
Introduction to
Computer Systems

Topics:
n Theme
n Five great realities of computer systems
n How this fits within CS curriculum
n Staff, text, and policies
n Lecture topics and assignments
n Lab rationale

class01.ppt

15-213
“The Class That Gives CMU Its Zip!”

Seth Goldstein & Andreas Nowatzyk
January 13, 2004

– 2 – 15-213, S’04

Course Theme
n Abstraction is good, but don’t forget reality!

Courses to date emphasize abstraction
n Abstract data types

n Asymptotic analysis

These abstractions have limits
n Especially in the presence of bugs

n Need to understand underlying implementations

Useful outcomes
n Become more effective programmers

l Able to find and eliminate bugs efficiently
l Able to tune program performance

n Prepare for later “systems” classes in CS & ECE
l Compilers, Operating Systems, Networks, Computer

Architecture, Embedded Systems

– 3 – 15-213, S’04

Great Reality #1

Int’s are not Integers, Float’s are not Reals

Examples
n Is x2 ≥ 0?

l Float’s: Yes!
l Int’s:

» 40000 * 40000 --> 1600000000

» 50000 * 50000 --> ??

n Is (x + y) + z = x + (y + z)?
l Unsigned & Signed Int’s: Yes!
l Float’s:

» (1e20 + -1e20) + 3.14 --> 3.14

» 1e20 + (-1e20 + 3.14) --> ??

-1794967296

0

– 4 – 15-213, S’04

Computer Arithmetic

Does not generate random values
n Arithmetic operations have important mathematical

properties

Cannot assume “usual” properties
n Due to finiteness of representations

n Integer operations satisfy “ring” properties
l Commutativity, associativity, distributivity

n Floating point operations satisfy “ordering” properties
l Monotonicity, values of signs

Observation
n Need to understand which abstractions apply in which

contexts

n Important issues for compiler writers and serious application
programmers

– 5 – 15-213, S’04

Great Reality #2

You’ve got to know assembly

Chances are, you’ll never write program in assembly
n Compilers are much better & more patient than you are

Understanding assembly key to machine-level
execution model
n Behavior of programs in presence of bugs

l High-level language model breaks down

n Tuning program performance
l Understanding sources of program inefficiency

n Implementing system software
l Compiler has machine code as target
l Operating systems must manage process state

– 6 – 15-213, S’04

Assembly Code Example

Time Stamp Counter
n Special 64-bit register in Intel-compatible machines

n Incremented every clock cycle

n Read with rdtsc instruction

Application
n Measure time required by procedure

l In units of clock cycles

double t;
start_counter();
P();
t = get_counter();
printf("P required %f clock cycles\n", t);

– 7 – 15-213, S’04

Code to Read Counter

n Write small amount of assembly code using GCC’s asm
facility

n Inserts assembly code into machine code generated by
compiler

static unsigned cyc_hi = 0;
static unsigned cyc_lo = 0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.

*/
void access_counter(unsigned *hi, unsigned *lo)
{

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"
: "=r" (*hi), "=r" (*lo)
:
: "%edx", "%eax");

}

– 8 – 15-213, S’04

Code to Read Counter
/* Record the current value of the cycle counter. */
void start_counter()
{

access_counter(&cyc_hi, &cyc_lo);
}

/* Number of cycles since the last call to start_counter. */
double get_counter()
{

unsigned ncyc_hi, ncyc_lo;
unsigned hi, lo, borrow;
/* Get cycle counter */
access_counter(&ncyc_hi, &ncyc_lo);
/* Do double precision subtraction */
lo = ncyc_lo - cyc_lo;
borrow = lo > ncyc_lo;
hi = ncyc_hi - cyc_hi - borrow;
return (double) hi * (1 << 30) * 4 + lo;

}

– 9 – 15-213, S’04

Measuring Time

Trickier than it Might Look
n Many sources of variation

Example
n Sum integers from 1 to n

n Cycles Cycles/n
100 961 9.61

1,000 8,407 8.41
1,000 8,426 8.43

10,000 82,861 8.29
10,000 82,876 8.29

1,000,000 8,419,907 8.42
1,000,000 8,425,181 8.43

1,000,000,000 8,371,2305,591 8.37

– 10 – 15-213, S’04

main(int argc, char** argv)
{

...
for (i=0; i<t; i++) {
start_counter();
count(n);
times[i] = get_counter();

}
...

