tag] _ 2. Locate the line in the set based on
<tag>

3. Check that the line is valid
4. Locate the data in the line based on

. <block offset> 45015 s

Example: Direct-Mapped Cache

Simplest kind of cache, easy to build
(only 1 tag compare required per access)

Characterized by exactly one line per set.

set O:“validl | tag || cacheblock | ‘} E=1 lines per set

set lz“validl | tag H cache block I‘

set S—1:“vclid| I tag H cache block I‘

Cache size: C = B x S data bytes
14 15-213, S'08

Accessing Direct-Mapped Caches

Set selection
« Use the set index bits to determine the set of interest.

set O:‘ Ivalidl I tag l I cache block l ‘

selected set

set 1:| Ivalidl I tag l I cache block l |

set 5—1:‘ lvalidl l tag I l cache block I ‘

t bits s bits b bits
| [0ooot] |
ml tqg set index block offset ©

15 15-213, S'08

Accessing Direct-Mapped Caches

Line matching and word selection

« Line matching: Find a valid line in the selected set with a
matching tag

=« Word selection: Then extract the word

=12 (1) The valid bit must be set
1 2 3 4 5 6 7

selected set (i): [omo][[| | [bo]bi|bs]bsl
(2) The tag bits in the
cache line must =9 If (1) and (2), then cache hit
match the tag bits
in the address

t bits s bits b bits
[oit0 T i [100]
™l tag set index block offset’
16 15-213, S'08

Accessing Direct-Mapped Caches

Line matching and word selection

« Line matching: Find a valid line in the selected set with a
matching tag

«Word selection: Then extract the word

1 2 3 4 5 6 7

0
selected set (i): [omo || | [| [be]bi]b,[bs]

(3) If cache hit,
block offset selects
starting byte.

t bits s bits b bits
[oo] i [100 1]
™l tag set index block offset’
17 15-213, S'08

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
=1 §=2 b=1 S=4sets, E=1entry/set

Address trace (reads):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss
v tag data

t]o M[0-1]

1o M[6-7]

18 15-213, S'08

Example: Set Associative Cache

Characterized by more than one line per set

et O: Ivalidl I tag l I cache block l E=2
Ivalidl I tag l I cache block l lines per set
| |valid tag cache block
orp Tl 1o] |
Ivalidl l tag I l cache block I
valid tag cache block
ser s-1: | Leld) | | | |
Ivalidl I tag l I cache block l

E-way associative cache
19 15-213, S'08

Accessing Set Associative Caches

Set selection
«identical to direct-mapped cache

set O: [tag][cacheblock |
' [tag | [cacheblock |
selected s [tag | [cache block |
[tag || cacheblock |
[tag || cacheblock |
[tag | [cacheblock |
t bits s bits b bits
l [ooot] |
™ tag set index block of fset ©

15-213,S'08

20

Accessing Set Associative Caches

Line matching and word selection
«must compare the tag in each valid line in the selected set.

=1? (1) The valid bit must be set

0 1 2 3 4 5 6 7

. 1000 [[[[[[[[]
selected set (i): [Morio J[[[[[bglblb.]bs]

(2) The tag bits in one
of the cache lines A

must match the tag
bits in the addr‘es,s_L

If (1) and (2), then cache hit

t bits s bits b bits
[o110 T i [100 1]
™l tag set index block offset’

15-213, S'08

21

Accessing Set Associative Caches

Line matching and word selection
=« Word selection is the same as in a direct mapped cache

1 2 3 4 5 6 7

Gl e L T T T T 1]

selected set (i): III'OHOH 1 | [olblblo]

(3) If cache hit,
block offset selects
starting byte.

t bits s bits b bits
[o0 T i [100 1]
™l tag set index block offset®

15-213,S'08

22

2-Way Associative Cache Simulation
M=16 byte addresses, B=2 bytes/block,
+=2 s=1 b=1 S=2sets, E=2 entry/set

Address trace (reads):

0 [00002], miss
1 [0001,], hit
7 [01112], miss
8 [1000,], miss
0 [0000,] it
v__tag _ data

1 [00 M[0-1]

1 10 M[8-9]

1] 01 M[6-7]

0

15-213,S'08

23

Notice that middle bits used as index

t bits s bits b bits
| | oooo01] |
ml tqq set index block offset ©

15-213,S'08

24

Why Use Middle Bits as Index?

