
1

Dynamic Memory Allocation II
October 21, 2008

Topics
Explicit doubly-linked free lists
Segregated free lists
Garbage collection
Review of pointers
Memory-related perils and pitfalls

lecture-16.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, F’08

Summary of Key Allocator Policies
Placement policy:

First fit, next fit, best fit, etc.
Trades off lower throughput for less fragmentation

Interesting observation: segregated free lists (next lecture)
approximate a best fit placement policy without having to search
entire free list.

Splitting policy:
When do we go ahead and split free blocks?
How much internal fragmentation are we willing to tolerate?

Coalescing policy:
Immediate coalescing: coalesce each time free is called
Deferred coalescing: try to improve performance of free by
deferring coalescing until needed. e.g.,

Coalesce as you scan the free list for malloc.
Coalesce when the amount of external fragmentation reaches some
threshold.

3 15-213, F’08

Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using
pointers within the free blocks

Method 3: Segregated free lists
Different free lists for different size classes

Method 4: Blocks sorted by size (not discussed)
Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

5 4 26

5 4 26

4 15-213, F’08

Explicit Free Lists
Maintain list(s) of free blocks, not all blocks

The “next” free block could be anywhere
So we need to store pointers, not just sizes

Still need boundary tags for coalescing
Luckily we track only free blocks, so we can use payload area

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

Note: links don’t have to be in the same order as the
blocks!

2

5 15-213, F’08

Allocating From Explicit Free Lists

Before:

After:

= malloc(…)

(with splitting)

7

6 15-213, F’08

Freeing With Explicit Free Lists
Insertion policy: Where in the free list do you put a newly
freed block?

LIFO (last-in-first-out) policy
Insert freed block at the beginning of the free list
Pro: simple and constant time
Con: studies suggest fragmentation is worse than address ordered.

Address-ordered policy
Insert freed blocks so that free list blocks are always in address order

i.e., addr(pred) < addr(curr) < addr(succ)
Con: requires search
Pro: studies suggest fragmentation is lower than LIFO

7 15-213, F’08

Freeing With a LIFO Policy (Case 1)

Insert the freed block at the root of the list

free()

5

Root

Root

Before:

After:

8 15-213, F’08

Freeing With a LIFO Policy (Case 2)

Splice out predecessor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Root

Before:

After:

3

9 15-213, F’08

Freeing With a LIFO Policy (Case 3)

Splice out successor block, coalesce both memory
blocks, and insert the new block at the root of the list

free()

Root

Root

Before:

After:

10 15-213, F’08

Freeing With a LIFO Policy (Case 4)

Splice out predecessor and successor blocks,
coalesce all 3 memory blocks, and insert the new
block at the root of the list

free()

Root

Root

Before:

After:

11 15-213, F’08

Explicit List Summary
Comparison to implicit list:

Allocate is linear time in # of free blocks instead of total blocks
Allocations much faster when most of the memory is full

Slightly more complicated allocate and free since needs to
splice blocks in and out of the list
Some extra space for the links (2 extra words needed for each
free block)

Most common use of linked lists is in conjunction with
segregated free lists

Keep multiple linked lists of different size classes, or possibly
for different types of objects

Does this increase internal frag?

12 15-213, F’08

Keeping Track of Free Blocks
Method 1: Implicit list using lengths -- links all blocks

Method 2: Explicit list among the free blocks using
pointers within the free blocks

Method 3: Segregated free list
Different free lists for different size classes

Method 4: Blocks sorted by size
Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

5 4 26

5 4 26

4

13 15-213, F’08

Segregated List (Seglist) Allocators
Each size class of blocks has its own free list

1-2

3

4

5-8

9-inf

Often have separate size class for each small size (2,3,4,…)
For larger sizes, typically have a size class for each power of 2

14 15-213, F’08

Seglist Allocator
Given an array of free lists for different size classes
To allocate a block of size n:

Search appropriate free list for block of size m > n
If an appropriate block is found:

Split block and place fragment on appropriate list (optional)
If no block is found, try next larger class
Repeat until block is found