}

int count(int n)
{

int i;
int sum = 0;

for (i=0; i<n; i++) {
sum += i;

}
return sum;

}

Timing System Performance
int count(int n)
{

int i;
int sum = 0;

for (i=0; i<n; i++) {
sum += i;

}
return sum;

}

main(int argc, char** argv)
{

...
for (i=0; i<t; i++) {
start_counter();
count(n);
times[i] = get_counter();

}
...

}

– 11 – 15-213, S’04

Timing System Performance
int count(int n)
{

...
}

main(int argc, char** argv)
{

...
}

main(int argc, char** argv)
{

...
}

int count(int n)
{

...
}

Experiment n cycles/n
1 10 1649.2
2 10 17.2
3 1000 24.3
4 1000 6.1

Experiment n cycles/n
1 10 1657.6
2 10 26
1a 10 20
2a 10 16.4
3a 1000 1.7
4a 1000 1.6

It’s the system, stupid!It’s the system, stupid!

– 12 – 15-213, S’04

Great Reality #3
Memory Matters Random Access Memory is an

un-physical abstraction

Memory is not unbounded
n It must be allocated and managed

n Many applications are memory dominated

Memory performance is not uniform
n Cache and virtual memory effects can greatly affect program

performance

n Adapting program to characteristics of memory system can
lead to major speed improvements

Memory referencing bugs especially pernicious
n Effects are distant in both time and space

– 13 – 15-213, S’04

Memory Performance Example

Implementations of Matrix Multiplication
n Multiple ways to nest loops

/* ijk */

for (i=0; i<n; i++) {

for (j=0; j<n; j++) {

sum = 0.0;

for (k=0; k<n; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

}

/* ikj */

for (i=0; i<n; i++) {

for (k=0; k<n; k++) {

sum = 0.0;

for (j=0; j<n; j++)

sum += a[i][k] * b[k][j];

c[i][j] = sum

}

}

– 14 – 15-213, S’04

0

20

40

60

80

100

120

140

160

matrix size (n)

ijk

ikj

jik

jki

kij

kji

Matmult Performance (Alpha 21164)
Too big for L1 Cache Too big for L2 Cache

It
er

at
io

n
s/

ti
m

e

– 15 – 15-213, S’04

Memory System

– 16 – 15-213, S’04

Blocked matmult perf (Alpha 21164)

0

20

40

60

80

100

120

140

160

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

matrix size (n)

bijk

bikj

ijk

ikj

It
er

at
io

n
s/

ti
m

e

– 17 – 15-213, S’04

Real Memory Performance

From Tom Womack’s
memory latency benchmark

Pointer-Chase Results

1

10

100

1000

It
er

at
io

n
 T

im
e

[n
s]

– 18 – 15-213, S’04

Memory Referencing Bug Example

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

main ()
{

long int a[2];
double d = 3.14;
a[2] = 1073741824; /* Out of bounds reference */
printf("d = %.15g\n", d);
exit(0);

}

Alpha MIPS Linux

-g 5.30498947741318e-315 3.1399998664856 3.14

-O 3.14 3.14 3.14

(Linux version gives correct result, but
implementing as separate function gives
segmentation fault.)

– 19 – 15-213, S’04

Memory Referencing Errors
C and C++ do not provide any memory protection

n Out of bounds array references

n Invalid pointer values

n Abuses of malloc/free

Can lead to nasty bugs
n Whether or not bug has any effect depends on system and

compiler

n Action at a distance
l Corrupted object logically unrelated to one being accessed
l Effect of bug may be first observed long after it is generated

How can I deal with this?
n Program in Java, Lisp, or ML

n Understand what possible interactions may occur

n Use or develop tools to detect referencing errors
– 20 – 15-213, S’04

Great Reality #4

There’s more to performance than asymptotic
complexity

Constant factors matter too!
n Easily see 10:1 performance range depending on how code

written

n Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
n How programs compiled and executed

n How to measure program performance and identify
bottlenecks

n How to improve performance without destroying code
modularity and generality

– 21 – 15-213, S’04

Great Reality #5

Computers do more than execute programs

They need to get data in and out
n I/O system critical to program reliability and performance