4-line Cache High-Order Middle-Order

Rit In,d,ngnq Rit Tndexin

00 0000 1 0000]
01 0001 0001
10 0010 0010
11 0011 0011
0100 0100
High-Order Bit Indexing 0101 0101
« Adjacent memory lines would 9110 0110
map to same cache entry 0111 0111
. . 1000 1000
« Poor use of spatial locality 1001 1001
Middle-Order Bit Indexing 1010 1010
« Consecutive memory lines 1011 1011
map to different cache lines 1100 1100
. 1101 1101
=« Can hold S*B*E-byte region of 1110 1110
address space in cache at one 1111 1111
time - -

25 15-213, S'08

Why Use Middle Bits as Index?

4-line Cache High-Order Middle-Order

Bit Tndexin Bit Indexing

00 0000 1 o000 i
01 0001 0001
10 0010 0010
11 0011 0011
0100 0100
High-Order Bit Indexing 0101 0101
= Adjacent memory lines would 9110 0110
map to same cache entry 0111 0111
. . 1000 1000
= Poor use of spatial locality 1001 1001
Middle-Order Bit Indexing 1010 1010
« Consecutive memory lines 1011 1011
map to different cache lines 1100 1100
. 1101 1101
=Can hold S*B*E-byte region of 77, 1110
gddress space in cache atone 77,4 1111
time - -

26 15-213, $'08

Sidebar: Multi-Level Caches

Options: separate data and instruction caches, or a
unified cache

z
Processor d-cache Unified

L2 Memory
L1 Cache

i-cache
size: 200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 30 6B
speed: 3ns 3 ns 6ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 328 328 8 KB

larger, slower, cheaper

27 15-213, S'08

What about writes?

Multiple copies of data exist:
.L1
.L2
« Main Memory
« Disk

What to do when we write?
« Write-through

« Write-back
« need a dirty bit
« What to do on a write-miss?

What to do on a replacement?
=« Depends on whether it is write through or write back

28

15-213,S'08

Software caches are more flexible

Examples
« File system buffer caches, web browser caches, etc.

Some design differences

« AlImost always fully associative
= SO, no placement restrictions
=« index structures like hash tables are common

« Often use complex replacement policies
= misses are very expensive when disk or network involved
= worth thousands of cycles to avoid them

= Not necessarily constrained to single “block” transfers
= may fetch or write-back in larger units, opportunistically

29 15-213, S'08

Locality Example #1

Being able to look at code and get a qualitative sense of
its locality is a key skill for a professional programmer

Question: Does this function have good locality?

int sum_array_rows(int a[M][ND)|
{
int i, j, sum = 0;
for (i = 0; 1 < M; i++)
for (J = 0; Jj < N; j++)
sum += a[illil;
return sum;
T
30 15-213, S'08

Locality Example #2

Question: Does this function have good locality?

int sum_array_cols(int a[M][ND)
{
int i, j, sum = 0;
for G = 0; j < N; j++)
for (i = 0; 1 < M; i++)
sum += a[il[il;
return sum;
}
31 15-213, S'08

Locality Example #3

Question: Can you permute the loops so that the
function scans the 3-d array a[] with a stride-1
reference pattern (and thus has good spatial
locality)?

int sum_array_3d(int a[M][NI[NI)
{
int i, j, k, sum = 0;
for (i = 0; i < M; i++)
for (J = 0; J < N; j++)
for (k = 0; k < N; k++
sum += a[KI[i10i1;
return sum;
}

32 15-213, S'08