If no block is found:
Request additional heap memory from OS (using sbrk())
Allocate block of n bytes from this new memory
Place remainder as a single free block in largest size class

15 15-213, F’08

Seglist Allocator (cont)
To free a block:

Coalesce and place on appropriate list (optional)

Advantages of seglist allocators
Higher throughput

i.e., log time for power-of-two size classes
Better memory utilization

First-fit search of segregated free list approximates a best-fit search
of entire heap
Extreme case: Giving each block its own size class is equivalent to
best-fit

16 15-213, F’08

For More Info on Allocators

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973

The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

Comprehensive survey
Available from CS:APP student site (csapp.cs.cmu.edu)

5

17 15-213, F’08

Memory-Related Perils and Pitfalls
Dereferencing bad pointers

Reading uninitialized memory

Overwriting memory

Referencing nonexistent variables

Freeing blocks multiple times

Referencing freed blocks

Failing to free blocks

18 15-213, F’08

Dereferencing Bad Pointers
The classic scanf bug

int val;

...

scanf(“%d”, val);

19 15-213, F’08

Reading Uninitialized Memory
Assuming that heap data is initialized to zero

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = malloc(N*sizeof(int));
int i, j;

for (i=0; i<N; i++)
for (j=0; j<N; j++)

y[i] += A[i][j]*x[j];
return y;

}

20 15-213, F’08

Overwriting Memory
Allocating the (possibly) wrong sized object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
p[i] = malloc(M*sizeof(int));

}

6

21 15-213, F’08

Overwriting Memory
Off-by-one error

int **p;

p = malloc(N*sizeof(int *));

for (i=0; i<=N; i++) {
p[i] = malloc(M*sizeof(int));

}

22 15-213, F’08

Overwriting Memory
Not checking the max string size

Basis for classic buffer overflow attacks
1988 Internet worm
Modern attacks on Web servers
AOL/Microsoft IM war

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

23 15-213, F’08

Overwriting Memory
Misunderstanding pointer arithmetic

int *search(int *p, int val) {

while (*p && *p != val)
p += sizeof(int);

return p;
}

24 15-213, F’08

Referencing Nonexistent Variables
Forgetting that local variables disappear when a
function returns

int *foo () {
int val;

return &val;
}

7

25 15-213, F’08

Freeing Blocks Multiple Times
Nasty!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);

y = malloc(M*sizeof(int));
<manipulate y>

free(x);

26 15-213, F’08

Implicit List: Coalescing
Join (coalesce) with next and/or previous
blocks, if they are free

Coalescing with next block

But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

void free_block(ptr p) {
*p = *p & -2; // clear allocated flag
next = p + *p; // find next block
if ((*next & 1) == 0)

*p = *p + *next; // add to this block if
} // not allocated

2

Logically gone

27 15-213, F’08

Referencing Freed Blocks
Evil!

x = malloc(N*sizeof(int));
<manipulate x>

free(x);
...

y = malloc(M*sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

28 15-213, F’08

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

foo() {
int *x = malloc(N*sizeof(int));
...
return;

}

8

29 15-213, F’08

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

struct list {
int val;
struct list *next;

};

foo() {
struct list *head = malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

30 15-213, F’08

Dealing With Memory Bugs
Conventional debugger (gdb)

Good for finding bad pointer dereferences
Hard to detect the other memory bugs

Debugging malloc (UToronto CSRI malloc)
Wrapper around conventional malloc
Detects memory bugs at malloc and free boundaries

Memory overwrites that corrupt heap structures
Some instances of freeing blocks multiple times
Memory leaks

Cannot detect all memory bugs
Overwrites into the middle of allocated blocks
Freeing block twice that has been reallocated in the interim
Referencing freed blocks

31 15-213, F’08

Dealing With Memory Bugs (cont.)
Some malloc implementations contain checking code

Linux glibc malloc: setenv MALLOC_CHECK_ 2
FreeBSD: setenv MALLOC_OPTIONS AJR

Binary translator: valgrind (Linux), Purify
Powerful debugging and analysis technique
Rewrites text section of executable object file
Can detect all errors as debugging malloc
Can also check each individual reference at runtime

Bad pointers
Overwriting
Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)
Let the system free blocks instead of the programmer.