They communicate with each other over networks
n Many system-level issues arise in presence of network

l Concurrent operations by autonomous processes
l Coping with unreliable media
l Cross platform compatibility
l Complex performance issues

– 22 – 15-213, S’04

Hardware Organization (Naïve)

– 23 – 15-213, S’04

Role within Curriculum

Transition from Abstract to
Concrete!
n From: high-level language model

n To: underlying implementationCS 211
Fundamental

Structures

CS 213
Systems

CS 412
Operating
Systems

CS 411
Compilers

Processes
Mem. Mgmt

Machine Code
Optimization

Data Structures
Applications
Programming

CS 212
Execution

Models

CS 441
Networks

Network
Protocols

ECE 347
Architecture

ECE 349
Embedded
Systems

Exec. Model
Memory System

CS 113
C Programming

– 24 – 15-213, S’04

Course Perspective

Most Systems Courses are Builder-Centric
n Computer Architecture

l Design pipelined processor in Verilog

n Operating Systems
l Implement large portions of operating system

n Compilers
l Write compiler for simple language

n Networking
l Implement and simulate network protocols

– 25 – 15-213, S’04

Course Perspective (Cont.)

Our Course is Programmer-Centric
n Purpose is to show how knowing more about the underlying

system, leads one to be a more effective programmer

n Enable you to
l Write programs that are more reliable and efficient
l Incorporate features that require hooks into OS

» E.g., concurrency, signal handlers

n Not just a course for dedicated hackers
l We bring out the hidden hacker in everyone

n Cover material in this course that you won’t see elsewhere

– 26 – 15-213, S’04

Teaching staff
n Instructors

l Prof. Seth Goldstein (Wed 1--2pm, WeH 7122)
l Prof. Andreas Nowatzyk (Tue 3--4pm, NSH 4117)

n TA’s
l Ningning Hu (A, Tue 5--6pm, WeH 8205)
l Carolyn Au (B, Wed 3--4pm, WeH 3108)
l David Charlton (C, Fri 11:30--12:30pm, Weh 3108)
l David Fields (D, Wed 12:30am--1:30pm, Weh 3108)
l Mike Nollen (E, Thu 3--4pm, Weh 3108)

n Course Admin
l Norene Mears (WeH 7114)

These are the nominal office hours. Come talk to us anytime!
(Or phone or send email)

– 27 – 15-213, S’04

Textbooks
Randal E. Bryant and David R. O’Hallaron,

n “Computer Systems: A Programmer’s
Perspective”, Prentice Hall 2003.

n http://csapp.cs.cmu.edu/

Samuel P. Harbison III and Guy L. Steele Jr.,
n “C A Reference Manual 5th Edition”,

Prentice Hall, 2002

n http://careferencemanual.com/

– 28 – 15-213, S’04

Course Components

Lectures
n Higher level concepts

Recitations
n Applied concepts, important tools and skills for labs,

clarification of lectures, exam coverage

Labs
n The heart of the course

n 1, 2, or 3 weeks

n Provide in-depth understanding of an aspect of systems

n Programming and measurement

– 29 – 15-213, S’04

Getting Help

Web
n www.cs.cmu.edu/~213

n Copies of lectures, assignments, exams, solutions

n Clarifications to assignments

Newsgroup
n cmu.cs.class.cs213

n Clarifications to assignments, general discussion

Personal help
n Professors: door open means come on in (no appt

necessary)

n TAs: please mail or zephyr first.

– 30 – 15-213, S’04

Policies: Assignments
Work groups

n Labs: You must work alone on all labs

Handins

n Assignments due at 11:59pm on specified due date

n Typically 11:59pm Wednesday evening

n Electronic handins only

n Allowed a total of up to 5 late days for the semester

Makeup exams and assignments

n OK, but must make PRIOR arrangements with either Prof.
Goldstein or Nowatzyk

Appealing grades

n Within 7 days of due date or exam date

n Assignments: Talk to the lead person on the assignment

n Exams: Talk to either Prof. Goldstein or Nowatzyk

– 31 – 15-213, S’04

Cheating

What is cheating?
n Sharing code: either by copying, retyping, looking at, or

supplying a copy of a file.

n Using solutions or tools other than those from the course
book, lectures, or staff.

What is NOT cheating?
n Helping others use systems or tools.

n Helping others with high-level design issues.

n Helping others debug their code.

Usual penalty for cheating:
n Removal from course with failing grade.

n Note in student’s permanent record

– 32 – 15-213, S’04

Policies: Grading

Exams (40%)
n Two in class exams (10% each)

n Final (20%)

n All exams are open book/open notes.

Labs (60%)
n 7 labs (8-12% each)

Grading Characteristics
n Lab scores tend to be high

l Serious handicap if you don’t hand a lab in

n Tests typically have a wider range of scores

– 33 – 15-213, S’04

Facilities

Assignments will use Intel Computer Systems
Cluster (aka “the fish machines”)
n 25 Pentium III Xeon servers donated by Intel for CS 213

n 550 MHz with 256 MB memory.

n Rack mounted in the 3rd floor Wean machine room.

n We’ll be setting up your accounts this week.

Getting help with the cluster machines:
n See course Web page for info

n Please direct questions to your TAs

– 34 – 15-213, S’04

Programs and Data

Topics
n Bits operations, arithmetic, assembly language programs,

representation of C control and data structures

n Includes aspects of architecture and compilers

n Learning the tools

Assignments
n L1: Manipulating bits

n L2: Defusing a binary bomb

n L3: Hacking a buffer bomb

L1 Available THUR! (Due 1/25 11:59pm)

– 35 – 15-213, S’04

Performance

Topics
n High level processor models, code optimization (control and

data), measuring time on a computer

n Includes aspects of architecture, compilers, and OS

Assignments
n L4: Optimizing Code Performance

– 36 – 15-213, S’04

The Memory Hierarchy

Topics
n Memory technology, memory hierarchy, caches, disks,

locality

n Includes aspects of architecture and OS.

Assignments
n L4: Optimizing Code Performance

– 37 – 15-213, S’04

Linking and Exceptional
Control Flow
Topics

n Object files, static and dynamic linking, libraries, loading

n Hardware exceptions, processes, process control, Unix
signals, nonlocal jumps

n Includes aspects of compilers, OS, and architecture

Assignments
n L5: Writing your own shell with job control

– 38 – 15-213, S’04

Virtual memory

Topics
n Virtual memory, address translation, dynamic storage

allocation

n Includes aspects of architecture and OS

Assignments
n L6: Writing your own malloc package

– 39 – 15-213, S’04

I/O, Networking, and Concurrency

Topics
n High level and low-level I/O, network programming, Internet

services, Web servers

n concurrency, concurrent server design, threads, I/O
multiplexing with select.

n Includes aspects of networking, OS, and architecture.

Assignments
n L7: Writing your own Web proxy

– 40 – 15-213, S’04

Lab Rationale
Each lab should have a well-defined goal such as solving a puzzle

or winning a contest.
n Defusing a binary bomb.
n Winning a performance contest.

Doing a lab should result in new skills and concepts
n Data Lab: computer arithmetic, digital logic.
n Bomb Labs: assembly language, using a debugger, understanding

the stack
n Perf Lab: profiling, measurement, performance debugging.
n Shell Lab: understanding Unix process control and signals
n Malloc Lab: understanding pointers and nasty memory bugs.
n Proxy Lab: network programming, server design

We try to use competition in a fun and healthy way.
n Set a threshhold for full credit.
n Post intermediate results (anonymized) on Web page for glory!

– 41 – 15-213, S’04

Autolab Web Service

Labs are provided by the Autolab system
n Developed in summer 2003 by Dave O’Hallaron
n Apache Web server + Perl CGI programs
n Beta tested in Fall 2003, so of course, bug free now

With Autolab you can use your Web browser to:
n Review lab notes
n Download the lab materials
n Stream autoresults to a class status Web page as you work.
n Upload (handin) your code for autograding by the Autolab

server.
n View the complete history of your code handins, autoresult

submissions, autograding reports, and instructor
evaluations.

n View the class status page

– 42 – 15-213, S’04

Acknowledgement

15-213 was developed and fine-tuned by
Randal E. Bryant and David O’Hallaron.
They wrote The Book !

– 43 – 15-213, S’04

Have a Great Semester!