32 15-213, F’08

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages, and
modern object oriented languages:

Lisp, ML, Java, Perl, Mathematica,

Variants (“conservative” garbage collectors) exist for C/C++
But, cannot necessarily collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

9

33 15-213, F’08

Garbage Collection
How does the memory manager know when memory
can be freed?

In general, we cannot know what is going to be used in the
future, since it depends on conditionals
But, we can tell that certain blocks cannot be used if there are
no pointers to them

Must make certain assumptions about pointers
1.Memory manager can distinguish pointers from non-pointers
2.All pointers point to the start of a block
3.Cannot hide pointers (e.g., by coercing them to an int, and
then back again)

34 15-213, F’08

Classical GC Algorithms
Mark-and-sweep collection (McCarthy, 1960)

Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
Does not move blocks (not discussed)

Copying collection (Minsky, 1963)
Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
Collection based on lifetimes

Most allocations become garbage very soon
So focus reclamation work on zones of memory recently allocated

For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 1996.

35 15-213, F’08

Memory as a Graph
We view memory as a directed graph

Each block is a node in the graph
Each pointer is an edge in the graph
Locations not in the heap that contain pointers into the heap are called
root nodes (e.g., registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)
36 15-213, F’08

Assumptions For This Lecture
Application

new(n): returns pointer to new block with all locations cleared
read(b,i): read location i of block b into register
write(b,i,v): write v into location i of block b

Each block will have a header word
addressed as b[-1], for a block b
Used for different purposes in different collectors

Instructions used by the Garbage Collector
is_ptr(p): determines whether p is a pointer
length(b): returns the length of block b, not including the header
get_roots(): returns all the roots

10

37 15-213, F’08

Mark and Sweep Collecting
Can build on top of malloc/free package

Allocate using malloc until you “run out of space”

When out of space:
Use extra mark bit in the head of each block
Mark: Start at roots and set mark bit on each reachable block
Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free

Mark bit set

free

38 15-213, F’08

Mark and Sweep (cont.)

ptr mark(ptr p) {
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // mark all children
mark(p[i]);

return;
}

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block
ptr sweep(ptr p, ptr end) {

while (p < end) {
if markBitSet(p)

clearMarkBit();
else if (allocateBitSet(p))

free(p);
p += length(p);

}

39 15-213, F’08

Conservative Mark & Sweep in C
A “conservative collector” for C programs

is_ptr() determines if a word is a pointer by checking if it points to
an allocated block of memory
But, in C pointers, can point to the middle of a block

So how do we find the beginning of the block?
Can use a balanced tree to keep track of all allocated blocks (key is
start-of-block)
Balanced-tree pointers can be stored in header (use two additional
words)

header
ptr

head data

left right

size

40 15-213, F’08

C operators (K&R p. 53)
Operators Associativity
() [] -> . left to right
! ~ ++ -- + - * & (type) sizeof right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= != <<= >>= right to left
, left to right

Note: Unary +, -, and * have higher precedence than binary forms

11

41 15-213, F’08

Review of C Pointer Declarations
int *p

int *p[13]

int *(p[13])

int **p

int (*p)[13]

int *f()

int (*f)()

int (*(*f())[13])()

int (*(*x[3])())[5]

p is a pointer to int

p is an array[13] of pointer to int

p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

f is a function returning a pointer to int

f is a pointer to a function returning int

f is a function returning ptr to an array[13]
of pointers to functions returning int

x is an array[3] of pointers to functions
returning pointers to array[5] of ints

42 15-213, F’08

Overwriting Memory
Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, int *size) {
int *packet;
packet = binheap[0];
binheap[0] = binheap[*size - 1];
*size--;
Heapify(binheap, *size, 0);
return(packet);

}

